Spis treści. Własności tkanki nerwowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spis treści. Własności tkanki nerwowej"

Transkrypt

1 W rozdziale tym poznamy mechanizmy neuronalne odpowiedzialne za powstawanie potencjałów na czaszce, mierzonych jako sygnały EEG. Rozdział ten jest opracowany w oparciu o Nunez (1981, 1995, 2006). Spis treści 1 Własności tkanki nerwowej 2 Ładunki w przewodnikach 3 Podstawowe równania 4 Warunki brzegowe w ośrodkach niejednorodnych 5 Źródła prądowe w mózgu 6 Bezpośrednie zastosowanie makroskopowych źródeł prądu 7 Źródła prądowe w ośrodku przewodzącym 7.1 Źródło jednobiegunowe 7.2 Dipol prądowy 7.3 Źródło kwadrupolowe 7.4 Warstwa dipolowa najważniejsze źródło sygnału EEG 8 Podsumowanie 9 Literatura Własności tkanki nerwowej Na początku zajmijmy się własnościami tkanki nerwowej, w której generowane są potencjały. Tkanka nerwowa składa się neuronów przekazujących impulsy nerwowe oraz komórek glejowych wspomagających działanie neuronów. W komórkach występuje płyn wewnątrzkomórkowy, a na zewnątrz, płyn zewnątrzkomórkowy. Płyn zewnątrz- i wewnątrzkomórkowy składa się z wody, białek oraz dodatnio i ujemnie naładowanych jonów. W płynie wewnątrzkomórkowym dominują jony K +, Mg 2+, Na +, HCO 3, izetionianu. W płynie zewnątrzkomórkowym głównym kationem są jony Na +, a anionem jony Cl. Ze względu na występowanie jonów swobodnych, w tkance nerwowej mogą płynąć prądy jonowe, w których biorą udział zarówno dodatnie, jak i ujemne jony. W odróżnieniu od obwodów elektrycznych, w których prąd jest rozłożony równomiernie w całym przekroju poprzecznym elementów obwodu i można operować pojęciem prądu całkowitego, w tkance nerwowej wygodnie operuje się uogólnionym pojęciem tzw. gęstością prądu J. Gęstość prądu pochodzącego do wielu różnych jonów, można wyrazić jako sumę poszczególnych przyczynków od jonów mających gęstość ładunku ρ i i prędkość v i : Gęstość ładunku jest równa wartości ładunku danego jonu pomnożonej przez liczbę wolnych jonów w elemencie objętości tkanki. Jednostką gęstości ładunku jest C/m 3. v i są to średnie prędkości jonów wyrażone w metrach na sekundę. Gęstość prądu jest to ilość prądu przepływająca przez jednostkowy przekrój poprzeczny, a jego jednostką jest C/(m 2 s) lub A/m 2. W skali makroskopowej (np. w próbce materii zawierającej lub więcej ładunków w ruchu), tkanka nerwowa spełnia prawo Ohma.

2 Oznacza to liniową zależność pomiędzy gęstością prądu, a przyłożonym polem elektrycznym (E): Stała proporcjonalności σ jest nazywana przewodnictwem elektrycznym ośrodka i wyraża się w jednostkach 1/(Ωm) lub równoważnie w Siemens/m (S/m). W tkance biologicznej często wygodniej jest stosować jednostki 1/(Ωcm) lub 1/(Ωmm) i (S/mm) Oporność jest odwrotnością przewodnictwa i jest mierzona w Ωm. Tkanka mózgowa jest słabym przewodnikiem. Np. makroskopowa oporność kory mózgowej jest ok. milion razy większa od oporności miedzi. Na poziomie mikroskopowym, błony komórkowe wykazują zachowanie nieliniowe, odbiegające od prawa Ohma. Gdy potencjał błonowy (pole elektryczne wewnątrz komórki) wzrasta powyżej pewnej wartości progowej, błona staje nieliniowym przewodnikiem, co umożliwia generacje i propagacje impulsów nerwowych. Ładunki w przewodnikach Wykonajmy myślowy eksperyment polegający na umieszczeniu ładunku próbnego w przewodniku np. tkance biologicznej. Gdy umieścimy dodatnio naładowany ładunek w przewodniku, występują dwa oddzielne efekty. Efekt polaryzacji spowodowany reorganizacją ładunków w błonach komórkowych (własności dielektryczne tkanki) oraz efekt przewodnictwa spowodowany ruchem ładunków swobodnych w płynie zewnątrzkomórkowym. Ten drugi efekt spowoduje, że dodatni ładunek próbny będzie wkrótce otoczony chmurą ujemnych ładunków, które będą w dużym stopniu ekranować pole pochodzące od ładunku próbnego. Potencjał w punkcie r, pochodzący od ładunku próbnego umieszczonego w elektrolicie w punkcie r 1 był wyprowadzony w połowie XX wieku na bazie rozważań statystycznych i wynosi: R D jest tzw. długością Debye'a, a κ odpowiada za efekty polaryzacyjne. R = r r 1. Dla κ = 1 i R R D, dostajemy potencjał ładunku punktowego w próżni. Jednakże R D jest rzędu kilku angstremów (10 10 m) w tkance biologicznej, co powoduje, ze eksponent we wzorze (Equation 3) wynosi ok w odległości R = 3 mm. Pokazuje to, że potencjał ładunku próbnego umieszczonego w tkance biologicznej jest zaniedbywalnie mały dla wszystkich makroskopowych odległości. Nie można więc powiedzieć, że potencjały w mózgu są spowodowane pewnym rozkładem określonym ładunku. Są one spowodowane nie tylko określonym rozkładem ładunku ale również wszystkimi ładunkami w ośrodku przewodzącym. W tkance biologicznej, źródła prądowe w błonach neuronalnych, a nie ładunki, są generatorami EEG. Podstawowe równania Wszystkie zjawiska elektryczne i magnetyczne w mózgu podlegają uniwersalnym prawom Maxwella:

3 gdzie D indukcja elektryczna, E natężenie pola elektrycznego, B indukcja magnetyczna, H natężenie pola magnetycznego, ρ gęstość ładunku, J gęstość prądu. W wielu materiałach, również w tkance nerwowej, pola D i B zależą liniowo od E i H: Gdzie: ε przenikalność elektryczna, a μ przenikalność magnetyczna ośrodka. Do opisu pól elektrycznych w tkance nerwowej stosuje się uproszczoną wersje równań Maxwella oraz równań opisujących liniowe własności ośrodka. Podstawowe równania liniowej elektrofizjologii można podsumować następująco: Zasada zachowania ładunku (równanie %i 10) wynika bezpośrednio z 1 i 4 równania Maxwella (równania %i 4 i %i 7), oraz z tożsamości Równanie potencjału skalarnego dla pola elektrycznego (równanie %i 14) jest spełnione w przybliżeniu wolnych oscylacji pól, co pozwala zaniedbać indukcję magnetyczną. Warunki brzegowe w ośrodkach niejednorodnych Różne obszary mózgu mają różne przewodnictwa, tak więc w praktycznych zagadnieniach występują granice między ośrodkami. W skali makroskopowej, najbardziej oczywiste granice między ośrodkami dotyczą granicy pomiędzy słabo przewodzącą czaszką i powietrzem otaczającym głowę. W skali mikroskopowej mamy do czynienia z granicami tworzonymi przez błonę komórkową z ośrodkiem zarówno zewnętrznym jak i wewnętrznym. Potencjał elektryczny Φ(r, t) będzie miał różne rozwiązania Φ i (r, t) w obszarach i o przewodnictwie σ i. Porównajmy najpierw efekty opornościowe i efekty pojemnościowe. Zastosujmy operator do czwartego równania Maxwella (równanie %i 7) oraz skorzystajmy z tożsamości (Equation 15). Dostajemy: Rozważmy składową pola elektrycznego oscylującego z częstością f i wyraźmy równanie (Equation 16) stosując prawo Ohma (Equation 12) i liniowe równanie dla dielektryka (Equation 13):

4 Dwa wyrażenia w nawiasie odpowiadają za efekty opornościowe i pojemnościowe w ośrodku materialnym, tzn. efekty związane z ładunkiem swobodnym i efekty związane z ładunkami związanymi w błonie komórkowej. Oznacza to, że efekty pojemnościowe możemy zaniedbać gdy Gdy w obszarze i oraz j nie występują źródła, na mocy równania (Equation 16) i równania potencjału skalarnego (równanie Equation 14), podstawowe równania elektrofizjologii redukują się do: równanie (Equation 20) odnosi się do sytuacji, w której można zaniedbać efekty pojemnościowe (np. błony komórkowej) i nosi nazwę równania Laplace a. Czasem przybliżenie to nazywa się również przybliżeniem quasi-statycznym, gdyż stosuje się dla pól oscylujących z niskim częstościami. Równanie to stosuje się do wszystkich zagadnień w skali makroskopowej. Równanie (Equation 21) stosuje się do błon komórkowych i pól w skali mikro. Równania (Equation 20) i (Equation 21) mają nieskończenie wiele rozwiązań. Aby rozwiązanie w każdym obszarze było jednoznaczne należy zastosować warunki brzegowe na granicy ośrodków oznaczonych symbolami m i n: Warunki brzegowe są wyrażone we współrzędnej u, mającej wszędzie kierunek normalny do granicy między ośrodkami i dwóch współrzędnych stycznych w 1 i w 2. Pierwszy z warunków określa fizyczne wymaganie by składowa normalna gęstości prądu była ciągła na granicy ośrodków. Warunek ten wynika z zasady zachowania ładunku. Drugi warunek brzegowy określa, że składowa styczna pola elektrycznego musi być ciągła na granicy ośrodków. Warunek ten wynika z drugiego prawa Maxwella. Stosując pierwszy z warunków brzegowych do granicy głowa (m) powietrze (n) i przyjmując, że przewodnictwo powietrza wynosi zero, dostajemy: Oznacza to, że pole magnetyczne, elektryczne oraz ich potencjały pochodzące od źródeł w mózgu, rozchodzą się w przestrzeni otaczającej głowę, lecz prąd jest ograniczony do jej wnętrza (składowa normalna prądu wynosi zero). Źródła prądowe w mózgu Tzw. problem wprost w EEG polega na obliczeniu potencjału na czaszce na podstawie źródeł prądowych. Równania (Equation 20, Equation 21) w pełni opisują szukany potencjał jednakże potrzebna jest modyfikacja. Wersja niezmodyfikowana wymaga znajomości potencjału i jego pochodnych normalnych na granicy ośrodków, co jest skomplikowane w skali komórkowej. Ponieważ

5 jednak składowa normalna potencjału jest proporcjonalna do gęstości prądu w przewodniku, możemy zastąpić warunki brzegowe na granicy ośrodków poprzez odpowiednie źródła prądowe. Na początku rozważmy prąd błonowy pojawiający się w wyniku aktywacji pojedynczej synapsy. Prądy błonowe powstające w wyniku hamującej akcji synaptycznej. Potencjał czynnościowy dochodzący do zakończenia włókna presynaptycznego powoduje uwolnienie neuroprzekaźnika z kolbki synaptycznej, co prowadzi do zmiany przewodnictwa błony postsynaptycznej dla wybranych jonów. W wyniku otwarcia kanałów jonowych, powstaje lokalne źródło prądowe w okolicy synapsy oraz zlew prądowy rozproszony wzdłuż dalszych obszarów błony, tak by spełnione było prawo zachowania ładunku. W stanie spoczynku, potencjał wewnątrz komórki wynosi ok. 65 mv względem potencjału na zewnątrz. Jeżeli synapsa jest pobudzająca, efektem jej aktywacji będzie zwiększenie przepuszczalności dla dodatnio naładowanych jonów, które zaczną napływać do komórki. Zmiana potencjału błonowego w wyniku akcji synaptycznej nazywana jest pobudzającym potencjałem postsynaptycznym lub EPSP (od ang. excitatory postsynaptic potential). EPSP zmniejsza wartość różnicy potencjału w komórce i podnosi jej wewnątrzkomórkowy potencjał w kierunku odpalenia jej własnego potencjału czynnościowego, przy różnicy potencjałów w poprzek błony ok. 40 mv. Błona w bezpośredniej okolicy synapsy zachowuje się jak zlew prądowy (źródło ujemne) gdyż dodatnio naładowane jony wpływają do wewnątrz. Prąd płynie w przestrzeni wewnątrzkomórkowej i wypływa z komórki w dalszych, rozproszonych obszarach, tak aby zamknąć linie prądu. Całkowity prąd

6 dokomórkowy musi być równy całkowitemu prądowi wypływającemu z komórki, co wynika z zasady zachowania ładunku. Jeżeli synapsa jest hamująca, zmiana potencjału błonowego w wyniku akcji synaptycznej nazywana jest hamującym potencjałem postsynaptycznym lub IPSP (od ang. inhibitory postsynaptic potential). Ma on odwrotne działanie w stosunku do EPSP i zmniejsza prawdopodobieństwo generacji potencjału czynnościowego. IPSP generuje powstanie lokalnego źródła prądu, któremu musi towarzyszyć odpowiedni zlew prądowy rozproszony wzdłuż bardziej odległych obszarów błony (rys. 1). Potencjał zewnątrzkomórkowy powstający w wyniku akcji synaptycznej zależy od pełnego rozkładu źródeł i zlewów w błonie s(r, t), a nie tylko od lokalnego prądu płynącego w otoczeniu synapsy. W wyniku złożonej geometrii neuronów, geometria rozkładu prądów płynących przez błonę może być skomplikowana, a potencjał zewnątrzkomórkowy trudny do policzenia. Jednakże w zagadnieniach EEG, możemy obejść wiele problemów ze złożonością pojedynczych neuronów poprzez zmianę skali, w której rozpatrujemy generatory prądów. W tym celu zdefiniujmy efektywny prądowy moment dipolowy dla każdej objętości tkanki. Prądowy moment dipolowy na jednostkę objętości tkanki kory mózgowej może być uważany za korowe źródło generujące pole magnetyczne i elektryczne na powierzchni czaszki. Kluczem do zrozumienia tego upraszczającego założenia jest fakt, że pojedyncza komórka kory mózgowej dostaje ok wejść synaptycznych, a pod każdym milimetrem kwadratowym powierzchni kory znajduje się ok neuronów. Potencjał zewnątrzkomórkowy mierzony przez małą elektrodę z takiego obszaru będzie bardzo skomplikowany i będzie bardzo czuły na zmianę położenia elektrody. Jednakże w odległościach dużych w porównaniu z charakterystyczną odległością pomiędzy źródłami i zlewami, potencjał generowany przez źródła i zlewy w kolumnie będzie przypominał potencjał dipola. Dla wielu kolumn wykazujących aktywność synaptyczną, potencjał na czaszce będzie ważoną sumą dipolowych przyczynków od poszczególnych kolumn. W komórce piramidowej, charakterystyczna odległość pomiędzy źródłem a zlewem jest rzędu paru milimetrów, podczas gdy odległość do najbliższych obszarów na czaszce wynosi ok. 1-1,5 cm. Tak więc przybliżenie dipolowe dla źródeł w kolumnach korowych jest spełnione w zagadnieniach EEG. Bezpośrednie zastosowanie makroskopowych źródeł prądu We wszystkich następujących zagadnieniach będziemy zakładać, że ośrodek jest czysto przewodzący i nie wykazuje efektów pojemnościowych. W takim ośrodku, ładunek nie jest nigdzie gromadzony, gęstość ładunku jest stała, a równanie zachowania ładunku można zapisać: Korzystne okazuje się wprowadzenie pojęcia makroskopowej gęstości prądu źródeł J s, która pozwala zapisać prawo Ohma następująco: Oznacza to, że prąd całkowity w ośrodku przewodzącym składa się prądu omowego σe oraz prądu źródłowego wypływającego z granicy między ośrodkami np. prąd wypływający przez błonę komórkową. Wstawiając (Equation 26) do (Equation 25) i korzystając z definicji potencjału elektrycznego dostajemy: gdzie objętościowy prąd źródłowy jest zdefiniowany jako

7 Potencjał wewnątrz przewodnika oznaczonego zaokrąglonym prostokątem jest określony równaniem Laplace'a (Equation 20). Jednoznaczne rozwiązanie tego równania wymaga znajomości potencjału lub normalnej pochodnej potencjału na powierzchniach granicznych przewodnika. Zamiast podawać warunki brzegowe na granicach przewodnika, możemy podać źródła prądowe s(r, t) występujące na tych powierzchniach. W tej sytuacji jednoznaczne rozwiązanie dla potencjału wewnątrz przewodnika jest dane równaniem Poissona (Equation 27). Obszary zaznaczone kolorem szarym są źródłami prądu, pozostałe (białe) obszary są bezźródłowe. Przewodnictwo σ(r) (w S/mm lub S/cm) w ogólności zależy od położenia i dlatego znajduje się wewnątrz operatora. Gęstość prądu źródłowego s(r, t) ma wymiar prądu na jednostkę objętości μa/mm 2. Jest to prąd generowany w jednostce objętości. Może być również interpretowany jako objętościowe źródło potencjału generowanego w ośrodku makroskopowym. Rozumowanie stojące za wprowadzeniem prądu źródłowego jest następujące. Dowolny obszar tkanki możemy podzielić tak, że obszary generacji prądu znajdują się pewnych podobszarach oznaczonych kolorem szarym na rys. 2. W pozostałych obszarach (zaznaczonych kolorem białym) potencjał jest określony równaniem Laplace a (Equation 20) w ośrodku jednorodnym i (Equation 27) w ośrodku niejednorodnym, kładąc s(r, t) równe zero. Jednakże jednoznaczne rozwiązanie wymaga by potencjał lub składowa normalna potencjału była określona na całej granicy ośrodków. W formalizmie równania Poissona (Equation 27) zastąpiliśmy warunki brzegowe poprzez prąd objętościowy s(r, t). Ujemny znak w równaniu (Equation 27) jest spójny z prądem dodatnim wpływającym do bezźródłowego (białego) obszaru. Inna zaletą tego podejścia jest fakt, że w ośrodku czysto przewodzącym czasowa zależność potencjału Φ(r, t) jest identyczna z czasową zależnością źródła. Pojedyncze oscylujące źródło s(r, t) sin(2πft) powoduje oscylacje potencjału z tą samą częstością. Jednakże w mózgu będzie zazwyczaj wiele źródeł oscylujących z różnymi częstościami i fazami. Potencjał na czaszce mierzony w EEG będzie liniową superpozycją przyczynków od pojedynczych obszarów źródeł z różnymi wagami zależnymi od własności przewodnictwa ośrodka i odległości pomiędzy źródłami i miejscami pomiaru potencjału na czaszce. Przeprowadzone tutaj operacje matematyczne mogą się wydawać nieco sztuczne, okazują się jednak bardzo wygodne w zrozumieniu problemów związanych z generacją potencjałów w tkance nerwowej. Porównajmy wzór na potencjał w przewodniku pochodzący od obszaru źródła prądowego s(r, t) (Equation 27) ze wzorem na potencjał w dielektryku pochodzący od obszaru źródła z pewną

8 gęstością swobodnego ładunku ρ(r, t). Równanie na potencjał w dielektryku otrzymamy poprzez połączenie równań (Equation 4), (Equation 8) i (Equation 14). Prowadzi to do równania Poissona w dielektryku: Oba równania (Equation 29) i (Equation 27) są równaniami Poissona lecz ze zmienionymi symbolami. Są one więc matematycznie równoważne lecz reprezentują inne fizycznie procesy. Swobodny ładunek makroskopowy w przewodniku w praktyce wynosi zero, tak więc równanie (Equation 29) nie ma praktycznego zastosowania w elektrofizjologii. Jednakże w fizyce znanych jest wiele rozwiązań równania (Equation 29) dla różnych rodzajów niejednorodności w dielektrykach. Aby zastosować znane z fizyki rozwiązania do przewodnika wystarczy w nich podstawić przewodnictwo σ(r, t) w miejsce przenikalności elektrycznej ε(r, t), a źródła ładunku ρ(r, t) zamienić na źródła prądowe s(r, t). Np. rozważmy specjalny przypadek N punktowych źródeł prądowych, co oznacza, że rozmiary (objętość) źródła jest dużo mniejsza niż odległość od elektrod pomiarowych. W nieskończonym, jednorodnym i czysto opornościowym przewodniku, potencjał na zewnątrz źródeł jest analogiczny do potencjału pochodzącego od N ładunków punktowych i wynosi: W typowych jednostkach stosowanych w zagadnieniach EEG, I n (t) są jednobiegunowymi źródłami prądowymi (μa) wypływającymi z n-tego rejonu źródła do przewodnika o przewodnictwie σ (1/(Ωcm)). R n są odległościami pomiędzy miejscem pomiaru a położeniem źródła. Np. potencjał w odległości 1 cm generowany przez źródło prądowe o natężeniu 4π μa w wyidealizowanej korze mózgowej o oporności η = 1/σ = 300 Ωcm, wynosi 300 mv. W ośrodku czysto opornościowym, zależność czasowa potencjału jest dana przez sumę ważoną wszystkich źródeł. W ośrodku z własnościami pojemnościowymi wystąpią przesunięcia fazowe pomiędzy źródłami i potencjałem. Gdy zaniedbamy efekty pojemnościowe, otrzymamy ogólną metodę znajdowania potencjału na podstawie rozkładu źródeł prądowych w mózgu. Źródła prądowe w ośrodku przewodzącym Większość zjawisk obserwowanych w zapisie EEG może być zrozumiana na podstawie paru rodzajów źródeł. W szczególności jest to dipol prądowy, warstwa dipolowa i rozkład źródeł pochodzący od potencjału czynnościowego. Pole na czaszce, pochodzące od tych źródeł będzie oczywiście silnie zależeć od makroskopowych niejednorodności takich jak czaszka. My zajmiemy się uproszczoną sytuacją i rozważymy różne przykłady źródeł w nieskończonym, jednorodnym i izotropowym ośrodku przewodzącym. Przybliżenie to dostarczy nam ważnej intuicji na temat generatorów rzeczywistych sygnałów EEG. Źródło jednobiegunowe Potencjał pojedynczego źródła jednobiegunowego jest szczególnym przypadkiem rozwiązania (Equation 30) i wynosi

9 Równanie (Equation 31) można też otrzymać przeprowadzając proste rozumowanie. Otoczmy punktowe źródło sferą o promieniu r. Ponieważ prąd całkowity jest zachowany, gęstość prądu na powierzchni sfery wynosi w kierunku radialnym. Z prawa Ohma: Stosując równanie potencjału skalarnego (Equation 14), dla składowej radialnej dostajemy: Po scałkowaniu (Equation 34) dostajemy równanie (Equation 31). Z równania (Equation 31) wynika, że potencjał w przewodniku staje się nieskończony jeśli odległość między źródłem a punktem pomiaru wynosi zero lub przewodnictwo ośrodka wynosi zero. Ta nie-fizyczna sytuacja wynika z dwóch założeń zrobionych przy wyprowadzaniu równania (Equation 31). Po pierwsze, założyliśmy, że pomiar dokonywany jest punktowo lecz prawdziwe elektrody pomiarowe mają niezerowe rozmiary więc r nie może być zero. Po drugie, założyliśmy, że jesteśmy w stanie zapewnić stałe natężenie prądu niezależnie od przewodnictwa ośrodka. Jednakże gdy przewodnictwa ośrodka będzie malało, coraz większe napięcie z generatora będzie wymagane, by utrzymać stały prąd w źródle. W rzeczywistości, gdy przewodnictwo ośrodka będzie dążyć do zera, natężenie prądu I będzie również dążyło do zera, co zapewni skończoną wartość potencjału. Dipol prądowy Dipol prądowy składa się z punktowego źródła I i zlewu I, oddzielonych o d. Znaczenie dipola w elektrofizjologii jest większe niż jakakolwiek inna konfiguracja źródeł. Jest tak dlatego, że prawie każdy obszar zawierający źródło i zlew, oraz w którym całkowity prąd źródła i zlewu są równe (zasada zachowania prądu), będzie dawał przybliżone pole dipola w odległościach dużych w porównaniu z rozmiarami obszaru źródło-zlew. Np. pole dipola jest generowane w wyniku pobudzenia lub hamowania synaptycznego w neuronach, jak to zostało opisane w sekcji Źródła prądowe w mózgu. Ścisłe wyrażenie na potencjał dipola jest to suma dwóch jednobiegunowch przyczynków o przeciwnej polaryzacji i odległościach odpowiednio r 1, r 2 od punktu pomiaru: Jednakże dużo wygodniej wyrazić potencjał dipola za pomocą jednej współrzędnej radialnej r, mierzonej od środka odcinka łączącego ładunki. W odległościach dużo większych od d, pole dipola można przybliżyć następująco:

10 dla r d. Θ jest kątem pomiędzy osią dipola i wektorem r wskazującym punkt pomiaru. Rozważmy lokalny przepływ prądu pomiędzy III i VI warstwą kory mózgowej. Odległość między biegunami prądu wynosi wtedy d ~ 1 mm. Załóżmy prądowe źródło o natężeniu I = 10 μa i nieskończony jednorodny ośrodek o oporności η = 1/σ = 300 Ωcm odpowiadającej korze mózgowej. Licząc potencjał (względem nieskończości) wzdłuż osi dipola (Θ = 0), możemy zastosować (Equation 36) również w pobliżu źródeł. Wstawiając dane dostajemy: Φ(r, 0) 464 μv dla r = 2,5 mm (na powierzchni kory) Φ(r, 0) 12 μv dla r = 1,5 cm (na czaszce) Powyższe oszacowania nie biorą pod uwagę wpływu warstw płynu mózgowo-rdzeniowego, czaszki i skóry na głowie i powietrza nad głową. Szacuje się, że wpływ tych warstw o różnym przewodnictwie zmniejsza potencjał pochodzący od dipola znajdującego się w powierzchownych warstwach kory, a mierzonego na czaszce do ok. 1/4 wartości otrzymanej w jednorodnym modelu kory. Te zgrubne oszacowania pozwalają nam przewidzieć stosunek potencjału mierzonego na czaszce do potencjału mierzonego na powierzchni kory. Dla pojedynczego źródła korowego stosunek ten wynosi 464/(12/4), a więc: Potencjał na korze/potencjał na czaszce ~ 100 do 200 Średnie amplitudy spontanicznego EEG na korze są zazwyczaj 2 do 5 razy większe od potencjałów mierzonych na czaszce (Cooper et al., 1965). Brak zgodności naszego oszacowania z doświadczeniem sugeruje, że zdecydowana większość zjawisk w EEG jest generowana nie przez pojedyncze dipole lecz przez źródła o znacznie większych rozmiarach np. przez warstwy dipolowe. Z drugiej strony, niektóre iglice epileptyczne (ang. epileptic spikes) i potencjały wywołane (ang. evoked potentials) w pierwszorzędowej korze sensorycznej można z powodzeniem modelować jako pojedynczy dipol lub parę izolowanych dipoli. Źródło kwadrupolowe Rozróżniamy dwie konfiguracje prowadzące do źródła kwadrupolowego. Kwadrupol liniowy składa się z dwóch źródeł +I/2 i zlewu I leżących wzdłuż jednej prostej, oddzielonych od siebie o d. Kwadrupol dwuwymiarowy składa się z dwóch identycznych dipoli, umieszczonych równolegle do siebie, o przeciwnej orientacji. Kwadrupol liniowy ma zastosowanie w elektrofizjologii gdyż wykazuje podobieństwo do trójfazowego rozkładu źródeł we włóknie nerwowym podczas potencjału czynnościowego. Potencjał kwadrupola w dowolnym miejscu ośrodka przewodzącego wynika bezpośrednio ze wzoru (Equation 31) na potencjał pojedynczego źródła jednobiegunowego Trzy wartości r odpowiadają trzem odległościom pomiędzy źródłami i zlewami, a punktem pomiaru. W średnich lub dużych odległościach, potencjał może być wyrażony we współrzędnych sferycznych

11 (r, θ, φ) jako Potencjał nie zależy od współrzędnej φ. Podczas generacji potencjału czynnościowego następuje wpływ dodatniego prądu jonów Na + do wnętrza komórki. Prądowe źródło na pewnym obszarze błony komórkowej musi mieć odpowiadające mu zlewy prądowe, które znajdują się w obszarach po obu stronach źródła. W ten sposób powstaje konfiguracja źródło-zlew przypominająca kwadrupol liniowy. Ponieważ potencjał kwadrupola zanika jak 1/r 3 czyli szybciej niż potencjał dipola (1/r 2 ), potencjały czynnościowe mają znikomy wpływ na sygnał EEG. Synchronicznie występujące potencjały czynnościowe (ang. compound action potentials) mogą jednak być mierzalne. Istnieją podstawy by sądzić (Jewett, 1970), że potencjały czynnościowe biegnące we nerwie słuchowym są przynajmniej częściowo źródłem słuchowych potencjałów wywołanych z pnia mózgu (BAER od ang. brainstem auditory evoked response). Warstwa dipolowa najważniejsze źródło sygnału EEG Około 65 do 75% neuronów korowych u wszystkich gatunków ssaków jest ustawionych prostopadle do powierzchni kory (Scholl, 1956; Bok, 1959). Neurony korowe mają dużą liczbę wzajemnych połączeń powodujących synchronizacje ich aktywności. Istnieją więc zarówno anatomiczne, jak i fizjologiczne podstawy by uznać warstwę dipolową tworzoną przez równoległe, synchronicznie działające komórki, za generator potencjałów korowych. Synchronizacja generatorów odgrywa tutaj kluczową rolę. Rozważmy na początku dwa dipole, których prądy fluktuują z częstościami i. Może to odpowiadać dwóm komórkom, dostającym zarówno wejścia pobudzające, jak i hamujące (rys. 3). Potencjał mierzony przez elektrodę w punkcie P, otrzymamy na podstawie (Equation 30): [Error parsing LaTeX formula. Error 6: dimension error: 752x40] I A oraz I B są maksymalnymi wartościami prądu w każdym z dipoli. Dodatkowo, zakładamy, że cały prąd wypływający ze źródła wpływa do zlewu w tym samym dipolu, co jest spełnione gdy odległość między dipolami Ljest znacznie większa niż odległość pomiędzy efektywnymi biegunami d. α A i są kątami fazowymi. Dla większej ilości źródeł, w wyrażeniu (Equation 39) pojawią się analogiczne człony.

12 Dwie komórki piramidalne A i B pobudzane synaptycznie, są przedstawione w wyidealizowanej formie, jako dipole. Potencjał w punkcie P jest sumą przyczynków pochodzących od obu zlewów (-) i obu źródeł (+) prądu. Odległość między dipolami wynosi L, a odległość pomiędzy efektywnymi biegunami dipoli wynosi d. Rozważmy wpływ wielu dipoli o podobnej sile (, itd) i podobnych częstościach (, itd) na średni potencjał. Potencjał będzie oczywiście zależał od wszystkich odległości R 1, R 2, itd., możemy jednak sformułować pewne ogólne wnioski. a. Gdy generatory są ze sobą w fazie ( = =, itd), a dipole ustawione równolegle do siebie, wyrażenia we wzorze (Equation 39) dodają się i dla m dipoli, uśredniony po czasie potencjał będzie proporcjonalny do ilości wszystkich m generatorów w otoczeniu elektrody, Oczywiście, generatory znajdujące się najbliżej elektrody, będą miały największy wpływ na potencjał, lecz im więcej generatorów będzie aktywnych w losowych odległościach od punktu pomiaru, wzór (Equation 40) będzie stanowić tym lepsze przybliżenie. b. Jeśli generatory mają losową orientację, tak że prądy I w (Equation 39) będą miały losowe znaki lub jeśli losowe będą fazy generatorów, potencjał będzie dużo słabiej zależał od liczby generatorów. Będzie on wynikiem statycznej fluktuacji. Wg. Nunez (1981), można pokazać, że m członów w wyrażeniu (Equation 39) sumuje się dając średni potencjał, który dla dużych m można oszacować jako: Zastosujmy teraz powyższe rozważania do zapisu rejestrowanego elektrodą umieszczoną w pobliżu generatorów. Jeśli elektroda znajduje się wystarczająco blisko źródła prądowego, tak że jeden z Rs w (Equation 39) jest bardzo mały, mierzony potencjał będzie stosunkowo duży, bez względu na fazowe relacje pomiędzy źródłem lokalnym i innymi źródłami w otaczającej tkance. Źródła odległe również mogą dawać wkład do mierzonego potencjału. Ich wkład może być mniejszy lub większy od wkładu źródła lokalnego. Źródła odległe będą zachowywały się głównie jak dipole prądowe. Tak więc potencjał mierzony przez elektrodę może być wyrażony następującym przybliżonym wzorem. Indeksy i, S, oraz A odnoszą się odpowiednio do źródeł lokalnych, źródeł odległych synchronicznych i źródeł odległych asynchronicznych. Is są prądami efektywnymi, które mogą być mniejsze niż prąd całkowity, w zależności od orientacji odległych synchronicznych źródeł względem elektrody. d jest odległością pomiędzy efektywnymi biegunami dipoli. l, m i n są liczbą źródeł lokalnych, odległych synchronicznych i odległych asynchronicznych, które znajdują się odpowiednio w średnich odległościach R, R, R. Należy pamiętać, że (Equation 42) jest idealizacją, gdyż nie wszystkie generatory dają się zaklasyfikować do poszczególnych kategorii, jednakże wzór ten może dać ogólny

13 pogląd na generacje potencjałów w mózgu, a w szczególności potencjałów mierzonych na czaszce czyli EEG. W tym przypadku (EEG) nie ma źródeł lokalnych. Jeśli generatory są podobne I S I A oraz generatory synchroniczne i asynchroniczne są w podobnej odległości R S R A, względny przyczynek od generatorów synchronicznych względem asynchronicznych wynosi: Na podstawie zależności (Equation 43) możemy przeprowadzić następujące rozumowanie. Elektroda umieszczona na czaszce mierzy aktywność ok. 10 neuronów znajdujących się w paru cm kory, Załóżmy, że prawie wszystkie neurony są aktywne lecz tylko 1% (10 ) z nich jest ustawiony równolegle i działa synchronicznie. Przyczynek od synchronicznej frakcji neuronów do potencjału mierzonego na czaszce wynosi: Jest on więc 100 razy większy niż przyczynek od pozostałych 99% neuronów (Elul, 1972). Pokazuje to, że powierzchniowe EEG pochodzi głównie od synchronicznej aktywności równolegle ustawionych neuronów, a zmiana amplitudy sygnału wraz ze stanem fizjologicznym, wiąże się ze zmianą liczby synchronicznie działających komórek. Wzór (Equation 42) sugeruje, że potencjał od źródeł odległych zanika z odległością jak 1/R. Warto zauważyć, że dla warstw dipolowych bardzo dużych rozmiarów, zanik ten może być jeszcze wolniejszy. Np. dla nieskończonej warstwy dipolowej potencjał nad (lub pod warstwą) dipolową jest stały i nie zmienia się z odległością. Oznacza to, że dla małych odległości od warstwy, w porównaniu z jej rozmiarami, zanik potencjału będzie niewielki, a im większa warstwa tym zanik potencjału wolniejszy. W przypadku dużych warstw dipolowych zanik potencjału na czaszce względem potencjału na korze jest nieznaczny. Eksperymentalnie obserwowany stosunek potencjału na korze do potencjału na czaszce jest, w większości spontanicznych zapisów EEG, pomiędzy 2 i 5 (Cooper et al., 1965). Po uwzględnieniu niejednorodności takich jak czaszka, płyn mózgowo-rdzeniowy i powietrzne nad głową, oznacza to, że korowe źródła muszą tworzyć warstwy dipolowe o rozmiarach znacznie większych niż odległość pomiędzy czaszką a korą. Mają więc one rozmiary rzędu paru cm. Podsumowanie Potencjały w ośrodku jednorodnym pochodzące od źródeł i zlewów prądowych zostały otrzymane na podstawie ogólnego równania (Equation 30). Fizjologiczne źródła prądowe, są generowane w błonach komórkowych w wyniku transmisji synaptycznej lub generacji potencjału czynnościowego. Różne konfiguracje źródeł i zlewów mogą generować potencjały o bardzo różnych własnościach przestrzennych. Zanik potencjału wraz z odległością od źródeł-zlewów może być bardzo słaby (tzw. pola dalekie lub długozasięgowe), jak w przypadku warstwy dipolowej. Zanik ten może też być silny np. w przypadku koncentrycznie ustawionych neuronów, tak jak w przypadku kwadrupola (tzw. pola bliskie lub krótkozasięgowe). Znajomość potencjałów generowanych w wyidealizowanym, nieskończonym, jednorodnym ośrodku dostarcza przydatnych oszacowań na temat różnych fizjologicznych procesów np. generacji potencjałów czaszkowych EEG. Na koniec należy zauważyć, że wszystkie wyprowadzone tutaj wzory dotyczyły potencjału w pewnym punkcie. W rzeczywistości, mierzone potencjały są potencjałami uśrednionymi po całej objętości elektrody. Potencjał mierzony

14 przez sferyczną elektrodę poprzez całkę objętościową: o promieniu R jest związany z teoretycznym potencjałem punktowym Ze względu na skomplikowaną anatomię kory, zachowanie potencjału wewnątrz mózgu (zapisy śródmózgowe) będzie bardzo silnie zależało od parametru skali R. W przeciwieństwie do tego, potencjały czaszkowe są już silnie uśrednione przestrzennie w wyniku przejścia przez płyn mózgowordzeniowy, czaszkę i skórę. Powoduje to, że rozmiar elektrody nie ma prawie wpływu na zapis czynności EEG. Literatura Bok S.T., Histonomy of the Cerebral Cortex, Elsevier, New York, Cooper R., Winter A.L., Crow H.J., Walter W.G. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol. 18: , Elul R. The genesis of the EEG. Int Rev Neurobiol 15: , Jewett D.L. Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr. Clin. Neurophysiol. 28(6): , Nunez P.L Electric Fields of the Brain. The Neurophysics of EEG. Oxford University Press, New York, NY, 1981 (First edition). Nunez P.L. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, Nunez P.L. Electric Fields of the Brain. The Neurophysics of EEG. Oxford University Press, New York, NY, 2006 (Second edition). Scholl D.A. The organization of the Cerebral Cortex, Methuen, London, 1956.

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu

Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu Neuron jest podstawową jednostką przetwarzania informacji w mózgu. Sygnał biegnie w nim w kierunku od dendrytów, poprzez akson, do synaps. Neuron

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Potencjał spoczynkowy i czynnościowy

Potencjał spoczynkowy i czynnościowy Potencjał spoczynkowy i czynnościowy Marcin Koculak Biologiczne mechanizmy zachowania https://backyardbrains.com/ Powtórka budowy komórki 2 Istota prądu Prąd jest uporządkowanym ruchem cząstek posiadających

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych

Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych Wstęp Podstawy modelu komórkowego Proces pobudzenia serca Wektor magnetyczny serca MoŜliwości diagnostyczne Wstęp Przepływający

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Od neuronu do sieci: modelowanie układu nerwowego

Od neuronu do sieci: modelowanie układu nerwowego Od neuronu do sieci: modelowanie układu nerwowego Drzewa dendrytyczne teoria kabla i modele przedziałowe dr Daniel Wójcik na podstawie The Book of GENESIS Dendryty Największy składnik mózgu co do wielkości

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

3. Równania pola elektromagnetycznego

3. Równania pola elektromagnetycznego 3. Równania pola elektromagnetycznego Oddziaływanie pola elektromagnetycznego z materią Pole elektromagnetyczne jest opisywane zazwyczaj za pomocą następujących 5 pól wektorowych: gęstości prądu J, natężenia

Bardziej szczegółowo

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Prąd elektryczny - przepływ ładunku

Prąd elektryczny - przepływ ładunku Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo