Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński"

Transkrypt

1 Mkroekonometra 12 Mkołaj Czajkowsk Wktor Budzńsk

2 Modele bnarne heterogenczność parametrów Heterogenczność stałej (model efektów stałych) lub warancj składnka losowego (model efektów losowych) można uznać za szczególny przypadek heterogencznośc parametrów modelu Rozluźnamy założene o tym, że każda osoba ma take same parametry funkcj użytecznośc Y Y Teraz parametry też są ndeksowane po (są różne dla różnych respondentów) = βx + ε t t t t ( Yt 0) = 1 > ; = 1,..., N ; t = 1,..., T mogą meć zadany rozkład w populacj / próbe Np. β MVN B, Σ β ( )

3 Modele bnarne heterogenczność parametrów Model parametrów losowych Gdy parametry mają rozkłady cągłe mówmy o modelu parametrów losowych β f ( β, Σ) Ne wszystke parametry muszą być losowe Parametry mogą być skorelowane (macerz Σ ne mus być dagonalna) Estymowany jest ne pojedynczy parametr, lecz np. średna warancja opsujące rozkład parametrów w próbe (ewentualne także korelacje) Możemy także zbudować model, w którym średne uzależnone są od jakchś zmennych objaśnających (np. cech respondenta) β ( f β+ γz, Σ) Neobserwowalna / obserwowalna heterogenczność

4 Modele bnarne heterogenczność parametrów Model parametrów losowych Dla wększośc rozkładów β f ( β+ zγ, Σ) można zoperacjonalzować następująco β = β+ zγ+γv v zmenne losowe o zadanym rozkładze (np. normalny, lognormalny, trójkątny, jednostajny), średnej zero znanej warancj nezależne v = v lub z autokorelacją t t= 1,..., T R jest macerzą dagonalną z parametram określającym słę autokorelacj v = Rv + u t t 1 t u zdefnowane jak nezależne v Γ macerz dolnotrójkątna lub dagonalna, z 1 na przekątnej, (taka, że ΓΓ'v = Σ) Jeśl w modelu ne ma korelacj pomędzy parametram losowym to ΓΓ' jest macerzą jednostkową, a v zawera warancje

5 Modele bnarne heterogenczność parametrów Model parametrów losowych Prawdopodobeństwo zaobserwowana określonych wyborów respondenta : v jest neobserwowalne, węc bezwarunkowe prawdopodobeństwo to: T ( )... ( ) Pr (,, ) Funkcja LL: T ( 1 X z v ) ( X z β ) L = Pr Y,..., Y,, = Pr Y,, T t t = 1 T ( ( ) ) T t, β zγ v X v gy ( t, Xβ v ) = gy + +Γ = t= 1 t= 1 L = E L v = g v Y X z β dv v t v t = 1 N T lnl= ln ( ) ( )... g v Pr Yt X, z, β dv = 1 v t = 1 Tej welokrotnej całk ne ma sę nestety jak pozbyć, w pochodnych też występuje analtyczna maksymalzacja raczej nemożlwa Metoda maksymalzacja symulowanej wartośc funkcj ML

6 Metoda maksymalzacj symulowanej wartośc funkcj ML Czasem funkcja ML jest zbyt skomplkowana, żeby analtyczne oblczyć jej wartość ( wartośc jej pochodnych) Np. parametry losowe, efekty losowe tp. welokrotne całk Wartośc takch funkcj można symulować Szacowane wartośc całek przez symulacje Np. parametr losowy Losujemy n różnych wartośc parametru z zadanego rozkładu Dla każdej z wylosowanych wartośc oblczamy wartość funkcj ML Berzemy średną, która jest wartoścą oczekwaną funkcj ML N T lnl= ln ( ) ( )... g v Pr Yt Xβ dv = 1 v t = 1 N R T 1 lnls = ln Pr ( Yt Xβ r) = 1 R r= 1 t = 1

7 Przykład opeka zdrowotna w Nemczech 1. Wczytaj projekt me.gerhealth.lpj 2. Skonstruuj model, w którym odbyce wzyty u lekarza (Y = 1(docvs > 0)) wyjaśnane jest przez stałą, wek, dochód, posadane dzec, lczbę lat edukacj byce w małżeństwe 3. Skonstruuj model ekwwalentny do modelu efektów losowych, wprowadzając heterogenczność odpowednch zmennych Porównaj wynk z modelem efektów losowych Dlaczego model konwerguje tak długo? MODEL ;... ; rpm ; fcn = <zmenna>(<oznaczene rozkładu>) ; pds = <lczba lub zmenna> (lub ; panel) $ n rozkład normalny t rozkład trójkątny u rozkład jednostajny l rozkład lognormalny o rozkład trójkątny zakotwczony w 0 g rozkład log gamma

8 Modele bnarne heterogenczność parametrów Model parametrów losowych Zezwolene na korelacje zmennych ; cor Wprowadzene zmennych objaśnających średne rozkładów losowych ; rpm = W celu wykluczena nektórych parametrów losowych z wyjaśnana ch średnch: MODEL ;... ; rhs = <var1>, <var2>,... ; rpm = <cvar1>, <cvar2>,... ; fcn = <var1(f) #10...>, <var2(f) #01...>,...

9 Kontrolowane symulacj w NLOGIT CALC; ran(<seed>) $ - ustala wartość zarna ; halton wymusza zastosowane lczb z cągu Haltona ; pts = <lczba> lczba losowań ; maxt = <lczba> maksymalna lczba teracj ; tlg = <lczba> ustala pozom tolerancj konwergencj dla gradentu ; tlb = <lczba> ustala pozom tolerancj konwergencj dla zmany wartośc parametrów ; tlf = <lczba> ustala pozom tolerancj konwergencj dla zmany wartośc funkcj LL TIMER $ wyśwetla czas estymacj model

10 Kontrolowane symulacj w NLOGIT Informacje pozwalające znaleźć przyczynę braku konwergencj, nne problemy (np. neodpowedno wyskalowane dane) ; output = 0 ne wyśwetla nformacj techncznych ; output = 1 wyśwetla wartośc startowe, maksymalną lczbę teracj, tolerancję konwergencj, algorytm optymalzacyjny ; output = 2 jak 1 + dodatkowo gradent ; output = 3 jak 2 + dodatkowo wartośc parametrów ; output = 4 jak 3 + dodatkowo welkość kroku Uwag Modele z heterogencznoścą parametrów zwykle wymagają węcej nż jednej obserwacj na respondenta, żeby dobrze dzałać pamętaj o uwzględnenu struktury panelowej Modele z heterogencznoścą parametrów trudnejsze w estymacj mogą wymagać zwększena maksymalnej lczby teracj Modele z heterogencznoścą wymagające symulacj dla ostatecznego modelu lczba drawów pownna wynosć co najmnej klkaset (1000+?) Przyjmjmy, że dla prac domowych wystarczy 100

11 Modele bnarne heterogenczność parametrów Model klas ukrytych Jeśl parametry mają rozkłady dyskretne mówmy o modelu klas ukrytych Zakładamy stnene J różnych typów (klas) parametrów β { β 1,..., βj} Prawdopodobeństwo warunkowe (pod warunkem przynależnośc do danej klasy) to: Pr ( Yt Xt, j) = Xtβj + ε t Zaś przynależność osoby do danej klasy jest losowa Ne wemy kto jest w jakej klase parametrów

12 Modele bnarne heterogenczność parametrów Model klas ukrytych Przynależność osoby do danej klasy jest losowa Prawdopodobeństwo przynależnośc do określonej klasy można zapsać jako exp( θ J j ) Fj = J Fj = 1 j= 1 exp θ ( j ) Przy czym jedna z klas jest referencyjna θ J = 0 Można też przynależność do danej klasy wyjaśnać obserwowalnym zmennym (cecham osób) Lczba klas ustalana jest przez badacza a pror F j = j= 1 J exp j= 1 exp ( zθ j j ) ( zθ j j )

13 Modele bnarne heterogenczność parametrów Model klas ukrytych Prawdopodobeństwo zaobserwowana określonego wyboru to Wybory są nezależne, węc warunkowe prawdopodobeństwo zaobserwowana ser T wyborów to A funkcja LL to po prostu J ( Yt Xt zt ) =Fj ( zjθj ) ( Yt βj ) Pr, Pr j= 1 J T Pr ( Y1,..., YT X, ) = ( ) Pr ( ) z Fj zjθj Yt βj j= 1 t = 1 N J T lnl= ln Fj ( zθ j j ) Pr ( Yt βj ) = 1 j= 1 t = 1 β ( β β ) ( ) I dalej estymacja (maksymalzacja LL po = 1,..., J θ= θ ) 1,..., θj 1, 0 normalne

14 Przykład opeka zdrowotna w Nemczech 4. Skonstruuj model klas ukrytych MODEL ;... ; lcm ; pds = <lczba lub zmenna> (lub ; panel) $ Ile różnych klas parametrów wykorzystać? Przetestuj różne możlwośc ; pts = <lczba> Dodaj zmenne objaśnające przynależność do klas ; lcm =... W jak sposób wybrać optymalną lczbę klas? AIC Możlwość nterpretacj wynków

15 Modele welomanowe heterogenczność parametrów Model parametrów losowych Model parametrów losowych można zastosować także w przypadku model welomanowych NLOGIT ;... ; rpl (lub RPLOGIT) ; fcn =... ; pds =... $ Inne opcje ; start =... ; tlg =... ; tlf =... ; tlb =... ; alg =... ; maxt =... ; pts =... ; halton ; output =... ; set

16 Modele welomanowe heterogenczność parametrów Model parametrów losowych Inne opcje ; lst ; keep =... ; prob =... ; CML: ; test: (or ; wald) ; rst = ; show model ; descrbe ; crosstab ; par ; effects: ; table =... ; covarance matrx (or ; prntvc) ; cluster =... ; robust ; pds =... ; correlated (=...) ; sdv =... ; fx ; rpl =... ; hfr =... ; ecm =... ; checkdata ; wtp =...

17 Modele welomanowe heterogenczność parametrów Model parametrów losowych Możlwe do zastosowana rozkłady c nestochastyczny β = β n normalny β = β + σv,v ~ N[0,1] s normalny skośny β = β + σv + λ w, v, w ~ N[0,1] l lognormalny β = exp(β + σv), v ~ N[0.1] z normalny ucęty β = β + σv, v ~ ucęty normalny (-1.96 to 1.96) u jednostajny β = β + σv, v ~ U[-1,1] f jednostronny jednostajny β = β + βv, v ~ jednostajny [-1,1] t trójkątny β = β + σv, v ~ trójkątny[-1,1] o jednostronny trójkątny β = β + βv, v ~ trójkątny [-1,1] d beta, dome β = β + σv, v ~ 2 beta(2,2) - 1 b beta, skalowany β = βv, v ~ beta(3,3) e Erlang β = β + σv, v ~ gamma(1,4) - 4 g gamma β = exp(β + σv), v = log(-log(u1*u2*u3*u4)) w Webull β = β + σv, v = 2(-logu).5, u~ U[0,1] r Raylegh β = exp(β (Webull)) p wykładnczy β = β + σv, v ~ wykłądnczy - 1 q wykładnczy, skalowany β = βv, v ~ wykładnczy x cenzurowany (z lewej) β = max(0, β (normalny)) m cenzurowany (z prawej) β = mn(0, β (normalny)) v exp(trójkątny) β = exp(β (trójkątny)) rozkład wartośc ekstremalnych I typu β = β + σv, v ~ standardowy rozkład Gumbela

18 Modele welomanowe heterogenczność parametrów Model klas ukrytych Model klas ukrytych dla model welomanowych NLOGIT ;... ; LCM (or LCLOGIT) =... ; pts = <no. of classes> $

19 Praca domowa ME.11 (grupy 2 lub 3-osobowe) 1. Skonstruuj najlepszy, Twom zdanem, model wyjaśnający wybory optymalnego kontraktu wywozu odpadów (projekt me.recyclng.lpj), który uwzględna neobserwowalną obserwowalną heterogenczność preferencj (model parametrów losowych lub model klas ukrytych) 2. Znterpretuj uzyskane wynk

20 Modele uporządkowane heterogenczność parametrów Model parametrów losowych Rozluźnene założena o stałośc parametrów funkcj wskaźnkowej Parametry zmennym losowym o zadanych rozkładach (estymowana średna warancja rozkładu) y Xβ β f ( β, Σ) = +ε ( t = X, β ) = (, α, Xtβ ) ( 1, α, Xtβ ) P y j F j F j Estymacja maksymalzacja symulowanej wartośc funkcj ML ORDERED;... $? model bez parametrów losowych wartośc startowe ORDERED;... ; pds =... ; rpm ; fcn =...? specyfkacja parametrów ;... $

21 Przykład opeka zdrowotna w Nemczech 5. Skonstruuj model, w którym ocena własnego stanu zdrowa (hstat) wyjaśnana za pomocą modelu efektów losowych modelu parametrów losowych Modele są ekwwalentne, choć metoda estymacj neco odmenna Losowe parametry ne muszą ogranczać sę do stałej Inne zmenne Inne rozkłady

22 Modele uporządkowane heterogenczność parametrów Model parametrów losowych Średne parametrów losowych można objaśnać za pomocą obserwowalnych charakterystyk respondenta y = Xβ +ε β f ( β+ z γ, Σ) ( t = X, β ) = (, α, Xtβ ) ( 1, α, Xtβ ) P y j F j F j '; rpm =...' lsta zmennych objaśnających średne parametrów losowych Parametry mogą być skorelowane '; cor' zezwala na korelacje parametrów losowych Macerz warancj-kowarancj parametrów losowych (Σ) ne mus być dagonalna Dodatkowo estymowane elementy macerzy dolnotrójkątnej pochodzącej z dekompozycj Choleskego Σ

23 Modele uporządkowane heterogenczność parametrów Model klas ukrytych Model klas ukrytych Parametry zmennym losowym o rozkładach dyskretnych Estymowany osobny parametr dla każdej z 'klas' preferencj Przynależność do klas probablstyczna (ne wadomo a pror który respondent należy do której klasy) Możlwa do wyjaśnana za pomocą charakterystyk respondenta y Xβ β { β, β,..., β } = +ε 1 2 ( t = X, β ) = (, α, Xtβ+ Xtδ ) ( 1, α, Xtβ+ Xtδ ) P y j F j F j K {,,..., } β β+ δ β+ δ β++ δ 1 2 K

24 Modele uporządkowane heterogenczność parametrów Model klas ukrytych Model klas ukrytych ORDERED;... $? model bez klas ukrytych wartośc startowe ORDERED;... ; lcm? =... zmenne objaśnające przynależność do klas ; pts =...? lczba klas ; pds =... ;... $ 6. Skonstruuj model, w którym ocena własnego stanu zdrowa (hstat) wyjaśnana za pomocą modelu klas ukrytych

25 Modele uporządkowane heterogenczność progów Herarchczny model wyborów uporządkowanych Idea prog prawdopodobne ne są take same dla wszystkch, a składnk losowy / efekty stałe / efekty losowe / parametry losowe mogą ne załatwać sprawy Zróbmy model, w którym prog będą zależały od obserwowalnych zmennych charakteryzujących respondenta Herarchczny model wyborów uporządkowanych (ang. herarchcal ordered probt)

26 Modele uporządkowane heterogenczność progów Herarchczny model wyborów uporządkowanych Dwe możlwe specyfkacje ( ) j = exp j + δz każdy ma nną stałą, ale tak sam wektor współczynnków j = exp( j + δz j ) każdy ma nną stałą nny wektor współczynnków α θ α θ Możlwy różny wpływ tej samej cechy na różne prog Może powodować problemy z uporządkowanem progów '; HO1 =...' specyfkacja 1 '; HO2 =...' specyfkacja 2 Lsta zmennych ne może zawerać stałej

27 Modele uporządkowane heterogenczność progów Herarchczny model wyborów uporządkowanych Dodatkowo możlwe wprowadzene neobserwowalnej heterogencznośc progów α 0 = 0 ( u ) α = α + exp α + + θ j, j 1 j j δz u N( 0,1) ORDERED;... ; pds =... ; rtm? model z losowym progam (random thresholds model) ; lmts =...? zmenne objaśnające średne progów? ; random effects prog wykorzystywać będą wspólne u_ ;... $ 7. Skonstruuj model, w którym ocena własnego stanu zdrowa (hstat) wyjaśnana za pomocą panelowego modelu progów losowych, z losowym parametram zmennym objaśnającym średne warancje parametrów losowych oraz średne progów losowych j

28 Modele lcznośc zdarzeń heterogenczność parametrów Model parametrów losowych Modele można zmodyfkować pozwalając aby parametry były zmennym losowym o zadanych rozkładach cągłych Model parametrów losowych β f ( β+ γz, Σ) β średne Z obserwowalne zmenne socjodemografczne (zmenne objaśnające średne) Σ macerz warancj-kowarancj (dagonalna lub pozwalająca na korelacje losowych parametrów) Dzała zarówno z modelem Possona jak ujemnym dwumanowym '; rpm' lub '; rpm =...' jeśl model ze zmennym objaśnającym średne '; fcn =...' specyfkacja losowych parametrów ch rozkładów '; cor' model ze skorelowanym parametram

29 Modele lcznośc zdarzeń heterogenczność parametrów Model klas ukrytych Modele można zmodyfkować pozwalając aby parametry były zmennym losowym o zadanych rozkładach dyskretnych Model klas ukrytych β { β, β,..., β } K 'typów' preferencj (klas) 1 2 Dzała zarówno z modelem Possona jak ujemnym dwumanowym '; lcm' lub '; lcm =...' jeśl model ze zmennym objaśnającym przynależność do klas '; pts =...' specyfkacja lczby klas Jak zawsze, modele z neobserwowalną heterogencznoścą dzałają znaczne lepej dla welu obserwacj na respondenta K '; panel' lub '; pds =...'

30 Modele lcznośc zdarzeń heterogenczność parametrów 8. Wczytaj projekt me.baltc.lpj 9. Skonstruuj model, w którym lczba wzyt nad morze (TRIPS), wyjaśnana jest przez stałą specyfczną dla kraju koszt podróży (TC_km) Przygotuj model parametrów losowych Przygotuj model klas ukrytych :51:17

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

Mikroekonometria 7. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 7. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 7 Mkołaj Czajkowsk Wktor Budzńsk Testowane hpotez 4 podstawowe testy Przedzał ufnośc Parametry mają asymptotyczny rozkład normalny Znamy błąd standardowy Czy parametr jest statystyczne różny

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 6 Mkołaj Czajkowsk Wktor Budzńsk 'Netypowe' zmenne objaśnane Problemy mkroekonometryczne często zmenna objaśnana ne jest cągła lub jej wartość ne ma bezpośrednej nterpretacj loścowej Zmenną

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 15 Mkołaj Czajkowsk Wktor Budzńsk Mkroekonometra podsumowane kursu Zagadnena ogólne NLOGIT Metoda maksymalzacj funkcj ML Testy statystyczne Metody numeryczne, symulacje Metody wyceny nerynkowej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Użyteczność konsumenta i z wyboru alternatywy j spośród J i alternatyw X wektor cech (atrybutów) danej alternatywy Z wektor

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń: .. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1 Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4 Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Uogólnienie modelu binarnego Wybór pomiędzy 2 lub większą liczbą alternatyw Np. wybór środka transportu, głos w wyborach,

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Komputerowe generatory liczb losowych

Komputerowe generatory liczb losowych . Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

IID = 2. i i i i. x nx nx nx

IID = 2. i i i i. x nx nx nx Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.

Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α. Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej

Bardziej szczegółowo

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

Trzecie laboratoria komputerowe ze Staty Testy

Trzecie laboratoria komputerowe ze Staty Testy Trzece laboratora komputerowe ze Staty Testy Korzystać będzemy z danych dane_3.dta. Chcemy (jak zwykle ) oszacować model zarobków. Tym razem nteresująca nas postać modelu to: p0 = β + β pd0 + β pl08 +

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,

Bardziej szczegółowo