ZADANIA OTWARTE. Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów.
|
|
- Weronika Smolińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Wojewódzki Konkurs Matematyczny SCHEMAT PUNKTOWANIA ZADANIA ZAMKNIĘTE Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Zad Odp. A B C A D C C C B C C D B A A B C D ZADANIA OTWARTE Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów. Zadanie 9. - cena biletu po obniżce y liczba widzów przed obniżką ceny biletu,y liczba widzów po obniżce ceny biletu 5y dochód ze sprzedaży biletów przed obniżką, y - dochód ze sprzedaży po obniżce ceny biletów Zapisanie zależności między dochodami ze sprzedaży biletów,5 5 y =, y Obliczamy cenę biletu =,5 Obliczamy o ile procent obniżono cenę biletu 5,5 00% = 6 % 5 punkty pełne rozwiązanie Za obliczenie ceny biletu po obniżce =,5 i procentu o jaki obniżono cenę biletu 6 % Uwaga: Uznajemy poprawne przybliżenie wyniku w ułamku dziesiętnym. punkty rozwiązanie pełne przy popełnionych błędach rachunkowych Za obliczenie ceny biletu po obniżce =,5 Obliczenie o ile procent obniżono cenę biletu, przy popełnionych błędach rachunkowych przy obliczeniu ceny biletu po obniżce. obliczenie ceny biletu przy popełnionych błędach rachunkowych przy obliczeniu o ile procent obniżono cenę biletu punkty zasadnicze trudności zostały, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne Za metodę obliczenia ceny biletu po obniżce, np.,5 5 y =, y z 5
2 WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały Zapisanie zależności między liczbą widzów przychodzących na mecz przed i po obniżce ceny biletów oraz metody obliczenia dochodu ze sprzedaży biletów (przed po obniżce ceny biletów), np. jeżeli y liczba widzów przed obniżką ceny biletu to,y liczba widzów po obniżce ceny biletu oraz 5y dochód ze sprzedaży biletów przed obniżką, y - dochód ze sprzedaży po obniżce ceny biletów Zapisanie zależności między liczbą widzów przychodzących na mecz przed i po obniżce ceny biletów oraz zależności między dochodem ze sprzedaży biletów w obu przypadkach, np.: jeżeli y liczba widzów przed obniżką ceny biletu to,y liczba widzów po obniżce ceny biletu oraz jeżeli z dochód ze sprzedaży biletów przed obniżką to,5z dochód ze sprzedaży biletów po obniżce ceny. Za rozwiązanie błędne brak rozwiązania zapisanie tylko zależności między liczbą widzów przed i po obniżce biletów zapisanie tylko sposobu obliczenia jednego z dochodów zapisanie tylko zależności między dochodami, bez sposobu obliczenia tego dochodu. Uwaga! Uczeń nie musi opisywać wprowadzonych niewiadomych, ale z zapisu rozwiązania powinno wynikać, co oznaczają wprowadzone niewiadome. Zadanie 0. Punkt styczności okręgu do podstawy oznaczmy F Obliczmy długości ramion trójkąta CDE AF = AD = 0 CD = 5 0 = 5 CE = CD = 5 Obliczamy długość podstawy DE trójkąta CDE CD DE = AC AB 5 DE = 5 0 DE = 6 z 5
3 WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Obliczamy wysokość trójkąta CDE h 0 + = h = Obliczamy pole trójkąta 50 5 P = 9 punkty pełne rozwiązanie 50 5 Za obliczenie pola trójkąta P =. 9 punkty rozwiązanie pełne przy popełnionych błędach rachunkowych Za poprawną metodę obliczenia pola trójkąta przy popełnionych błędach rachunkowych za obliczenie boków w trójkącie CDE i poprawną metodę obliczenia jego wysokości, np. 0 h + = 5. punkty zasadnicze trudności zostały, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne Za obliczenie ramienia trójkąta CDE, np. CD = 5 i poprawną metodę obliczenia podstawy 5 DE tego trójkąta, np. = 5 0 Za obliczenie ramienia trójkąta CDE CD = 5 i poprawną metodę obliczenia wysokości trójkąta ABC Za poprawne obliczenie skali podobieństwa i poprawną metodę obliczenia wysokości trójkąta ABC Za poprawne obliczenie pola trójkąta ABC i poprawne obliczenie skali podobieństwa trójkątów punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały Za obliczenie długości ramienia trójkąta CDE, np. CD = 5 za zapisanie zależności między odpowiednimi długościami boków trójkątów ABC i CDE, np. CD DE = AC AB z 5
4 WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM za poprawną metodę obliczenia wysokości trójkąta ABC podanie skali obliczenie promienia okręgu wpisanego w trójkąt ABC Za rozwiązanie błędne brak rozwiązania. Zadanie. Dzielimy kwadratową kartkę papieru na powierzchnie boczne graniastosłupów prawidłowych czworokątnych. Wyznaczamy krawędzie tych graniastosłupów w zależności od długości boku kartki. Krawędź podstawy jednego graniastosłupa podstawy drugiego graniastosłupa Obliczamy długość kartki + = 75 + = 75 6 = 000 = 0, a jego wysokość., a jego wysokość oraz krawędź punkty pełne rozwiązanie Za obliczenie boku kartki = 0 punkty rozwiązanie pełne przy popełnionych błędach rachunkowych Za obliczenie boku kartki przy popełnionych błędach rachunkowych za poprawną metodę obliczenia długości boku kartki, np. + = 75 punkty zasadnicze trudności zostały, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne z 5
5 WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Za zapisanie wymiarów obu powstałych graniastosłupów czworokątnych w zależności od długości boku kartki (mogą być opisane na rysunku), np. bok kartki, krawędź podstawy jednego graniastosłupa, a jego wysokość i krawędź podstawy drugiego graniastosłupa, a jego wysokość punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały Za zapisanie wymiarów jednego powstałego graniastosłupa czworokątnego w zależności od długości boku kartki (mogą być zaznaczone na rysunku), np. bok kartki, krawędź podstawy graniastosłupa wysokość., a jego wysokość Za rozwiązanie błędne brak rozwiązania. krawędź podstawy graniastosłupa, a jego 5 z 5
ETAP REJONOWY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/
WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 08/09 GIMNAZJUM WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 03/04 Przykładowe rozwiązania zadań i schemat punktowania Etap szkolny Przy punktowaniu zadań otwartych
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M1-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01 Zadania zamknięte
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M7-1 KWIECIEŃ 01 Liczba punktów
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoKujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15
Bardziej szczegółowoMATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Załącznik nr 8 do Regulaminu MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne W ramach pracy konkursowej
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Bardziej szczegółowoBADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M7-125 LISTOPAD 2012 Liczba
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
Bardziej szczegółowoKujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15
Bardziej szczegółowoBADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 01/013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M1-15 LISTOPAD 01 Liczba punktów
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
Bardziej szczegółowoBADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Zadania zamknięte Numer
Bardziej szczegółowoOCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
Bardziej szczegółowoMatematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną
Bardziej szczegółowoPrzykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Bardziej szczegółowoNieczynnościowy sposób oceniania zadań otwartych
Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie
Bardziej szczegółowoSponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI Numer Poprawna odpowiedź Liczba punktów zadania 1. A 1 2. B 1 3. C 1 4. A 1 5. B 2 6. A 2 7. D 2 8. D 2 9.
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej
Bardziej szczegółowoETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2016/2017
Wojewódzki Konkurs rzedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 016/017 rzykładowe rozwiązania zadań i schemat punktowania Etap szkolny rzy punktowaniu zadań otwartych
Bardziej szczegółowoEGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi
liczba uczniów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 016/017 Etap II etap rejonowy- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi.
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań Zadania zamknięte Zadanie 1 4 5 6 7 8 9 10 11 1 1 Odpowiedź C D D C A B C D C A B C D Zadania Prawda/Fałsz Zadanie Odpowiedź
Bardziej szczegółowoZadania zamknięte. Numer zadania
Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna
Bardziej szczegółowoOgólnopolski Próbny Egzamin Ósmoklasisty z OPERONEM Matematyka. Klucz punktowania
Matematyka Klucz punktowania Marzec 09 Zasady przyznawania. B pkt podanie poprawnej odpowiedzi. AD pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi.
Bardziej szczegółowoSTEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
Bardziej szczegółowoPRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
Bardziej szczegółowoKonkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
Bardziej szczegółowoUzasadnienie tezy. AB + CD = BC + AD 2
LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE
Bardziej szczegółowoMatematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2017/2018
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 017/018 etap wojewódzki Kryteria oceniania Zad.1.(0 3) Michał, Romek, Staszek, Tomek
Bardziej szczegółowoEGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
Bardziej szczegółowoKod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP SZKOLNY - listopada 016 roku 1. Przed Tobą zestaw 1 zadań konkursowych.. Na ich rozwiązanie masz 90 minut. Piętnaście
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
Bardziej szczegółowoPlanimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bardziej szczegółowoMATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 03/0 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA SIERPIEŃ 0 Klucz punktowania zadań zamkniętych Nr zad 3 6 7 8 9 0 3 6 7 8 9 0 3 Odp A A B B C
Bardziej szczegółowoMATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ
MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki
Bardziej szczegółowoBADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Liczba punktów za zadania
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 1 3 4 Liczba punktów D B A
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 018/019 SZKOŁA ODSTAWOWA WOJEWÓDZKI KONKURS MATEMATYZNY DLA UZNIÓW SZKOŁY ODSTAWOWEJ W ROKU SZKOLNYM 018/019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź
Bardziej szczegółowoKLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
Bardziej szczegółowoKLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Bardziej szczegółowoKONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 08/09 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
Bardziej szczegółowoXII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Bardziej szczegółowoTematy próbnego pisemnego egzaminu dojrzałości z matematyki
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny
Kod ucznia.. KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Witamy Cię na pierwszym etapie Konkursu Matematycznego. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Bardziej szczegółowoPRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
Bardziej szczegółowoEGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3
Bardziej szczegółowoKONKURS "WEJŚCIÓWKA 2015" Matematyka, fizyka i informatyka
Siedlce, 09.05.2015 Imię i nazwisko uczestnika Nazwa szkoły uczestnika Imię i nazwisko nauczyciela matematyki lub fizyki Adres e-mail i numer telefonu uczestnika KONKURS "WEJŚCIÓWKA 2015" Matematyka, fizyka
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B ( ) 9 : 7 = 7 = 7 6 5 5. B log ( log0
Bardziej szczegółowoMATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
Bardziej szczegółowoKryteria oceniania zadań z matematyki na przykładzie prac uczniowskich
Kryteria oceniania zadań z matematyki na przykładzie prac uczniowskich Analiza rozwiązań dwóch zadań otwartych z matematyki na przykładach prac uczniowskich ZADANE 1. Okładka komiksu ma kształt prostokąta
Bardziej szczegółowoZadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
Bardziej szczegółowoPrzedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na
Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
Bardziej szczegółowoKONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018. Model odpowiedzi i schematy punktowania
UWAGA KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 07/08 Model odpowiedzi i schematy punktowania Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowoKARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ
KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.
Bardziej szczegółowoMATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Klucz punktowania zadań zamkniętych Nr 3 5 6
Bardziej szczegółowoARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
Bardziej szczegółowoKlasa 3 Przewodnik po zadaniach
Klasa 3 Przewodnik po zadaniach www.gimplus.pl 1 Spis treści 1. Liczby i wyrażenia algebraiczne (str. 3) 1.1 System dziesiątkowy 1.2 System rzymski 1.3 Liczby wymierne i niewymierne 1.4 Podstawowe działania
Bardziej szczegółowoEGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla
Bardziej szczegółowoPRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
Bardziej szczegółowoTABELA ODPOWIEDZI. kod ucznia
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 018/019 ETAP SZKOLNY 5 października
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny brak
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
Bardziej szczegółowoMAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2015/2016 ETAP WOJEWÓDZKI 10 marca 2016 roku
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2015/2016 ETAP WOJEWÓDZKI 10 marca 2016 roku 1. Przed Tobą zestaw 15 zadań konkursowych. 2. Na ich rozwiązanie masz 120 minut. Piętnaście
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 013 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowo