Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2. POLE ELEKTROMEGNETYCZNE:"

Transkrypt

1 Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków stworzyć, ani zniszczyć w tym sensie, że sumaryczny ładunek w dowolnym procesie pozostaje stały. Gdy atom nie jest zjonizowany, to jego sumaryczny ładunek wynosi zero. Atomy zjonizowane z nadwyżką ładunku ujemnego nazywamy anionami, a z niedoborem ładunku ujemnego (z nadwyżką ładunku dodatniego) nazywamy kationami.

2 Elektryzacja ciał - przenoszenie ładunku z jednego z nich do drugiego - przez pocieranie - przebudowa elektrycznej warstwy podwójnej znajdującej się na powierzchni każdego z tych ciał. - przez indukcję jak to pokazane na rysunkach poniżej. Tutaj elektryzacji podlegają metalowe kule (białe) osadzone na izolatorze (czarny pręt). W układzie SI jednostką ładunku jest 1 kulomb (1 C). Jest to ładunek przenoszony przez prąd o natężeniu 1 ampera w czasie 1 sekundy 1 C = 1 A s.

3 Wszystkie realnie istniejące ładunki są wielokrotnością ładunku e. ładunek elementarny e = C Ładunek statyczny, zgromadzony np. na grzebieniu przez pocieranie, jest rzędu 10-6 C (mikrokulomb, ok elektronów). Ładunek elektronu wynosi C. zasada zachowanie ładunku: Wypadkowy ładunek elektryczny w układzie zamkniętym jest stały

4 Prawo Coulomba Prawo Coulomba ( ) - prawo opisujące siłę oddziaływania między punktowymi ładunkami elektrycznymi Q i q znajdującymi się w odległości R i pozostającymi w spoczynku względem siebie. Każde dwa ładunki punktowe q 1 i q 2 oddziaływają wzajemnie siłą wprost proporcjonalną do iloczynu tych ładunków, a odwrotnie proporcjonalną do kwadratu odległości między nimi. gdzie stała. Współczynnik ε 0 = C 2 /(Nm 2 ) - przenikalność elektryczna próżni. W układzie SI

5 W ośrodku: ośrodek próżnia powietrze parafina szkło woda ε r Gdy mamy do czynienia z kilkoma naładowanymi ciałami, siłę wypadkową, analogicznie jak w przypadku siły grawitacyjnej Wzór Coulomba automatycznie wyraża fakt, że ładunki jednoimienne odpychają się, a różnoimienne przyciągają się do siebie.

6 Aby potwierdzić swoje prawo eksperymentalnie, Coulomb dzielił ładunek zgromadzony na kuli przewodzącej przez przenoszenie jego połowy na taką samą kulę. Otrzymał 1/2, 1/4,... ładunku pierwotnego. Stosując do pomiaru sił oddziaływania między ładunkami wagę skręceń Kierunek siły Coulomba pokrywa się z kierunkiem prostej łączącej oba ładunki punktowe. Równanie Coulomba stosuje się jedynie do przypadku ładunków punktowych. Gdy rozkład ładunków jest przestrzenny, wtedy należy przeprowadzić odpowiednie sumowanie lub całkowanie. Poza tym, że prawo Coulomba dotyczy tylko ładunków punktowych, to opisuje siłę działającą między nimi tylko wtedy, gdy ładunki znajdują się w spoczynku względem siebie.

7 Pole elektryczne (natężenie pola) E w określonym punkcie definiujemy jako wielkość równą stosunkowi siły F działającej na dodatni ładunek próbny q do wartości tego ładunku: Zgodnie z definicją natężenia pola E, ruch cząstek naładowanych w tym polu odbywa się pod działaniem siły F = qe. Przyjęto konwencję, że ładunek próbny jest dodatni więc kierunek wektora E jest taki sam jak kierunek siły działającej na ładunek dodatni. Jeżeli pole elektryczne jest wytworzone przez ładunek punktowy Q to zgodnie z prawem Coulomba siła działająca na ładunek próbny q umieszczony w odległości r od tego ładunku wynosi gdzie jest wektorem jednostkowym zgodnym z kierunkiem siły pomiędzy Q i q.

8 Addytywność pól. Pole E jest addytywne wektorowo co oznacza, że wypadkowe pole elektryczne jest sumą wektorową pól E 1, E 2, E 3... pochodzących od indywidualnych ładunków : Dla n ładunków punktowych pole elektryczne jest równe sumie wektorowej pól elektrycznych od poszczególnych ładunków Kierunek pola E w przestrzeni można przedstawić graficznie za pomocą tzw. linii sił (linii pola).

9 Linie sił pola: Koncepcja linii sił pola została wprowadzona również przez Michaela Faraday a ( ). Linie sił pola są to wyimaginowane krzywe w przestrzeni, będące w każdym punkcie styczne do wektora E w tym punkcie. - to linie, do których wektor E jest styczny w każdym punkcie. - zaczynają się zawsze na ładunkach dodatnich, a kończą na ładunkach ujemnych. Linie sił rysuje się tak, że liczba linii przez jednostkową powierzchnię jest proporcjonalna do wartości E; gdy linie są blisko siebie to E jest duże, a gdy są odległe od siebie to E jest małe.

10 Pojedynczy ładunek umieszczony w próżni jest otoczony radialnym układem linii sił.

11 Linie sił pola elektrycznego dla układu dwóch ładunków różno- i jednoimiennych

12 Dipol elektryczny: Dipol elektryczny jest sztywnym układem dwóch ładunków punktowych +Q i -Q odległych od siebie o l. Dipol umieszczamy w jednorodnym polu elektrycznym wektor E tworzy kąt θ z linią łączącą oba ładunki, zwaną osią dipola. Siła F 1 = QE jest skierowana w kierunku pola, siła F 2 = - QE w kierunku przeciwnym. Obie te siły tworzą parę sił tworzącą moment siły

13 Iloczyn Ql ładunku Q i odległości l jest nazywany momentem dipolowym. Wektor momentu dipolowego jest skierowany od ładunku ujemnego do dodatniego (odwrotnie niż to jest dla linii sił pola). Moment siły działający na dipol wyrażamy w postaci iloczynu wektorowego Wartość tego wektora wynosi oczywiście

14 Jeżeli pole elektryczne nie jest jednorodne, wtedy na dipol działa nie tylko moment skręcający, ale także pewna siła wypadkowa. Powodem tego jest fakt, że oba ładunki dipola znajdują się w polach o nieco odmiennych natężeniach i siły działające na te ładunki nie równoważą się. Niezerowy elektryczny moment dipolowy mają takie molekuły, jak H 2 O, CO,... Molekuły symetryczne, np. O 2, N 2, H 2,... nie mają trwałych momentów dipolowych. Jednostką momentu dipolowego w układzie SI jest C m (kulomb metr). Ponieważ jest to bardzo duża jednostka, to w literaturze stosuje się zwykle jednostkę o nazwie debaj (D), która pochodzi z układu CGS. 1D = C m

15 Przykłady 1. Dwa ładunki elementarne (równe ładunkom elektronu lub protonu) oddalone od siebie na odległość 1 angstrema tworzą moment dipolowy o wartości p = C m = C m = 4.8 D. 2. Znaleźć pole elektryczne E wytwarzane przez dipol. Dla uproszczenia znajdziemy to pole w płaszczyźnie prostopadłej do osi dipola i przechodzącej przez jej środek Pola pochodzące od ładunków dodatniego i ujemnego oznaczamy odpowiednio przez E + i E-. Suma wektorowa obu tych pól tworzy pole wypadkowe E = E + + E-.

16 Ze względu na symetryczne położenie punktu, w którym badamy pole, długości obu wektorów E + i E- są jednakowe: Pionowe składowe pól E + i E- kompensują się, a suma składowych poziomych daje długość E szukanego wektora E: gdzie p = Ql jest momentem dipolowym dipola. Dla r >> l (daleko od osi dipola) wartość pola E wynosi:

17 Widzimy, że pole wokół dipola zanika ze wzrostem odległości szybciej (jak 1/r 3 ) niż pole wokół pojedynczego ładunku, które zanika jak 1/r 2.

18 Strumień pola elektrycznego Jeżeli pole elektryczne jest jednorodne i gdy płaszczyzna o powierzchni A jest ustawiona prostopadle do linii tego pola E, to strumień pola elektrycznego Φ E przenikający tę powierzchnię jest równy

19 Jeżeli teraz ta powierzchnia zostanie odchylona o kąt φ od poprzedniego położenia, to strumień zmieni swoją wartość i będzie wynosił Ponieważ strumień jest wielkością skalarną, to zależność tę dla pola jednorodnego możemy zapisać w postaci iloczynu skalarnego wektora pola E i wektora powierzchni A:

20

21 Strumieniem pola E (jednorodnego lub niejednorodnego) przechodzącego przez nieskończenie mały element powierzchni da nazywamy iloczyn skalarny: Strumień pola E przechodzącego przez pewien płat powierzchni A otrzymamy po zastąpieniu sumowania przez całkowanie po całym płacie A

22 Strumień pola E przechodzącego przez powierzchnię zamkniętą A opisujemy całką (symbol całki z kółeczkiem) Wektor da wybieramy tak aby był skierowany na zewnątrz powierzchni

23 Wartość strumienia nie zależy zatem od kształtu powierzchni zamkniętej, a zależy jedynie od wartości ładunku zamkniętego wewnątrz tej powierzchni. Strumień pola pochodzącego od dipola elektrycznego znajdującego się wewnątrz dowolnej powierzchni zamkniętej będzie zatem równy zeru (bo suma algebraiczna +Q i -Q wynosi zero) Gdyby ładunki nie były jednakowe, to strumień pola nie mógłby być zerowy. Jeżeli np. ładunek ujemny jest większy od dodatniego, to strumień pola przez powierzchnię zamkniętą jest ujemny

24 Prawo Gaussa dla pola elektrycznego Prawo Gaussa: strumień pola elektrycznego E przez powierzchnię zamkniętą jest określony tylko przez algebraiczną sumę wszystkich ładunków elektrycznych Q zawartych wewnątrz tej powierzchni. Nie ma znaczenia jak te ładunki są rozmieszczone wewnątrz tej powierzchni. Q algebraiczna suma ładunków znajdujących się wewnątrz powierzchni zamkniętej A, po której przeprowadzamy całkowanie (sumowanie) strumienia ε 0 jest przenikalnością elektryczną próżni. Prawo Gaussa dla pola elektrycznego jest uogólnionym sformułowaniem zależności między ładunkami a polami elektrycznymi i jest jednym z czterech równań Maxwella opisujących całość zjawisk elektrycznych i magnetycznych.

25 Zastosowanie prawa Gaussa- wartość pola elektrycznego w określonym punkcie lub obszarze. Kluczową czynnością jest otoczenie odpowiedniego obszaru ładunku stosownie wybraną powierzchnią zamkniętą.

26 1. Prawo Coulomba a prawo Gaussa >nie można wyprowadzić prawa Gaussa z prawa Coulomba, ale prawo Coulomba otrzymuje sie z prawa Gaussa: a) siła F = qe, działaja na ładunek punktowy q znajdujący się w odległości r od innego ładunku punktowego Q. Aby wyznaczyć F musimy znać tylko E, a to znajdziemy z prawa Gaussa. Ładunek Q umieszczamy w środku sfery o promieniu r, jak na rysunku Pole E pochodzące od ładunku Q ma na powierzchni sfery jednakową wartość i wszędzie na tej powierzchni wektor E jest równoległy do wektora da. Po zastosowaniu prawa Gaussa otrzymamy czyli

27 Ponieważ wektor E jest skierowany wzdłuż promienia r, to Zgodnie z definicją pola E, siła działająca na ładunek q wynosi Otrzymaliśmy zatem prawo Coulomba z prawa Gaussa:

28 2. Pole naładowanej sfery przewodzącej o promieniu r (wewnątrz sfery nie ma ładunków): Na podstawie prawa Gaussa: -pole na zewnątrz sfery w odległości R od jej centrum wynosi, czyli Wewnątrz sfery (Q = 0) pole

29 3. Pole jednorodnie naładowanej kuli dielektrycznej. Całkowity ładunek zawarty w kuli jest Q. Obliczając pole E w odległości x od środka kuli oznaczamy przez q ładunek zawarty w kuli o promieniu x. Z prostej proporcji otrzymujemy. Na podstawie prawa Gaussa szukane pole E wewnątrz kuli wynosi, czyli.

30 Zatem pole wewnątrz kuli rośnie liniowo wraz ze wzrostem x. Na zewnątrz kuli pole maleje ze wzrostem odległości od środka

31 4. Pole ładunku liniowego oraz naładowanego cylindra przewodzącego o gęstości liniowej ładunku λ[c/m]: Na odcinku L przewodnika znajduje się ładunek Q = λ L, zatem z prawa Gaussa otrzymujemy Stąd znajdujemy szukane pole.

32 5. Pole naładowanej nieskończonej płaskiej warstwy Pole jest jednorodne i rozciąga się w obie strony prostopadle do powierzchni płyty (przechodzi tylko przez podstawy walca). Z prawa Gaussa otrzymujemy

33 6. Pole naładowanej nieskończonej płaskiej płyty przewodzącej Ładunek na płycie przewodzącej jest rozmieszczony na obu jej powierzchniach. Ponieważ mamy dwie warstwy ładunkowe o gęstości ładunku σ każda, to na podstawie wyniku poprzedniego przykładu natężenie pola będzie dwukrotnie wyższe.

34 7. Pole między przeciwnie naładowanymi równoległymi płytami przewodzącymi Jako powierzchnię Gaussa wybieramy prostopadłościan z jedną podstawą zanurzoną wewnątrz płyty metalowej gdzie nie ma ani ładunku ani pola E. Pole przenika tylko te podstawę prostopadłościanu, która znajduje się w przestrzeni między płytami.. Z prawa Gaussa otrzymujemy Na zewnątrz płyt pole jest równe zeru.

35 Energia potencjalna U ładunku w polu E i potencjał V pola E możliwe jest zdefiniowanie energii potencjalnej U ładunku w polu elektrycznym. Rozważmy pole elektryczne między dwiema równoległymi płytami, na których znajdują się ładunki o jednakowej wartości, ale o przeciwnych znakach. Rozmiary płyt są duże w porównaniu z odległością między nimi, a zatem na przeważającym obszarze pole między nimi może być traktowane jako jednorodne. Mały dodatni ładunek punktowy +q ma największą energię potencjalną U wtedy, gdy znajduje się w punkcie na powierzchni elektrody dodatniej, jak na rysunku. (w tym punkcie ładunek +q ma najwyższą zdolność do wykonania pracy w czasie swojego powrotu do elektrody ujemnej).

36 Tę energię potencjalną U musimy ładunkowi nadać wykonując pracę W przeniesienia tego ładunku od elektrody ujemnej do dodatniej. Pracę wykonujemy pokonując siłę odpychania elektrostatycznego F = qe. Na odcinku dl wykonamy pracę dw równą czyli Praca przeniesienia ładunku +q między obiema elektrodami, czyli energia potencjalna U tego ładunku na dodatniej elektrodzie, wynosi

37 Ponieważ pole elektryczne jest polem potencjalnym, to praca przeniesienia ładunku z punktu a do punktu b nie zależy od kształtu drogi ładunku między tymi punktami Poprzednio zdefiniowaliśmy natężenie pola elektrycznego jako siłę działającą na ładunek jednostkowy. W podobny sposób definiujemy potencjał elektryczny V albo po prostu potencjał, jako stosunek energii potencjalnej, jaką ma w polu elektrycznym ładunek q, do wartości tego ładunku.

38 Jeżeli, zatem, dowolny ładunek q ma w jakimś punkcie pola energię potencjalną U, to potencjał pola V w tym punkcie wynosi W ogólnym przypadku kiedy pole E nie jest jednorodne powinniśmy napisać związek ogólny Teraz natężenie pola E -spadek potencjału dv na odcinku dl: w ogólnym przypadku pola niejednorodnego przyrosty du i dv wynoszą Różnicę potencjałów V ab między punktami a i b

39 gradient funkcji skalarnej (w tym przypadku potencjału V) jest wielkością wektorową E. Składowe tego wektora są wyrażone przez pochodne cząstkowe (spadki wzdłuż x, y i z) Jeżeli pole E jest stałe i jednorodne to wtedy gradient potencjału jest również stały i teraz bardzo prostą i wygodną regułą określania różnicy potencjału V (napięcia) w tym polu jest relacja, która wynika bezpośrednio ze związku między E i gradientem potencjału gdzie odległość l jest liczona wzdłuż pola. Regule tej podlega zmiana napięcia pokazywanego przez woltomierz jeżeli będziemy płynnie zmieniali położenie jego końcówek stykających się z drutem oporowym

40 przez który płynie prąd. Napięcie określone według tej reguły nosi nazwę napięcia krokowego.

41 Przykład - rozkład potencjału, na płaszczyźnie xy, wokół dipola elektrycznego. Kolorem czerwonym zaznaczono wybrane linie łączące punkty o jednakowym potencjale - linie ekwipotencjalne (każda krzywa odpowiada innej stałej wartości potencjału). Na podstawie wielkości zmiany potencjału, przypadającej na jednostkę długości w danym kierunku możemy określić natężenie pola elektrycznego E w tym kierunku. Możemy więc przy pomocy obliczania pochodnych cząstkowych z wielkości skalarnej (potencjału V) otrzymać składowe wielkości wektorowej (pola E) w dowolnym punkcie przestrzeni: Im większa (mniejsza) zmiana potencjału na jednostkę długości tym większe (mniejsze) pole elektryczne w danym kierunku. Znak minus odzwierciedla fakt, że wektor E jest skierowany w stronę malejącego potencjału.

42

43 Pojemność elektryczna Jeżeli dowolny izolowany przedmiot metalowy (przewodnik) naładujemy ładunkiem Q to ten przewodnik uzyska pewien potencjał elektryczny V (różnicę potencjału między przewodnikiem a Ziemią). O tym jak duży będzie to potencjał przy ustalonym Q decyduje pojemność elektryczna C przewodnika. Jeżeli pojawi się niewielki potencjał to pojemność przewodnika jest duża. Gdy dla tego samego ładunku otrzymamy duży potencjał to pojemność przewodnika jest mała. Pojemność elektryczną C przewodnika zdefiniujemy zatem jako stosunek ładunku Q znajdującego się na tym przewodniku do wartości potencjału elektrycznego V jaki pojawia się w rezultacie wprowadzenia tego ładunku na przewodnik.

44 Kondensator Izolowany przewodnik może gromadzić ładunek elektryczny. w praktyce: do magazynowania ładunku stosujemy urządzenia zwane kondensatorami. Kondensator stanowi układ dwóch dowolnych izolowanych od siebie przewodników, przy czym ładowanie kondensatora polega nie na oddzielnym ładowaniu każdego z przewodników, ale na przesunięciu ładunku (jednakowego na obu przewodnikach, ale o przeciwnych znakach) z jednego przewodnika do drugiego. Pojemność elektryczną C kondensatora pojemność kondensatora jest proporcjonalna do wielkości powierzchni płyt i odwrotnie proporcjonalna do odległości między nimi. : -kondensator o dużej pojemności ma płyty o dużej powierzchni, położone możliwie blisko siebie. (im węższa będzie szczelina między okładkami tym większa będzie pojemność kondensatora).

45 Łączenie kondensatorów Łączenie szeregowe kondensatorów. W połączeniu szeregowym, jak na schemacie poniżej, wartości ładunków na wszystkich okładkach wszystkich kondensatorów są takie same. Spadek potencjału na układzie szeregowym jest równy sumie różnic potencjałów na poszczególnych kondensatorach Stąd sumaryczna pojemność C układu szeregowego jest określona wzorem

46 Łączenie równoległe kondensatorów. W połączeniu równoległym sumaryczny ładunek Q zgromadzony w układzie jest równy sumie ładunków na okładkach wszystkich kondensatorów. Spadek potencjału jest jednakowy na każdym z kondensatorów a zatem Stąd sumaryczna pojemność C układu równoległego jest równa sumie pojemności wszystkich kondensatorów

47 Mając do obliczenia pojemność kondensatora o zadanej geometrii stosujemy następujący schemat postępowania: 1. Wychodzimy z definicji pojemności kondensatora, Różnicę potencjałów Vab wstawiamy do wzoru definiującego tę pojemność. Ładunek Q redukuje się. 2. ale brakuje nam różnicy potencjałów Vab, którą znajdujemy z relacji miedzy polem E i V, 3. jednak musimy najpierw znać E i w tym celu posłużymy się uniwersalnym narzędziem jakim jest prawo Gaussa:

48 Kondensator płaski

49 Kondensator cylindryczny

50 Kondensator sferyczny

51 Energia naładowanego kondensatora U Energia naładowanego kondensatora U jest równa pracy W jaką wykonamy przy jego ładowaniu. Cała energia U jest zawarta w polu elektrycznym między okładkami kondensatora. W czasie ładowania kondensatora różnica potencjałów między jego okładkami V(q) zależy od ładunku q, jaki aktualnie znajduje się na okładkach. Praca przeniesienia między okładkami dodatkowego ładunku dq wynosi Energia pola w kondensatorze całkowicie naładowanym ładunkiem Q staje się czyli

52 Gęstość energii pola elektrycznego u obliczymy dzieląc energię U przez objętość zajmowaną przez pole. Posługując się prostą geometrią kondensatora płaskiego o powierzchni okładek A i odległości między okładkami d znajdziemy wartość u słuszną dla pola E o dowolnej geometrii: czyli

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka

Wykład FIZYKA II. 1. Elektrostatyka Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

Rozdział 1. Pole elektryczne i elektrostatyka

Rozdział 1. Pole elektryczne i elektrostatyka Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo