Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2"

Transkrypt

1 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład pręta sztywno zamocowanego na ewym końcu (punkt B), obciążonego siłami, i. Schemat obiczeniowy po uwonieniu z więzów iustruje rys..b. Rys.. Do wyznaczenia reakcji R B x wykorzystujemy równanie równowagi statycznej suma rzutów sił na oś x jest równa zeru: Σ ix 0 (.) RB x RB x W dowonym przekroju poprzecznym pręta siła osiowa jest równa sumie rzutów sił zewnętrznych działających po jednej stronie przekroju na kierunek styczny do osi pręta (rys..). Siła osiowa rozciągająca jest dodatnia, natomiast ściskająca ujemna. Rys.. Da przekroju przedstawionego na rys.., otrzymamy zatem: rozwiązując od prawej strony (rys..a) ( Σ p ) ix + (.a)

2 . Wytrzymałość materiałów rozwiązując od ewej strony (rys..b) aprężenia normane σ wyznaczamy ze wzoru: gdzie: siła osiowa, ( ) Σix RBx + (.b) σ (.) poe powierzchni przekroju poprzecznego. Wydłużenie odcinka pręta wyznaczamy w oparciu o zaeżność: gdzie: E siła osiowa, długość rozpatrywanego odcinka pręta, moduł Younga (moduł sprężystości podłużnej), (.4) poe powierzchni przekroju poprzecznego, ioczyn E nazywamy sztywnością pręta rozciąganego/ściskanego.

3 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia. Zadanie.. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys... Dane:,, E const. Rozwiązanie Układ uwaniamy z więzów (rys..4). Rys.. Rys..4 Reakcję R B x wyznaczamy z równania równowagi statycznej: R x Σ ix 0 B RB x 4 W koejnym kroku wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Zadanie rozwiążemy zarówno od prawej (rys..5), jak i ewej (rys..6) strony. Rys..5 Rys..6 Rozwiązując zadanie od prawej strony (rys..5) otrzymujemy, w oparciu o zaeżność (.a): Σix Σix + 4 BC Z koei, rozwiązując zadanie od ewej strony (rys..6) otrzymamy, zgodnie ze wzorem (.b): Σ ( R ) R BC ix Bx Bx 4 Σix ( RBx + ) RBx 4

4 .4 Wytrzymałość materiałów aprężenia normane σ w poszczegónych odcinkach pręta są równe (.): BC σ BC 4 σ rzemieszczenia przekrojów C i D wyznaczamy na podstawie wydłużenia poszczegónych odcinków pręta odpowiednio BD i. a podstawie zaeżności (.4) otrzymujemy: wydłużenie odcinka BC wydłużenie odcinka Ostatecznie otrzymujemy: przemieszczenie przekroju B B 0 przemieszczenie przekroju C 4 C BC przemieszczenie przekroju D D BC BC BC 4 a rys..7 przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń. Rys..7

5 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.5 Zadanie.. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys..8. Dane:,,, E. Rozwiązanie Układ uwaniamy z więzów (rys..9). Rys..8 Reakcję Rys..9 R B x wyznaczamy z równania równowagi statycznej: R x Σ ix 0 B RB x 4 Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od prawej strony (rys..0) otrzymujemy, w oparciu o zaeżność (.a): Σix Σix + 4 BC Rys..0 aprężenia normane σ w poszczegónych odcinkach pręta są równe (.): BC σ BC σ rzemieszczenia przekrojów C i D wyznaczamy na podstawie wydłużenia poszczegónych odcinków pręta odpowiednio BD i. a podstawie zaeżności (.4) otrzymujemy: wydłużenie odcinka BC BC BC E

6 .6 Wytrzymałość materiałów wydłużenie odcinka Ostatecznie otrzymujemy: przemieszczenie przekroju B B 0 przemieszczenie przekroju C C BC przemieszczenie przekroju D D BC + + a rys.. przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń. Rys..

