F = e(v B) (2) F = evb (3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "F = e(v B) (2) F = evb (3)"

Transkrypt

1 Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas pomiędzy brzegami płytki wytwarza się napięcie U H. Napięcie to odpowiada polu elektrycznemu, które jest prostopadłe do prądu I i indukcji B. Napięcie to wyraża się wzorem: BI U H = R H (1) d gdzie R H jest stałą Halla. Zjawisko to powstaje na skutek poruszających się w polu magnetycznym nośników ładunków. Zakładając, że v jest prędkością poruszającego się ładunku, a ładunek co do wartości bezwzględnej wynosi e, to otrzymujemy, że pole magnetyczne działa na ładunki siłą: Ponieważ v jest prostopadły do B otrzymujemy: F = e(v B) (2) F = evb (3) Na skutek tej siły ładunki są odchylane, co powoduje nadmiar ładunków w pobliżu jednej ze ścianek, a niedobór w pobliżu drugiej. Dlatego też powstaje pole elektryczne, którego natężenie wynosi E, a kierunek jest zależny od znaku ładunku. Natomiast siła qe działająca na ładunek od strony tego pola jest przeciwna do siły F. W przypadku gdy te siły się równoważą mamy: Zatem wartość liczbowa natężenia wyraża się wzorem: Załóżmy teraz, że pole elektryczne jest jednorodne. Wtedy U H wynosi: Natomiast natężenie prądu I, który przepływa przez płytkę wynosi: ee = evb (4) E = vb (5) U H = Ed = vbd (6) I = evps = evpad (7) gdzie p koncentracja nośników ładunku. Wtedy napięcie Halla wynosi: U H = 1 IB ep a (8) Zatem z powyższego równania wynika, że stała Halla wyraża się wzorem: R H = 1 ep (9) Wobec tego można zauważyć, że znak stałej Halla odpowiada znakowi ładunku który jest nośnikiem prądu. W przypadku gdy R > 0 nośnikami są dziury, gdy R < 0 to elektrony. Na podstawie stałej Halla jesteśmy w stanie wyznaczyć gęstość ładunku p oraz koncentrację µ: p = 1 er H (10) µ = σ R H (11) Gdzie σ oznacza przewodnictwo próbki. Przewodnictwo możemy wyznaczyć znając jej oporności R i wymiary: l σ = (12) R d a 1

2 Sprawozdanie z fizyki współczesnej 2 2 Wyniki pomiarów Tablica 1: Pomiary zależności napięcia Halla U H prądu I, B = 76 mt od natężenia I [ma] U [mv] U 0 [mv] U H [mv] 16,58 16,5 4,01 12,49 17,47 17,3 4,23 13,07 17,95 17,8 4,35 13,45 18,68 18,5 4,53 13,97 19,46 19,3 4,72 14,58 19,97 19,8 4,85 14,95 20,85 20,7 5,06 15,64 21,83 21,7 5,31 16,39 22,72 22,5 5,53 16,97 23,48 23,3 5,71 17,59 24,15 24,0 5,88 18,12 25,86 25,7 6,30 19,40 27,27 27,1 6,65 20,45 28,69 28,5 7,00 21,50 30,07 29,9 7,34 22,56 31,70 31,5 7,75 23,75 33,24 33,0 8,13 24,87 35,07 34,9 8,58 26,32 37,35 37,2 9,14 28,06 37,51 37,4 9,18 28,22 Tablica 2: Pomiary zależności napięcia Halla U H prądu I, B = 76 mt od natężenia I [ma] U [mv] U 0 [mv] U H [mv] 16,51 8,5 3,99 12,49 17,33 8,9 4,19 13,09 18,08 9,3 4,38 13,68 18,75 9,6 4,55 14,15 19,47 10,0 4,72 14,72 20,42 10,5 4,96 15,46 21,03 10,8 5,11 15,91 21,78 11,1 5,29 16,39 22,38 11,4 5,44 16,84 23,39 12,0 5,69 17,69 24,70 12,6 6,02 18,62 26,40 13,5 6,44 19,94 27,61 14,1 6,74 20,84 28,84 14,7 7,04 21,74 29,86 15,2 7,29 22,49 30,84 15,7 7,53 23,23 32,20 16,4 7,87 24,27 34,01 17,3 8,32 25,62 35,99 18,2 8,81 27,01 37,17 18,9 9,10 28,00 2

3 Sprawozdanie z fizyki współczesnej 3 Tablica 3: Pomiary zależności napięcia Halla U H od indukcji magnetycznej B, I = 16,59 ma B [mt] U [mv] U 0 [mv] U H [mv] 0 4,1 4,01 0,09 5 4,8 4,01 0, ,6 4,01 1, ,7 4,01 2, ,3 4,01 3, ,2 4,01 4, ,1 4,01 5, ,9 4,01 5, ,7 4,01 6, ,5 4,01 7, ,4 4,01 8, ,2 4,01 9, ,0 4,01 9, ,8 4,01 10, ,6 4,01 11, ,5 4,01 12,49 Tablica 4: Pomiary zależności napięcia Halla U H od indukcji magnetycznej B, I = 16,59 ma B [mt] U [mv] U 0 [mv] U H [mv] 0 4,1 4,01 0,09 5 3,1 4,01 0, ,3 4,01 1, ,5 4,01 2, ,7 4,01 3, ,2 4,01 4, ,1 4,01 5, ,9 4,01 5, ,7 4,01 6, ,5 4,01 7, ,3 4,01 8, ,1 4,01 9, ,9 4,01 9, ,8 4,01 10, ,6 4,01 11, ,5 4,01 12,51 Tablica 5: Badanie zmian przewodnictwa germanu w obecności pola magnetycznego B [mt] U [mv] U B [mv] 0 4,7 1201,7 4 4,4 1201,4 10 4,2 1201,2 14 4,1 1201,1 21 4,1 1201,1 26 4,0 1201,0 31 4,0 1201,0 3

4 Sprawozdanie z fizyki współczesnej 4 B [mt] U [mv] U B [mv] 35 4,1 1201,1 41 4,2 1201,2 45 4,3 1201,3 51 4,5 1201,5 60 4,9 1201,9 70 5,4 1202,4 81 6,0 1203,0 91 6,6 1203, ,3 1204, ,1 1206, ,5 1208, ,5 1210, ,3 1213, ,6 1215, ,2 1219, ,5 1224, ,6 1226, ,7 1229,7 B indukcja pola magnetycznego, U napięcie wskazywane przez woltomierz (napięcie na próbce pomniejszone o napięcie baterii, w celu zwiększenia dokładności pomiaru), U B wyliczone napięcie na próbce. 3 Część praktyczna 3.1 Wykreślenie zależności napięcia Halla U H od natężenia I prądu sterującego próbką Stała indukcja B=76 mt, zakładamy także stałą temperaturę. a) Jeden z kierunków prądu Prosta została policzona na podstawie metody najmniejszych kwadratów. Wyniki przedstawiają się następująco: a = 0,7527 V A b) Przeciwny kierunek prądu a = 0,0012 V A b = 0,091 mv b = 0,003 mv Prosta została policzona na podstawie metody najmniejszych kwadratów. Wyniki przedstawiają się następująco: a = 0,762 V A a = 0,003 V A b = 0,13 mv b = 0,03 mv 4

5 Sprawozdanie z fizyki współczesnej U H [m V ] I [m A ] Rysunek 1: Funkcja przedstawiająca zależność napięcia Halla od natężenia prądu jeden z kierunków prądu U H [m V ] I [m A ] Rysunek 2: Funkcja przedstawiająca zależność napięcia Halla od natężenia prądu drugi kierunek prądu 5

6 Sprawozdanie z fizyki współczesnej Wykreślenie zależności napięcia Halla U H od indukcji B. Proste wyznaczone metodą najmniejszych kwadratów. a) Jeden z kierunków prądu Prosta została policzona na podstawie metody najmniejszych kwadratów. Wyniki przedstawiają się następująco: a = 0,1658 V T a = 0,0008 V T b = 0,13 mv b = 0,03 mv U H [m V ] B [m T ] Rysunek 3: Funkcja przedstawiająca zależność napięcia Halla od indukcji jeden z kierunków prądu b) Przeciwny kierunek prądu Prosta została policzona na podstawie metody najmniejszych kwadratów. Wyniki przedstawiają się następująco: a = 0,1651 V T a = 0,0007 V T b = 0,23 mv b = 0,03 mv 6

7 Sprawozdanie z fizyki współczesnej U H [m V ] B [m T ] Rysunek 4: Funkcja przedstawiająca zależność napięcia Halla od indukcji drugi kierunek prądu 3.3 Obliczenie wartości stałej Halla Zgodnie ze wzorem (1) możemy policzyć wartość stałej Halla. Na podstawie znaku stałej określiliśmy rodzaj nośników ładunku. Zatem stała Halla wynosi: z dokładnością co do grubości płytki: R H = (8,93 ± 0,07) C m 3 d = m. Do policzenia koncentracji p nośników prądu wykorzystamy wzór (10). Zatem podstawiając pod e ładunek elektronu i R H obliczoną stałą Halla mamy, że p wynosi p = (251 ± 9) m 3. W celu wyznaczenia przewodnictwa elektrycznego germanu σ wykorzystamy wzór (12), gdzie l długość badanej próbki, d długość próbki, a szerokość próbki oraz R opór w temperaturze pokojowej. Zatem podstawiając pod wzór (12) otrzymujemy: σ = (7,018 ± 0,013) 1 Ω m 7

8 Sprawozdanie z fizyki współczesnej 8 W celu wyznaczenia ruchliwości nośników µ posłużymy się wzorem (11) i powyższymi wyliczeniami. Zatem otrzymujemy, że: µ = (63 ± 8) Ω C m Wykreślenie względnej zmiany oporu próbki Względną zmianę oporu próbki od indukcji magnetycznej B możemy wyznaczyć ze wzoru (R R B) R, gdzie R opór przy B = 0, a R B opór w obecności pola magnetycznego. Ponieważ w doświadczeniu nie mierzymy bezpośrednio oporu próbki, a jedynie napięcie na niej, posłużymy się wartościami U i U B, gdzie U napięcie na próbce przy B = 0, a U B napięcie na próbce w obecności pola magnetycznego. Ponieważ zmiana wartości indukcji magnetycznej nie wpływała na natężenie prądu przepływającego przez próbkę, powyższy wzór możemy zapisać jako (U U B) U. Dane bierzemy z tabeli (5). 0, , , , , , B [m T ] Rysunek 5: Wykres przedstawia względną zmianę oporu próbki od indukcji B 3.5 Błędy w obliczeniach Przy wykorzystaniu metody różniczki zupełnej otrzymujemy błędy obliczanych wielkości: R H = 0, C m 3 1 σ = 0,013 Ω m p = m 3 µ = 0,008 1 Ω C m 4 8

9 Sprawozdanie z fizyki współczesnej 9 4 Wnioski Otrzymane przez nas wyniki wydają się być zgodne z rzeczywistością. Znak R H wyszedł dodatni. Zatem potwierdziło się, że mamy do czynienia z półprzewodnikiem akceptorowym, w którym nośnikami prądu są dziury. Dziury te mają określoną koncentrację p, którą policzyliśmy. Niestety, nie udało się ustrzec od błędów. Widać je m.in. na wykresach (1-4), gdzie współczynnik b powinien wyjść równy 0. Były one zapewne spowodowane niedokładnością pomiarową sprzętu. Jeżeli chodzi o wyznaczone wielkości to ich rzędy zgadzają się z rzędami wielkości dla podobnych materiałów. Jedyne wielkości jakie udało nam się znaleźć to koncentracja w germanie, która wynosiła m 3, ruchliwość 3, Ω C m 4 oraz stała Halla wynosząca 5, C m. Należy pamiętać, że różnice w wielkościach obliczonych i 3 wziętych z tabel muszą się różnić, gdyż tablicowe są dla germanu a policzone dla germanu typu p. Nie mniej jednak wielkości, które policzyliśmy wydają się być prawdziwe, gdyż są podobnych rzędów. Należy także pamiętać, że wyznaczona koncentracja nośników i ich ruchliwość zależą od konkretnej próbki i od temperatury, w której się ta próbka znajduje. 9

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla. Ćwiczenie wirtualne

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla. Ćwiczenie wirtualne Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla Ćwiczenie wirtualne Marcin Zaremba 2014-06-30 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

6. Zjawisko Halla w metalach

6. Zjawisko Halla w metalach 6. Zjawisko Halla w metalach I. Zagadnienia do kolokwium. 1. Opis i wyjaśnienie zjawiska Halla. 2. Normalny i anomalny efekt Halla. 3. Definicja współczynnika Halla i jego jednostki. 4. Metody wyznaczania

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.

Bardziej szczegółowo

Efekt Halla w germanie.

Efekt Halla w germanie. E-1/2. Efekt Halla w germanie. 1. Efekt Halla. Materiały przewodzące, jak na przykład metale, czy półprzewodniki, których nośniki ładunku mają róŝną od zera prędkość dryfu V, wykazują, w zewnętrznym polu

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Ziemskie pole magnetyczne

Ziemskie pole magnetyczne Ćwiczenie nr 27 Ćwiczenie nr 08 (27). Pomiar natężenia pola magnetycznego ziemskiego. Ziemskie pole magnetyczne Cel ćwiczenia. Wyznaczenie indukcji magnetycznej ziemskiego pola magnetycznego. Zagadnienia

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

PRACOWNIA FIZYKI MORZA

PRACOWNIA FIZYKI MORZA PRACOWNIA FIZYKI MORZA INSTRUKCJA DO ĆWICZENIA NR 8 TEMAT: BADANIE PRZEWODNICTWA ELEKTRYCZNEGO WODY MORSKIEJ O RÓŻNYCH ZASOLENIACH Teoria Przewodnictwo elektryczne wody morskiej jest miarą stężenia i rodzaju

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Front-end do czujnika Halla

Front-end do czujnika Halla Front-end do czujnika Halla Czujnik Halla ze względu na możliwość dużej integracji niezbędnych w nim komponentów jest jednym z podstawowych sensorów pola magnetycznego używanych na szeroką skalę. Marcin

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

EFEKT HALLA W PÓŁPRZEWODNIKACH.

EFEKT HALLA W PÓŁPRZEWODNIKACH. Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Andrzej Kubiaczyk 30 EFEKT HALLA W PÓŁPRZEWODNIKACH. 1. Podstawy fizyczne 1.1. Ruch ładunku w polu elektrycznym i magnetycznym Na ładunek

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

BADANIE EFEKTU HALLA

BADANIE EFEKTU HALLA Ćwiczenie 57 BADANIE EFEKTU HALLA Cel ćwiczenia: wyznaczenie charakterystyk statycznych i stałej hallotronu oraz określenie typu przewodnictwa i koncentracji swobodnych nośników ładunku. Zagadnienia: zjawisko

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 9 Pomiar ruchliwości nośników w półprzewodnikach

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 9 Pomiar ruchliwości nośników w półprzewodnikach Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 9 Pomiar ruchliwości nośników w półprzewodnikach I. Zagadnienia do przygotowania: 1. Siła elektrodynamiczna. Nośniki mniejszościowe i większościowe

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

Wyznaczanie oporu elektrycznego właściwego przewodników

Wyznaczanie oporu elektrycznego właściwego przewodników Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły AKUSZ PÓBNEJ MATUY Z OPEONEM FIZYKA I ASTONOMIA POZIOM PODSTAWOWY LISTOPAD 2012 Czas pracy: 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Wyznaczanie cieplnego współczynnika oporności właściwej metali

Wyznaczanie cieplnego współczynnika oporności właściwej metali Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali

Bardziej szczegółowo

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA 71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

Elektryzowanie poprzez dotknięcie polega na przekazaniu części ładunku z jednego ciała na drugie. A. B.

Elektryzowanie poprzez dotknięcie polega na przekazaniu części ładunku z jednego ciała na drugie. A. B. Imię i nazwisko Pytanie 1/ Podczas elektryzowania przez tarcie (np. pocieranie suknem plastikowej linijki ) następuje przejście ładunków dodatnich z jednego ciała na drugie. Pytanie 2/ Elektryzowanie poprzez

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Badanie własności diód krzemowej, germanowej, oraz diody Zenera

Badanie własności diód krzemowej, germanowej, oraz diody Zenera 23 kwietnia 2001 Ryszard Kostecki Badanie własności diód krzemowej, germanowej, oraz diody Zenera Streszczenie Celem tej pracy jest zapoznanie się z tematyką i zbadanie diód krzemowej, germanowej, oraz

Bardziej szczegółowo

E12. Mostek Wheatstona wyznaczenie oporu właściwego

E12. Mostek Wheatstona wyznaczenie oporu właściwego E1. Mostek Wheatstona wyznaczenie oporu właściwego Marek Pękała Wstęp Zgodnie z prawem Ohma natężenie I prądu płynącego przez przewodnik / opornik jest proporcjonalne do napięcia przyłożonego do jego końców.

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Politecnika Białostocka Wydział Elektryczny Katedra Elektrotecniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnyc z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu:

Bardziej szczegółowo

Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia.

Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia. Wydział Fizyki Nazwisko i Imię. Janik Małgorzata. Janeczko Mariusz Poniedziałek 4 00 7 00 kwietnia 007 Ocena z przygotowania Ocena ze sprawozdania Nr zespołu 0 Ocena końcowa Prowadzący: Ryszard Siegoczyński

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

wyznaczenie zasięgu efektywnego, energii maksymalnej oraz prędkości czastek β o zasięgu maksymalnym,

wyznaczenie zasięgu efektywnego, energii maksymalnej oraz prędkości czastek β o zasięgu maksymalnym, 1 Część teoretyczna 1.1 Cel ćwiczenia Celem ćwiczenia jest zbadanie absorpcji promieniowania β w ciałach stałych poprzez: wyznaczenie krzywej absorpcji, wyznaczenie zasięgu efektywnego, energii maksymalnej

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

LVI Olimpiada Fizyczna Zawody III stopnia

LVI Olimpiada Fizyczna Zawody III stopnia LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi

Bardziej szczegółowo

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów

Bardziej szczegółowo

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

Siła Elektrodynamiczna

Siła Elektrodynamiczna Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Siła Elektrodynamiczna Ćwiczenie wirtualne Marcin Zaremba 2014-06-30 Projekt współfinansowany przez Unię Europejską

Bardziej szczegółowo

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości od temperatury

Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości od temperatury Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 132 Temat ćwiczenia: Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź Egzamin maturalny z fizyki z astronomią W zadaniach od 1. do 10. należy wybrać jedną poprawną odpowiedź i wpisać właściwą literę: A, B, C lub D do kwadratu obok słowa:. m Przyjmij do obliczeń, że przyśpieszenie

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników

Bardziej szczegółowo

Wykład Prąd elektryczny i pole magnetyczne. Prąd elektryczny Natężenie prądu elektrycznego Q I (4.1) t

Wykład Prąd elektryczny i pole magnetyczne. Prąd elektryczny Natężenie prądu elektrycznego Q I (4.1) t Wykład 4 4. Prąd elektryczny i pole magnetyczne Prąd elektryczny Natężenie prądu elektrycznego Q (4.) t Jednostka: amper, A. Gęstość prądu elektrycznego j (4.) S W nieobecności zewnętrznego pola elektrycznego

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo