Rachunek prawdopodobieństwa i statystyka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rachunek prawdopodobieństwa i statystyka"

Transkrypt

1 Rachune prawopoobieństwa i statystya Kurs la ierunu Informatyi stosowanej Uniwersytet Jagiellońsi Kraów, 07/08 Dr hab. Roman Sibińsi UWAGA: Slajy nie zawierają całości materiału przestawianego na wyłaach; mają jeynie charater pomocniczy i posumowujący. RPiS 07/08 RPiS 07/08 Waruni zaliczenia () Ćwiczenia: ocena bęzie śrenią z trzech ocen cząstowych (w sali.0-5.0): wóch z olowiów z zaań i oceny z atywności na ćwiczeniach. Śrenia ta zostanie przeliczona na ocenę z ćwiczeń, wpisywaną o inesu, w następujący sposób: [ ] ocena ostateczna, ( ] ocena ostateczna plus, ( ] ocena obra, ( ] ocena obra plus, ( ] ocena barzo obra. Waruniem zaliczenia ćwiczeń jest zaliczenie obu olowiów co najmniej na ocenę ostateczną. Niezaliczone olowia bęzie można poprawiać na olowium zaliczeniowym, poprawa otyczy tylo niezaliczonej części materiału. W przypau poprawiania jenego olowium ocena z ćwiczeń bęzie liczona jao śrenia z czterech ocen ( olowia + atywność + olowium poprawowe) przeliczona ja wyżej. Analogicznie w przypau poprawiania obu olowiów śrenia bęzie liczona z pięciu ocen. RPiS 07/08 3 Waruni zaliczenia () Wyła: cztery artówi na ćwiczeniach, oceniane w sali 0-5 pt. Suma puntów prowazi o oceny: Prze artówami (niezapowiezianymi) [-3.5) ocena ostateczna, ostępne bęą zaganienia o przygotowania [ ) ocena ostateczna plus, W tracie semestru można poprawić jeną, najgorzej [ ) ocena obra, napisaną artówę + te z usprawieliwionymi [ ) ocena obra plus, nieobecnościami [ ] ocena barzo obra. Osoby, tóre nie uzysają puntów piszą olowium poprawowe z całości wyłau Ocena ońcowa (wpisywana o inesu, z wyłau): (/3*ocena z ćwiczeń + /3*ocena z wyłau)*0.9 Powyższy algorytm prowazi o oceny wpisywanej o inesu: o.70 ocena nieostateczna, [ ) ocena ostateczna, [ ) ocena ostateczna plus, [ ) ocena obra, [ ] ocena obra plus, Osoby, tóre rozwiążą zaania programistyczne bęą miały ocenę powyższoną o pół stopnia np. z obrej plus na barzo obrą. Zatem waruniem otrzymania oceny barzo obrej w inesie jest napisanie zaanych programów. RPiS 07/08 4 Literatura W.Krysici, J.Bartos i inni, Rachune prawopoobieństwa i statystya matematyczna w zaaniach tomy i, PWN 005 Literatura oatowa: J.Jaubowsi, R.Sztencel Rachune prawopoobieństwa la (prawie) ażego,script, W-wa 006. A.Plucińsa, E.Plucińsi Probabilistya, WNT 000. S.Brant Analiza anych, PWN (o 999) R.Nowa Statystya la fizyów PWN 00. V.Rohatgi, Statistical inference,j.wiley&sons, Inc, 984. RPiS 07/08 5 Definiujemy sztuę przewiywania, inaczej sztuę stochastyi, jao sztuę oceniania z najwięszą możliwą ołanością prawopoobieństwa zarzeń, ta żebyśmy w naszych osąach i ziałaniach zawsze mogli opierać się na tym, co oazało się najlepsze, najopowieniejsze, najpewniejsze, najsensowniejsze; jest to jeyny cel mąrości filozofa i roztropności męża stanu. J.Bernoulli Ars Conjectani ( Sztua przewiywania ) 73 Za I.Stewart Oswajanie niesończoności. matematyi RPiS 07/08 6

2 Zares wyłau Rachune prawopoobieństwa ja liczyć prawopoobieństwa zarzeń i ja je globalnie opisywać. Statystya matematyczna ja wniosować w sytuacjach, gy mamy niepełną informację (wniose o całej grupie na postawie informacji zebranej na części grupy, np. sonaże przewyborcze), ja oceniać wiarygoność taiego wniosowania (hipotezy statystyczne) Dlaczego? Ma wpływ na nasze życie (gry hazarowe, ubezpieczenia, hanel, ryminalistya, meycyna, politya) Zastosowania w informatyce: - symulacje omputerowe - metoy obliczeniowe - moelowanie rzeczywistości (grafia) - probabilistyczna (statystyczna) analiza algorytmów - algorytmy probabilistyczne - systemy olejowe - esploracja anych RPiS 07/08 7 RPiS 07/08 8 Rozgrzewa Sprawzamy równość wielomianów o stopniu w liczbach całowitych G( a a x a x... a x F( G( F( ( x x )( x x )( x x )...( x x ) 0 F(, G( i F(-G( ma co najwyżej pierwiastów. Załaamy, że współczynnii x i i a i są taie, że wielomiany przecinają się tylo w całowitych x. 3? Rozgrzewa Weźmy liczbę losową r całowitą z przeziału [0,00) i sprawzamy czy F( r) G( r) Nie: wielomiany na pewno są różne (obra opowieź) Ta: przyjmujemy, że wielomiany są równe w rzeczywistości albo są równe ( i wtey mamy obrą opowieź), albo trafiliśmy na pierwiaste F(r)-G(r) (i wtey mamy złą opowieź). Masymalnie taich liczb jest ; Szansa, że trafiliśmy w tai jest /(00*)=0.0=% Czyli w 99% ostaniemy poprawną opowieź. RPiS 07/08 9 RPiS 07/08 0 Rozgrzewa Rozgrzewa Można to poprawić: więszy zares [0,000) (ale możemy mieć problem z użymi liczbami) Można też powtarzać całe sprawzanie ila razy Ta można sprawzać mnożenie macierzy A=BC w =Ar w =B(Cr) w =w Liczba operacji: n 3 +n 3n +n RPiS 07/08 RPiS 07/08

3 Rozgrzewa. Stosune ługości słupów: :3.7, stosune poparcia w procentach :.. Lie-factor: ~3.. Słupi nie oają nawet różnic pomięzy prezentowanymi liczbami. Trzypunowa oległość pomięzy 4% a 45% jest z 5x mniejsza niż 4 puntowa oległość pomięzy 47% a 5%. 3. Różna jasność słupów może wpływać na obieraną wielość prezentowanych liczb. Rozgrzewa 3 RPiS 07/08 3 RPiS 07/08 4 Rozgrzewa 3 Rozgrzewa 3,,Najprostsze porównywalne ane uazują niezmiennie wysoą w hierarchii ważności pozycję roziny uane życie rozinne jest poreślane jao sprawa barzo ważna zarówno przez awne, ja i przez nowe młoe poolenie (przez nowe nawet barziej)... Drugie poobieństwo otyczy relatywnie nisiego wartościowania spoojnego życia. W innych westiach charaterystyi awnej i nowej młozieży wyraźnie się rozchozą. A teraz wniose z prezentacji,,wioczna jest mentalna orębność zisiejszego młoego poolenia RPiS 07/08 5 Poprawne wniosi: Hierarchia ważności jest w przybliżeniu zachowana Najwięsza zmiana otyczy Spoojnego życia RPiS 07/08 6 Starożytność, Śreniowiecze gry losowe XVI w G.Carano (50-576), Księga o grach losowych postawy prawopoobieństwa (gry w ości i w arty, oatowo rozział o sutecznym oszuiwaniu) A.Gombau (Chevalier e Méré, ) oresponencja pomięzy B.Pascalem (63-66; 654,655 trójąt Pascala) a P.e Fermat (60-665), problem poziału puli przy przerwaniu gry ( problem of points ) Rozwiązanie biorące po uwagę tylo otychczasowe wynii jest błęne, należy uwzglęnić możliwe zarzenia o zaplanowanego ońca gry. w różnych omianach istnieje paraos e Méré, np. laczego częściej wypaa 6 w 4-ech rzutach jeną ostą niż wie 6 w 4-ech rzutach woma ostami. Rzut jeną ostą: 4*/6=4/6 Rzut woma ostami: 4*/6*/6=4/36=4/6 Ale naprawę interesuje nas prawopoobieństwo otrzymania przynajmniej raz szósti w 4-ech rzutach = -prawopoobieństwo nie otrzymania żanej szósti=-(5/6)^4=67/96=0.577 i prawopoobieństwo otrzymania przynajmniej raz wóch szóste w 4-ech rzutach woma ostami = -prawopoobieństwo nie otrzymania wóch szóste ani razu)=-(35/36)^4=0.494 Poazuje to, że: ) trzeba precyzyjnie efiniować czego prawopoobieństwo liczymy ) e Méré użo czasu spęzał grając w ości RPiS 07/08 7 RPiS 07/08 8 3

4 Ch.Huygens(69-695), J.Bernoulli ( ; 73 Sztua przewiywania, białe i czarne amyi w urnie), problemy typu rzut uczciwą monetą. Ale co to znaczy uczciwa moneta? T.Bayes (70-76): analiza bayesowsa P.Laplace(749-87), K.Gauss( ) teoria miary A.Quetelet ( ); 835 statystya społeczeństwa F.Galton (8-9); 865 zieziczenie, regresja XX w: A.N.Kołomogorow ( ): nowoczesna tzw. asjomatyczna teoria prawopoobieństwa Wyorzystanie omputerów nowe możliwości i nowe zaania Esperyment eterministyczny waruni wyznaczają wyni (np. tylo białe ule w urnie) Esperyment przypaowy (zarzenie losowe) to tai esperyment, tórego wyniu nie potrafimy przewizieć, mimo, że powtarzamy go w taich samych warunach. (np. białe i czarne ule w urnie) Jeyne co możemy zrobić to zebrać możliwe wynii i oreślić ich prawopoobieństwo. RPiS 07/08 9 RPiS 07/08 0 Definicja częstościowa Powtarzamy esperyment n razy N (n) liczba wystąpienia wyniu w n esperymentach N ( n) f (n) wzglęna częstość wyniu f ( n) n spełnia z ef. 0 f ( n) f ( n) Częstościowa efinicja prawopoobieństwa: P( ) lim f ( n) n -trune w pratyce (niesończona liczba esperymentów, powtarzalność oświaczeń, efinicja esperymentu (prawopoobieństwo urozenia ziewczyni/chłopca), -wynia z asjomatycznej teorii prawopoobieństwa, -przyła: aplet Fałszywa osta RPiS 07/08 Przestrzeń próbe esperymentu przypaowego to zbiór W wszystich możliwych wyniów tego esperymentu. Zarzenie elementarne aży możliwy wyni esperymentu przypaowego. Powtarzając esperyment przypaowy jao wyni otrzymujemy jeno i tylo jeno zarzenie elementarne; zarzenia elementarne wyluczają się wzajemnie Zarzenie to pozbiór przestrzeni próbe. RPiS 07/08 Przestrzeń próbe esperymentu przypaowego może być -sończona (liczba ocze w rzucie ostą), -niesończona w sposób przeliczany (ilość rzutów aż wypanie 6 ), -niesończona w sposób nieprzeliczalny (oległość na jaą rzucimy ostę) inny poział: ysretna i ciągła mogą istnieć typy mieszane Szczególne zarzenia: - zarzenie niemożliwe pusty pozbiór przestrzeni W - zarzenie pewne cała przestrzeń W RPiS 07/08 3 Działania na zbiorach (przypomnienie) Operacje na zbiorach ( = pozbiorach przestrzeni próbe = zarzeniach) Suma Iloczyn Dopełnienie B : B : A: x x B x A x B A A W Rozłączność B Zawartość Równość Własności ziałań na zarzeniach: A B : A B : x A x B A B B A Przemienność Łączność B B A ( ( C B B A ( ( C Dystrybutywność (rozłączność sumy i iloczynu) Prawa e Morgana ( ( ( C) ( ( ( C) B A B B A B RPiS 07/08 4 4

5 Asjomatyczna efinicja prawopoobieństwa Każemu zarzeniu A w przestrzeni próbe W przyporząowujemy liczbę rzeczywistą P( zwaną prawopoobieństwem, ta by miała ona następujące własności: I: A W P( 0 II: P(W)= III: Jeżeli A,A, jest ciągiem rozłącznych zarzeń to P ( A ) A ) Wniosi z asjomatów. P( P(. P( 3. P( ) 0 4. A B 5. Dla wóch zarzeń rozłącznych: P( 6. Dla wóch owolnych zarzeń: P( RPiS 07/08 5 RPiS 07/08 6 5

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

P(T) = P(T M) = P(T A) = P(T L) = P(T S) = P(T L M) = P(T L A) = P(T S M) = P(T S A) =

P(T) = P(T M) = P(T A) = P(T L) = P(T S) = P(T L M) = P(T L A) = P(T S M) = P(T S A) = Przyład (obrona orętów USA przed ataami lotnictwa japońsiego) Możliwe dwie wyluczające się tatyi: M = manewr A = artyleria przeciwlotnicza Departament Marynari Wojennej na podstawie danych z wojny na Pacyfiu

Bardziej szczegółowo

ANALIZA WIELOKRYTERIALNA

ANALIZA WIELOKRYTERIALNA ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) = Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Statystyka matematyczna SYLABUS

Statystyka matematyczna SYLABUS Statystyka matematyczna nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS1-2SM Nazwa jednostki prowadzącej Wydział

Bardziej szczegółowo

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH Andrzej SZYMONIK, Krzysztof PYTEL Streszczenie: W złożonych sieciach omputerowych istnieje problem doboru przepustowości

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

9. Sprzężenie zwrotne własności

9. Sprzężenie zwrotne własności 9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 3.10.2017 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s.?? strona z materiałami

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2011

EGZAMIN GIMNAZJALNY 2011 Centralna Komisja Egzaminacyjna w Warszawie EGZMIN GIMNZJLNY 011 część matematyczno-przyrodnicza Klucz puntowania zadań (arusz dla uczniów bez dysfuncji i z dyslesją rozwojową) KWIECIEŃ 011 Zadania zamnięte

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2011

EGZAMIN GIMNAZJALNY 2011 Centralna Komisja Egzaminacyjna w Warszawie EGZMIN GIMNZJLNY 011 część matematyczno-przyrodnicza Klucz puntowania zadań (arusz dla uczniów bez dysfuncji i z dyslesją rozwojową) KWIECIEŃ 011 Zadania zamnięte

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Technika optymalizacji

Technika optymalizacji Algorytmy bezgraientowe Algorytmy optymalizacji loalnej c. Nieliniowe zaanie optymalizacji statycznej bez ograniczeń - nieliniowe algorytmy optymalizacji loalnej c. r inŝ. Ewa Szlachcic Wyział Eletronii

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotem oceniania są: - wiadomości, - umiejętności, - postawa ucznia i jego aktywność. Cele ogólne oceniania: - rozpoznanie

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 5. metody Monte Carlo zastosowanie metod do obliczenia całek wielokrotnych. Nr: 1

Metody obliczeniowe. wykład nr 5. metody Monte Carlo zastosowanie metod do obliczenia całek wielokrotnych. Nr: 1 Nr: Metoy obliczeniowe wykła nr 5 etoy Monte Carlo zastosowanie eto o obliczenia całek wielokrotnych Nr: Obliczanie całek wielokrotnych... f (,..., n... n? kubatury - wielowyiarowe opowieniki kwaratur

Bardziej szczegółowo

Wykorzystanie logiki rozmytej w badaniach petrofizycznych

Wykorzystanie logiki rozmytej w badaniach petrofizycznych NAFTA-GAZ, ROK LXXII, Nr / DOI: 1.1/NG...1 Barbara Darła, Małgorzata Kowalsa-Włodarczy Instytut Nafty i Gazu Państwowy Instytut Badawczy Wyorzystanie logii rozmytej w badaniach petrofizycznych Praca ta

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

10. REZONANS W OBWODACH ELEKTRYCZNYCH

10. REZONANS W OBWODACH ELEKTRYCZNYCH 0. EZONANS W OBWODAH EEKTYZNYH W obwoach prąu sinusoialnego przebiegi czasowe (prąów, napięć, sem, spm, mocy) cylicznie przybieraą na przemian wartości oatnie i uemne. Przebiegi o taim charaterze noszą

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW A-C

UZUPEŁNIENIA DO WYKŁADÓW A-C UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.

Bardziej szczegółowo

1 Przestrzeń zdarzeń elementarnych

1 Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych jest pojęciem pierwotnym w teorii prawdopodobieństwa. W zastosowaniach tej teorii zdarzenia elementarne interpretuje się jao możliwe przypadi,

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski Matematya Dysretna, informatya, 2008/2009, W. Broniowsi Zestaw 2 z częściowymi odpowiedziami (ja toś nie chce, niech nie patrzy! Kombinatorya i rachune prawdopodobieństwa. Z pomocą wzoru Stirlinga dla

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4bA ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4bA ZAKRES ROZSZERZONY (135 godz.) YMAGANIA EDUACYJNE Z MATEMATYI LASA 4bA ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka Pierwotnie oznaczała stan rzeczy (od status) i do XVIII wieku używana dla określenia zbioru wiadomości o państwie Statystyka

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X

Bardziej szczegółowo

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać:

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać: L Defetosoia ultraźwięowa Srawozanie owinno zawierać:. Króti ois aaratury i metoy.. Rysune słua z zwymiarowanym ołożeniem wa. L Elastootya ynii baań elastootycznych Rzą izochromy m Siła na ońcu źwigni

Bardziej szczegółowo

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20182019 4. Forma

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych)

Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych) Analiza anych śroowiskowych III rok OŚ Wykła 1 Anrzej Leśniak KGIS, GGiOŚ AGH Cele Zaprezentowanie praktycznego poejścia o analizy anych (szczególnie anych śroowiskowych) Zaznajomienie z postawowymi (!!!)

Bardziej szczegółowo

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość

Bardziej szczegółowo

Algorytmy graficzne. Metody binaryzacji obrazów

Algorytmy graficzne. Metody binaryzacji obrazów Algorytmy graficzne Metoy binaryzacji obrazów Progowanie i binaryzacja Binaryzacja jest procesem konwersji obrazów kolorowych lub monochromatycznych (w ocieniach szarości) o obrazu wupoziomowego (binarnego).

Bardziej szczegółowo

Metrologia Techniczna

Metrologia Techniczna Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka Wykład I: Nieco historii

Prawdopodobieństwo i statystyka Wykład I: Nieco historii Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Inżynierskie zastosowania statystyki Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.

Inżynierskie zastosowania statystyki Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. Inżynierskie zastosowania statystyki Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest nabycie wiedzy na temat metod

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka Zmienna losowa ozszerzenie znaczenia funcji zmiennej rzeczwistej na przpadi, ied zmienna niezależna nie jest liczbą rzeczwistą: odległość to funcja par puntów, obwód trójąta, to funcja oreślona na zbiorze

Bardziej szczegółowo

Analiza B. Paweł Głowacki

Analiza B. Paweł Głowacki Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba 3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI PRZEDMIOTOWE OCENIANIE Z MATEMATYKI Przedmiotowe ocenianie z matematyki jest zgodne z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015r. w sprawach oceniania, klasyfikowania, promowania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM W KLASACH 4-6 SZKOŁY PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM W KLASACH 4-6 SZKOŁY PODSTAWOWEJ 1 PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM W KLASACH 4-6 SZKOŁY PODSTAWOWEJ Przedmiotowy System Oceniania jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Szkole Podstawowej nr 42 we Wrocławiu.

Bardziej szczegółowo