7 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.7 Zadanie.. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys... Dane:,, E const. Rozwiązanie Układ uwaniamy z więzów (rys..). Rys.. Rys.. Równanie równowagi statycznej na postać: R Σ ix 0 B x RDx + R B x + R D x Układ jest jednokrotnie statycznie niewyznaczany dwie niewiadome R B x, R D x i jedno równanie równowagi. Dodatkowe równanie wynika z warunku geometrycznego przemieszczenie końca D jest równe zeru, co zapiszemy następująco: D BC + Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od ewej strony (rys..4) otrzymujemy, w oparciu o zaeżność (.b): BC Σ ix R ix RB Σ 0 0 Bx x Rys..4 Wydłużenia poszczegónych odcinków pręta są równe: BC BC R Bx ( RBx ) odstawiając wyznaczone wydłużenia do dodatkowego warunku geometrycznego wyznaczamy wartość reakcji R B x :

8 .8 Wytrzymałość materiałów Wartość reakcji R + R ) B x ( Bx 0 : R B x + RBx RB x RB x 0 R D x wyznaczamy przekształcając równanie równowagi statycznej: R R Dx Bx odstawiając wartości reakcji wyznaczamy siły osiowe : naprężenia normane σ : σ σ BC BC BC oraz wydłużenia poszczegónych odcinków pręta: BC a rys..5 przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń. Rys..5

9 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.9 Zadanie.4. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys..6. Dane:,,, E. Rozwiązanie Układ uwaniamy z więzów (rys..7). Rys..6 Rys..7 Równanie równowagi statycznej na postać: R Σ ix 0 B x RDx + R B x + R D x Układ jest jednokrotnie statycznie niewyznaczany dwie niewiadome R B x, R D x i jedno równanie równowagi. Dodatkowe równanie wynika z warunku geometrycznego przemieszczenie końca D jest równe zeru, co zapiszemy następująco: D BC + Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od ewej strony (rys..8) otrzymujemy, w oparciu o zaeżność (.b): BC Σ ix R ix RB Σ 0 0 Bx x Rys..8 Wydłużenia poszczegónych odcinków pręta są równe: BC BC R E Bx ( RBx ) odstawiając wyznaczone wydłużenia do dodatkowego warunku geometrycznego wyznaczamy wartość reakcji R B x :

10 .0 Wytrzymałość materiałów Wartość reakcji R + ( R ) B x Bx 0 : R B x + RBx RB x RB x 0 R D x wyznaczamy przekształcając równanie równowagi statycznej: RD x RBx odstawiając wartości reakcji wyznaczamy siły osiowe : naprężenia normane σ : σ σ BC BC BC oraz wydłużenia poszczegónych odcinków pręta: E BC a rys..9 przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń. Rys..9

11 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia. Zadanie.5. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys..0. Dane:,, E const. Rozwiązanie Układ uwaniamy z więzów (rys..). Rys..0 Reakcję Rys.. R B x wyznaczamy z równania równowagi statycznej: R x Σ ix 0 B RB x 4 Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od ewej strony (rys..) otrzymujemy, w oparciu o zaeżność (.b): Σix RBx 4 BC Σix R x Σix RBx + DF B Rys.. aprężenia normane σ w poszczegónych odcinkach pręta są równe (.): BC σ BC 4 σ DF σ DF

12 . Wytrzymałość materiałów rzemieszczenia przekrojów C, D i F wyznaczamy na podstawie wydłużenia poszczegónych odcinków pręta odpowiednio BD, i DF. a podstawie zaeżności (.4) otrzymujemy: wydłużenie odcinka BC BC BC 4 wydłużenie odcinka wydłużenie odcinka DF DF DF Ostatecznie otrzymujemy: przemieszczenie przekroju B B 0 przemieszczenie przekroju C 4 C BC przemieszczenie przekroju D przemieszczenie przekroju F D BC F BC + + DF a rys.. przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń.

13 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia. Rys..

14 .4 Wytrzymałość materiałów Zadanie.6. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys..4. Dane:,, E const. Rozwiązanie Układ uwaniamy z więzów (rys..5). Rys..4 Rys..5 Równanie równowagi statycznej na postać: Σ ix 0 RB x RFx R + R B x Fx 4 Układ jest jednokrotnie statycznie niewyznaczany dwie niewiadome R B x, R F x i jedno równanie równowagi. Dodatkowe równanie wynika z warunku geometrycznego przemieszczenie końca F jest równe zeru, co zapiszemy następująco: D BC + + DF Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od ewej strony (rys..6) otrzymujemy, w oparciu o zaeżność (.b): DF BC Σ ix R Bx Σix RBx Σix RBx RBx 4 0 Rys..6 Wydłużenia poszczegónych odcinków pręta są równe: BC BC R Bx

15 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.5 ( RBx ) DF DF ( RBx 4 ) odstawiając wyznaczone wydłużenia do dodatkowego warunku geometrycznego wyznaczamy wartość reakcji R B x : Wartość reakcji RB x + ( RBx ) + ( RBx 4 ) 0 : RB x + RBx 6 + RBx 4 0 4R B x 0 5 RB x R F x wyznaczamy przekształcając równanie równowagi statycznej: 5 RF x 4 RBx 4 odstawiając wartości reakcji wyznaczamy siły osiowe : naprężenia normane σ : DF σ σ σ BC BC BC DF DF 5 oraz wydłużenia poszczegónych odcinków pręta: BC 5 5 DF 5 4 rzemieszczenia poszczegónych przekrojów pręta są równe: przemieszczenie przekroju B B 0

16 .6 Wytrzymałość materiałów przemieszczenie przekroju C przemieszczenie przekroju D przemieszczenie przekroju F C BC D BC 5 F BC + + DF a rys..7 przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń. 0 Rys..7

17 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.7 Zadanie.7. Wyznaczyć wykresy sił osiowych, naprężeń normanych σ oraz przemieszczeń da pręta przedstawionego na rys..8. Dane:,,, E. Rozwiązanie Układ uwaniamy z więzów (rys..9). Rys..8 Reakcję Rys..9 R G x wyznaczamy z równania równowagi statycznej: R x Σ ix 0 G RG x Wyznaczamy siły osiowe w poszczegónych odcinkach pręta. Rozwiązując zadanie od prawej strony (rys..0) otrzymujemy, w oparciu o zaeżność (.a): FG Σ R ix Gx DF Σix RBx + 5 BC Σix RBx + 5 Rys..0 aprężenia normane σ w poszczegónych odcinkach pręta są równe (.): BC σ BC σ

18 .8 Wytrzymałość materiałów σ DF DF σ FG FG rzemieszczenia przekrojów B, C, D i F wyznaczamy na podstawie wydłużenia poszczegónych odcinków pręta. a podstawie zaeżności (.4) otrzymujemy: wydłużenie odcinka BC BC BC wydłużenie odcinka wydłużenie odcinka DF DF E DF wydłużenie odcinka FG FG FG E Ostatecznie otrzymujemy: przemieszczenie przekroju B B BC + + DF + FG + + przemieszczenie przekroju C przemieszczenie przekroju D C + DF + FG + przemieszczenie przekroju F + D DF FG F FG przemieszczenie przekroju G G 0 a rys.. przedstawiono rozwiązanie zadania wykresy sił osiowych, naprężeń normanych oraz przemieszczeń.

19 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.9 Rys..

20 .0 Wytrzymałość materiałów Zadanie.8. Sztywny pręt poziomy jest zawieszony, jak na rys... Wyznaczyć wydłużenia/ skrócenia wiotkich prętów i oraz narysować wykres przemieszczeń pionowych pręta sztywnego. Dane:,,, E, b. Rozwiązanie Układ uwaniamy z więzów (rys..). Rys.. Rys.. Siły osiowe i, którymi rozciągane są wiotkie pręty i, wyznaczymy z równań równowagi statycznej da sztywnego pręta BD: Σ ΣM iy ib b b Wydłużenia prętów i, a w konsekwencji pionowe przemieszczenia punktów B i D są równe: yb E 8 y D a rys..4 przedstawiono wykres przemieszczeń pionowych sztywnego pręta BD. rzemieszczenie punktu C możemy wyznaczyć z twierdzenia Taesa: 4 4

21 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia. y BC ( y BD y yc y BC ) + y B yd y BD B C D B B 9 Rys..4

22 . Wytrzymałość materiałów Zadanie.9. Sztywny pręt poziomy jest zawieszony, jak na rys..5. Wyznaczyć wydłużenia/ skrócenia wiotkich prętów i oraz narysować wykres przemieszczeń pionowych pręta sztywnego. Dane:,, E const, b. Rozwiązanie Układ uwaniamy z więzów (rys..6). Rys..5 Rys..6 Siły osiowe i, którymi rozciągane/ściskane są pręty i, wyznaczymy z równań równowagi statycznej da sztywnego pręta BD: Σ ΣM iy ib b b 0 Wydłużenia/skrócenia prętów i, a w konsekwencji pionowe przemieszczenia punktów B i C są równe: y B y (pręt ściskany) (pręt rozciągany) C a rys..7 przedstawiono wykres przemieszczeń pionowych sztywnego pręta BD. rzemieszczenie punktu D możemy wyznaczyć z twierdzenia Taesa: yd y BD B yc y BC B

23 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia. y y y y 5 ) ( BC BD B B C D + + Rys..7

24 .4 Wytrzymałość materiałów Zadanie.0. Sztywny pręt poziomy jest zawieszony, jak na rys..8. Wyznaczyć wydłużenia/ skrócenia wiotkich prętów i oraz narysować wykres przemieszczeń pionowych pręta sztywnego. Dane:,,, E, b. Rozwiązanie Układ uwaniamy z więzów (rys..9). Rys..8 Rys..9 Siły osiowe i, którymi rozciągane/ściskane są pręty i, wyznaczymy z równań równowagi statycznej da sztywnego pręta BD: Σ ΣM iy id b + b 0 Wydłużenia/skrócenia prętów i, a w konsekwencji pionowe przemieszczenia punktów C i D są równe: y C (pręt rozciągany) E yd (pręt ściskany)

25 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.5 a rys..40 przedstawiono wykres przemieszczeń pionowych sztywnego pręta BD. rzemieszczenie punktu B możemy wyznaczyć z twierdzenia Taesa: yb y BD D yc y BD yb ( yc yd) + yd ( ) 4 + D Rys..40

26 .6 Wytrzymałość materiałów Zadanie.. Sztywny pręt poziomy jest oparty, jak na rys..4. Wyznaczyć wydłużenia/ skrócenia wiotkich prętów i oraz narysować wykres przemieszczeń pionowych pręta sztywnego. Dane:,, E const, b. Rozwiązanie Układ uwaniamy z więzów (rys..4). Rys..4 Rys..4 Równania równowagi statycznej da sztywnego pręta BF są następujące: Σ ΣM iy ic RCy 0 b + b b 0 + R Cy Układ jest jednokrotnie statycznie niewyznaczany trzy niewiadome,, R C y i dwa równania. Dodatkowe równanie wynika z warunku geometrycznego, wiążącego pionowe przemieszczenia punktów B i F (rys..4): BB' FF' BB' FF' b b Rys..4

27 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.7 Wydłużenia/skrócenia prętów i powiązane są zatem zaeżnością: na podstawie której możemy napisać trzecie brakujące równanie: Wyznaczamy niewiadome,, R C y : RC + y 5 5 R 4 C y odstawiamy wyznaczone wartości sił osiowych, i wyznaczamy wydłużenia/skrócenia prętów i oraz przemieszczenia punktów B i F: yb yf 5 a rys..44 przedstawiono wykres przemieszczeń pionowych sztywnego pręta BF. rzemieszczenie punktu D możemy wyznaczyć z twierdzenia Taesa: 5 y D y F CF y D y CF F 5 5 Rys..44

28 .8 Wytrzymałość materiałów Zadanie.. Sztywny pręt poziomy jest oparty, jak na rys..45. Wyznaczyć wydłużenia/ skrócenia wiotkich prętów i oraz narysować wykres przemieszczeń pionowych pręta sztywnego. Dane:,,, E, b. Rozwiązanie Układ uwaniamy z więzów (rys..46). Rys..45 Rys..46 Równania równowagi statycznej da sztywnego pręta BF są następujące: Σ ΣM iy ib RBy + 0 b + b 4b 0 + RBy + 4 Układ jest jednokrotnie statycznie niewyznaczany trzy niewiadome,, R B y i dwa równania. Dodatkowe równanie wynika z warunku geometrycznego, wiążącego pionowe przemieszczenia punktów C i D (rys..47):

29 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia.9 Rys..47 CC' DD' CC' DD' b b Oba pręty są ściskane, a ich skrócenia powiązane są zaeżnością: na podstawie której możemy napisać trzecie brakujące równanie: E 4 Wyznaczamy niewiadome,, R B y : R 4 By 6 R 6 5 B y + + odstawiamy wyznaczone wartości sił osiowych, i wyznaczamy skrócenia prętów i oraz przemieszczenia punktów C i D: yc E yd a rys..48 przedstawiono wykres przemieszczeń pionowych sztywnego pręta BF. rzemieszczenie punktu F możemy wyznaczyć z twierdzenia Taesa: y BF y BC y F y C BF BC F C

30 .0 Wytrzymałość materiałów Rys..48

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

NOŚNOŚĆ GRANICZNA

NOŚNOŚĆ GRANICZNA 4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie

Bardziej szczegółowo

Przykład 1.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną

Przykład 1.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną Przykład.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną Anaizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne da zadanych wartości przekrojów prętów A [m ] i napręŝeń

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją

( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją ..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężeniem (p) nazywa się iloraz nieskończenie małej wypadkowej siły spójności

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

1. ANALIZA BELEK I RAM PŁASKICH

1. ANALIZA BELEK I RAM PŁASKICH 5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński

Bardziej szczegółowo

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku.. rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

MASZYNY PROSTE - WIELOKRĄŻKI

MASZYNY PROSTE - WIELOKRĄŻKI 7.. Cel ćwiczenia Ćwiczenie 7 MASZYNY ROSTE - WIELOKRĄŻKI Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie sił w linach wielokrążka znajdującego się w położeniu równowagi i określenie sprawności

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Osiowe rozciąganie i ściskanie

Adam Bodnar: Wytrzymałość Materiałów. Osiowe rozciąganie i ściskanie dam odnar: Wytrzymałość Materiałów. Osiowe rozciąganie i ściskanie 9. OSIOWE ROZIĄGIE I ŚISIE 9.. aprężenia i odkształcenia Osiowe rozciąganie pręta pryzmatycznego występuje wówczas, gdy układ sił zewnętrznych

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta

ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta ROZCIĄGNIE I ŚCISKNIE OSIOWE Pojęcia podstawowe. Zasada de Saint Venanta Pręt obciążony siłami podłużnymi (działającymi wzdłuż osi pręta) nazywamy prętem rozciąganym, gdyż siła podłużna jest dodatnia (N

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary: 7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02

Bardziej szczegółowo

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił. Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy

Bardziej szczegółowo

Wytrzymałość materiałów. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Wytrzymałość materiałów. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr../1 z dnia.... 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Wytrzymałość materiałów Nazwa modułu w języku angielskim Strength

Bardziej szczegółowo

2.0. Dach drewniany, płatwiowo-kleszczowy.

2.0. Dach drewniany, płatwiowo-kleszczowy. .0. Dach drewniany, płatwiowo-kleszczowy..1. Szkic.. Charakterystyki przekrojów Własności techniczne drewna: Czas działania obciążeń: ormalny. Klasa warunków wilgotnościowych: 1 - Wilg. 60% (

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10 Rozwiązać podaną ramę (wykresy M Q N ) q 1 =5 D P 2 = x 3 D q 2 = y 3 40 P 1 =20 2 α B C x 3 /y 3 =2/1 2 c=2/ 5 A E F P 3 = s=1/ 5 Wq 1 =5*2 5 = 5 P 4 = 2 2 2 2 Po prawej stronie tematu narysowano w którą

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo