RACHUNEK ZBIORÓW 5 RELACJE
|
|
- Marcin Krupa
- 7 miesięcy temu
- Przeglądów:
Transkrypt
1 RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o ile tylko b a) Dwie pary uporządkowane są identyczne witw, gdy ich poprzedniki są identyczne i ich następniki są identyczne, tj.: a,b = c,d (a = c) (b = d) Iloczynem (produktem) kartezjańskim zbiorów A i B nazywamy zbiór wszystkich par uporządkowanych, których poprzedniki należą do zbioru A, zaś następniki należą do zbioru B A B = { x,y : x A y B } Np. niech A = {a,b,,h} oraz B = {1,2,,8}. Wtedy: A B = { a,1, a,2,, a,8, b,1, b,2,, b,8,.., h,1, h,2,, h,8 } Kwadratem zbioru A nazywamy iloczyn kartezjański zbioru A przez ten sam zbiór: A 2 = A A PRZYKŁADY (1) Niech A = {a,b}. Wtedy A 2 = { a,a, a,b, b,a, b,b }. (2) Niech L to zbiór ludzi, a zbiór liczb rzeczywistych. Wtedy L 2 to zbiór wszystkich możliwych par ludzi, a 2 - to zbiór wszystkich możliwych par liczb rzeczywistych. Analogicznie do par uporządkowanych definiuje się trójki, czwórki,, n-tki uporządkowane, a także n-krotne iloczyny kartezjańskie czy n-te potęgi zbioru. ZADANIE 1 Wyznacz kwadrat zbioru B = {1,2,3}. WŁASNOŚCI iloczynu kartezjańskiego: A (B C) = (A B) (A C) A (B C) = (A B) (A C) A C B D A B C D rozdzielność względem iloczynu rozdzielność względem sumy 1
2 Relacją binarną (dwuargumentową) R między elementami zbioru A i zbioru B nazywamy dowolny podzbiór iloczynu kartezjańskiego A B : R A B Relację nazywamy określoną w zbiorze A, jeśli R A 2. PRZYKŁADY (1) Relacja bycia ojcem (określona w zbiorze ludzi) to zbiór wszystkich par ludzi (par uporządkowanych) postaci ojciec, jego dziecko, czyli zbiór O, taki że O L 2 i O = { x,y : x jest ojcem y oraz x i y są ludźmi } (2) Relacja mniejszości M określona w zbiorze liczb naturalnych M 2 i M = { x,y : x y x < y } (3) Relacja W bycia w wieku lat W L i W = { x,y : x L y x jest w wieku y lat } Odpowiednio relacje n-argumentowe to zbiory uporządkowanych n-tek. Jeśli relacja R zachodzi między elementami x oraz y, tzn. x,y R, to zapisujemy to również krócej: R(x,y) lub xry. Relacja pełna to relacja, która zachodzi między każdym elementem zbioru A i każdym elementem zbioru B: R = A B Np. relacja posiadania wspólnego podzielnika określona w zbiorze liczb parzystych jest pełna. Relacja pusta to relacja, która nie zachodzi między żadnym elementem zbioru A i żadnym elementem zbioru B: R = Np. relacja bycia o rok starszym określona w dowolnym zbiorze rówieśników jest pusta. Relacja bycia kwadratem określona w zbiorze liczb ujemnych jest pusta. Niech dane będą relacja R określona w zbiorze A (R A 2 ) oraz podzbiór X zbioru A (X A). Podzbiór relacji R, taki że poprzedniki i następniki wszystkich par z tego podzbioru należą do zbioru X nazywamy relacją R ograniczoną do zbioru X i oznaczamy R X. R X = R X 2 Innymi słowy, R X to zbiór wszystkich par z relacji R utworzonych z elementów zbioru X: R X = { a,b : arb a X b X } Jest to więc relacja R określona w zbiorze X. 2
3 Np. relacja mniejszości M (określona w zbiorze liczb rzeczywistych) ograniczona do zbioru X = {1,2,3} to relacja M X = { 1,2, 1,3, 2,3 }. Relacja niepusta określona w danym zbiorze po ograniczeniu jej do pewnego podzbioru może stać się relacją pustą. Np. relacja bycia podzielnikiem określona w zbiorze liczb naturalnych po ograniczeniu do zbioru {6, 7, 8, 9, 10} staje się relacją pustą. Dziedziną relacji R A B nazywamy zbiór wszystkich poprzedników par uporządkowanych należących do relacji R: D(R) = {x A : xry} y B Przeciwdziedziną relacji R A B nazywamy zbiór wszystkich następników par uporządkowanych należących do relacji R: D(R) = {y B: xry} x A Polem relacji R A B nazywamy sumę jej dziedziny i przeciwdziedziny: P(R) = D(R) D(R) Np. dla relacji bycia mężem dziedziną jest zbiór żonatych mężczyzn, przeciwdziedziną zbiór zamężnych kobiet, a polem tej relacji jest zbiór wszystkich osób będących w związku małżeńskim. ZADANIE 2 (1) Określ dziedzinę, przeciwdziedzinę i pole relacji S bycia stolicą państwa: S = { x,y : x jest stolicą państwa y}. (2) Określ dziedzinę, przeciwdziedzinę i pole relacji C bycia córką. (3) Określ relację D bycia dwukrotnością ograniczoną do zbioru A = { 1,2,3,4,5,6,7,8,9,10}. Określ dziedzinę, przeciwdziedzinę i pole tej relacji. (4) Określ dziedzinę, przeciwdziedzinę i pole relacji M mniejszości ograniczonej do zbioru A = { 1,2,3,4,5,6,7,8,9,10}. Obrazem zbioru X A w relacji R A B nazywamy zbiór następników, z którymi elementy zbioru X są w tej relacji: R(X) = {y B : xry} x X Przeciwobrazem zbioru Y B w relacji R A B nazywamy zbiór poprzedników, które są w tej relacji z elementami zbioru Y: R(Y) = {x A : xry} y Y 3
4 Np. dla relacji bycia kompozytorem utworu muzycznego, obrazem zbioru {Szopen, Rubik} jest zbiór wszystkich kompozycji Szopena i Rubika, zaś przeciwobrazem zbioru symfonii jest zbiór tych kompozytorów, którzy są autorami symfonii. WŁASNOŚCI obrazu i przeciwobrazu Dla dowolnej relacji R zachodzi zawsze, że: R(X) D(R) R (Y) D(R) R(D(R)) = D(R) R (D(R)) = D(R) R( ) = R( ) = X )( D(R) R(X) = Y )( D(R) R(Y) = A B R(A) R(B) A B R(A) R(B) R(A B) = R(A) R(B) R (A B) = R(A) R(B) ZADANIE 3 (1) Dana jest relacja R 2 taka, że: R = { 1,1, 1,2, 1,3, 2,2, 2,3, 3,3 }. Jaka to relacja? Niech X = {1}, Y = {2}, Z = {1,2}. Wyznacz obrazy i przeciwobrazy tych trzech zbiorów. (2) Wyznacz obrazy i przeciwobrazy podanych niżej zbiorów w określonych relacjach: (a) zbiór sportowców relacja bycia żoną, (b) zbiór studentów relacja bycia dzieckiem, (c) zbiór robotników relacja bycia rodzicem, (d) zbiór pierwszych dziesięciu liczb naturalnych relacja bycia kwadratem określona w zbiorze liczb rzeczywistych, (e) zbiór pierwszych dziesięciu liczb naturalnych relacja bycia kwadratem ograniczona do zbioru liczb naturalnych, (f) zbiór pierwszych dziesięciu liczb naturalnych relacja bycia dwukrotnością. (3) Dany jest zbiór U = {a,b,c,d,e} i jego podzbiory X = {a,b} oraz Y = {b,c,d}. Dane są relacje R i S określone w zbiorze U (tzn. R U 2 i S U 2 ), takie że: R = { a,b, a,c, d,e } S = { a,b, b,a, c,b, d,a } Wyznacz obrazy i przeciwobrazy zbiorów X oraz Y w relacjach R oraz S. (4) Wyznacz obrazy i przeciwobrazy podanych niżej zbiorów w relacji przynależności do tej samej organizacji: (a) zbiór osób nie należących do żadnej organizacji, (b) zbiór osób należących tylko i wyłącznie do Samoobrony, (c) zbiór osób, z których niektóre należą wyłącznie do Samoobrony, a pozostałe nie należą do żadnej organizacji, (d) zbiór członków Samoobrony. 4
5 ZALEŻNOŚCI MIĘDZY RELACJAMI Ponieważ relacje są zbiorami par, mogą one pozostawać do siebie w odpowiednich stosunkach: równości, zawierania, rozłączności lub wykluczania. Zależności te są zdefiniowane tak samo, jak w przypadku zwykłych zbiorów. Relacje R i S są identyczne (równe) witw, gdy: dowolne dwa przedmioty są ze sobą w relacji R witw, gdy są ze sobą w relacji S. R = S (xry xsy) x,y Np. relacja bycia rodzeństwem (naturalnym, nie przyrodnim) jest identyczna z relacją posiadania tych samych rodziców. Relacja R zawiera się w relacji S witw, gdy każde dwa przedmioty będące ze sobą w relacji R są też w relacji S: R S (xry xsy) x,y Np. relacja bycia bratem zawiera się w relacji bycia rodzeństwem. Relacje R i S są rozłączne (wykluczają się) witw, gdy żadne dwa przedmioty będące ze sobą w relacji R nie są w relacji S: R)(S (xry xsy) x,y Np. relacja bycia bratem jest rozłączna z relacją bycia siostrą. Relacja R krzyżuje się z relacją S witw, gdy istnieją przedmioty będące ze sobą zarówno w relacji R i w relacji S, a także istnieją przedmioty będące ze sobą w relacji R, lecz nie będące w relacji S, a także istnieją przedmioty będące ze sobą w relacji S, lecz nie będące w relacji R: R S (xry xsy) (xry xsy) ( xry xsy) x,y x,y x,y Np. relacja bycia bratem krzyżuje się z relacją bycia tej samej płci. ZADANIE 4 Określ stosunki zachodzące między relacjami: Z bycia znajomym, K kochania, P bycia przeciwnej płci oraz S bycia tej samej płci. DZIAŁANIA NA RELACJACH Ponieważ relacje są zbiorami par, można na nich wykonywać te same działania jak na zwykłych zbiorach: wyznaczać sumę, iloczyn itd. Operacje te są zdefiniowane tak samo, jak w przypadku zwykłych zbiorów. Ponadto na relacjach można też wykonywać pewne specyficzne działania, takie jak konwers czy złożenie relacji. 5
6 Suma relacji R i S to zbiór wszystkich par przedmiotów będących w relacji R lub w relacji S: R S = { x,y : xry xsy } Np. sumą relacji bycia matką i relacji bycia ojcem jest relacja bycia rodzicem. Iloczyn relacji R i S to zbiór wszystkich par przedmiotów będących zarazem w relacji R i w relacji S: R S = { x,y : xry xsy } Np. iloczynem relacji bycia bratem i relacji bycia starszym jest relacja bycia starszym bratem. Różnica relacji R i S to zbiór wszystkich par przedmiotów będących w relacji R, a nie będących w relacji S: R S = { x,y : xry xsy } Np. różnicą relacji bycia rodzeństwem i relacji bycia bratem jest relacja bycia siostrą. Różnica symetryczna relacji R i S to zbiór wszystkich par przedmiotów będących dokładnie w jednej z tych relacji R i S: R S = { x,y : (xry xsy) ( xry xsy)} Np. różnicą symetryczną relacji bycia krewnym i relacji bycia w różnym wieku jest relacja bycia spokrewnionym rówieśnikiem lub niespokrewnioną osobą w innym wieku. Dopełnienie relacji R to zbiór wszystkich par przedmiotów nie będących w relacji R: R = { x,y : xry } Np. dopełnieniem relacji bycia większym jest relacja bycia niewiększym. ZADANIE 5 (1) Wyznacz sumę, iloczyn, obie różnice i dopełnienia relacji bycia mniejszym i relacji bycia równym. (2) Wyznacz różnicę symetryczną relacji bycia niewiększym i relacji bycia niemniejszym. (3) Wyznacz iloczyn relacji bycia niemniejszym i relacji bycia niewiększym. (4) Wyznacz sumę, iloczyn, obie różnice i dopełnienia relacji bycia nieznajomym i relacji bycia przyjacielem. (5) Wyznacz iloczyn relacji bycia rodzeństwem i dopełnienia relacji bycia siostrą. (6) Przedstaw relację bycia osobą pozostającą (z kimś) w związku małżeńskim jako sumę dwóch relacji. (7) Przedstaw relację bycia bliźniakiem jako iloczyn dwóch relacji. (8) Przedstaw relację bycia rówieśnikiem jako dopełnienie relacji. (9) Przedstaw relację bycia bliźniakiem jako różnicę dwóch relacji. 6
7 Konwers relacji R (relacja odwrotna do R) to zbiór wszystkich par przedmiotów y,x, takich że para x,y jest w relacji R: R = { y,x : xry } (Inne często spotykane oznaczenie konwersu relacji R to symbol R 1.) Np. konwersem relacji bycia żoną jest relacja bycia mężem. ZADANIE 6 (1) Wyznacz konwers relacji R = { 1,2, 2,3, 3,4, 1,1, 2,2 }. (2) Wyznacz konwers relacji bycia: (a) rodzicem, (b) rodzeństwem, (c) bratem, (d) krewnym, (e) ojcem, (f) zwierzchnikiem, (g) podobnym, (h) młodszym, (i) w tym samym wieku. WŁASNOŚCI konwersu relacji R A B R B A D(R) = D(R) D (R) = D(R) R = R R = ( R) R S= R S R S= R S R S= R S Złożeniem (superpozycją, iloczynem względnym, iloczynem relatywnym) relacji R i relacji S nazywamy relację, która zachodzi między przedmiotami x i y witw, gdy x jest w relacji R do pewnego przedmiotu z będącego w relacji S do y: R S = { x,y : (xrz zsy)} z Kwadratem (potęgą) relacji R nazywamy złożenie jej z nią samą: R 2 = R R PRZYKŁADY: (1) Złożeniem relacji bycia żoną z relacją bycia synem jest relacja bycia żoną syna, czyli synową. (2) Złożeniem relacji bycia synem z relacją bycia żoną jest relacja bycia synem żony (czyli synem naturalnym lub pasierbem). (3) Kwadratem relacji bycia synem jest relacja bycia synem syna, czyli relacja bycia wnukiem. 7
8 WŁASNOŚCI złożenia relacji Składanie relacji nie jest operacją przemienną, gdyż na ogół R S S R. Składanie relacji jest operacją łączną, tzn. (R S) T = R (S T) Relacja odwrotna do złożenia dwóch relacji jest identyczna ze złożeniem relacji odwrotnych do danych w odwrotnej kolejności: R S= R S ZADANIE 7 (1) Wyznacz złożenie następujących par relacji: (a) relacji bycia żoną i relacji bycia bratem, (b) relacji bycia matką i relacji bycia mężem, (c) relacji bycia ojcem i relacji bycia rodzicem, (d) relacji bycia siostrą i relacji bycia matką, (e) relacji bycia przodkiem i relacji bycia przodkiem. (2) Dane są relacje R A 2 i S A 2 określone w zbiorze A = {a,b,c,d}, takie że: R = { a,b, b,c, c,d, a,d } S = { b,c, c,c, d,a } Wyznacz złożenia relacji R S i S R. (3) Wyznacz złożenie relacji bycia kopią i relacji bycia fragmentem oraz złożenie relacji bycia fragmentem i relacji bycia kopią. (4) Wyznacz złożenie relacji bycia młodszym i relacji bycia bratem. (5) Niech K będzie relacją bycia kwadratem, zaś M relacją bycia mniejszym. Sprawdź, które z podanych niżej par liczb należą do złożenia K M, a które do złożenia M K: (a) 1,3 (d) 4,5 (b) 1,1 (e) 4,2 (c) 2,3 (f) 9,4 (6) Wyznacz kwadrat relacji: (a) bycia dwukrotnością, (b) bycia bratem, (c) bycia dzieckiem, (d) bycia sześcianem (liczby), (e) bycia o dziesięć większym. (7) Przedstaw jako złożenie dwóch relacji: (a) relację bycia stryjem, (b) relację bycia o 3 mniejszym, (c) relację bycia szóstą potęgą, (d) relację posiadania wspólnych krewnych, (e) relację bycia teściem. Niektóre zadania lub ich fragmenty pochodzą z Ćwiczeń z logiki B. Stanosz. 8
Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Logika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Wstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.
Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,
RELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje
Rozdział 7 Relacje równoważności
Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI
PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI (niniejsze opracowanie jest nieznacznie skróconą wersją opracowania zawartego w książce Zygmunta Ziembińskiego Logika pragmatyczna. (wyd. XIX, s. 95 99). Polecam lekturę
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
FUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1
WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając
Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Analiza matematyczna 1
Analiza matematyczna 1 Marcin Styborski Katedra Analizy Nieliniowej pok. 610E (gmach B) marcins@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/marcins () 28 września 2010 1 / 10 Literatura podstawowa R. Rudnicki,
Podstawy nauk przyrodniczych Matematyka Zbiory
Podstawy nauk przyrodniczych Matematyka Zbiory Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel.618295833 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM
Logika Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Logika Matematyczna Własności relacji 1 / 46 Wprowadzenie
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
1. Wprowadzenie do rachunku zbiorów
1 1. Wprowadzenie do rachunku zbiorów 2 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach w sensie dystrybutywnym; rachunek zbiorów jest fragmentem teorii mnogości. Pojęcia
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
WIELOMIANY I FUNKCJE WYMIERNE
WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Wstęp do Matematyki (1)
Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie
Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009
Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.
Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Test, dzień pierwszy, grupa młodsza
Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,
Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Wstęp do Techniki Cyfrowej... Algebra Boole a
Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Elementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości 1 Elementy teorii mnogości Część I Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości 2 1. Pojęcia
Genetyka populacji. Ćwiczenia 7
Genetyka populacji Ćwiczenia 7 Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt C F X S D C F C F S D strzałka oznacza przepływ genów między
SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!
Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -
Matematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
RACHUNEK ZBIORÓW 2 A B = B A
RCHUNEK ZIORÓW 2 DZIŁNI N ZIORCH Sum (uni ) zbiorów i nazywamy zbiór, którego elementami s wszystkie elementy nale ce do zbioru lub do zbioru. = {x : x x } ZDNIE = = = Wyznacz sumy:,, C, D, E, D E dla
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568
Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
Jarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):