Pole elektromagnetyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pole elektromagnetyczne"

Transkrypt

1 Pole elektromagnetyczne

2 Pole magnetyczne

3 Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością strumienia i 1T = 1 Wb m -2. Prawo Gaussa:

4 Siła Lorentza w układzie SI jednostką B jest 1 tesla (1T).

5 Gdy pole B obejmuje odpowiednio duży obszar, to ładunek q poruszający się prostopadle do kierunku wektora B ustabilizuje swój ruch na torze kołowym. (zastosowanie: spektrometria masowa)

6 Kiedy jednak wektor v ma składową równoległą do wektora B wtedy torem ładunku będzie helisa:

7 Siła działająca na przewodnik z prądem wynika z działania siły Lorentza na poruszające się nośniki ładunku, elektrony lub jony.

8 Moment siły działający na pętlę z prądem w polu magnetycznym (np. na zwój drutu w uzwojeniu silnika elektrycznego). Jeżeli pętla może się obracać wokół osi prostopadłej do pola B i przewodzi prąd I, wtedy pojawiają się dwie niezróważone siły F działające na boki ramki równoległe do osi obrotu. Moment tych sił M wynosi Wektor momentu magnetycznego pętli Moment skręcający możemy zapisać w postaci Te siły, które działają na elementy pętli prostopadłe do osi obrotu, są przeciwnie skierowane i znoszą się nawzajem.

9 pola magnetyczne wytwarzane przez poruszający się pojedynczy ładunek punktowy µ0 jest przenikalnością magnetyczną próżni, która ma wartość kierunek wektora B NIE leży na prostej między źródłem punktowym a punktem pola. Jest on natomiast prostopadły do płaszczyzny wyznaczonej przez tę prostą i przez wektor prędkości ładunku v. Ponadto, wartość pola jest proporcjonalna do sinusa kąta między tymi dwoma kierunkami

10 Pole B przewodnika Kierunki prądu I oraz wektora B, jaki ten prąd wytwarza, są zgodne z regułą prawej dłoni: kciuk wskazuje kierunek prądu, a pozostałe palce pokazują jak pole B otacza przewodnik

11

12 prawo Biota i Savarta Jeżeli przewodnik z prądem I podzielimy na nieskończenie krótkie odcinki o długości dl, to w każdym z nich będzie poruszał się ładunek dq i w odległości r pole magnetyczne tego odcinka prądu db wyniesie

13 Pole magnetyczne B na osi pętli kołowej o promieniu a w odległości x od jej środka gdy przez pętlę płynie prąd o natężeniu I. Pętlę prądową dzielimy na nieskończenie małe odcinki dl. Pole db jednego takiego odcinka znajdujemy na podstawie prawa Biota i Savarta W środku pętli, gdy x maleje do zera (x = 0) pole B ma wartość Dla ściśle nawiniętej cewki z N zwojami

14 Prawo Ampera określa relację między polem magnetycznym i prądem elektrycznym, który wytwarza jest równaniem wiążącym cyrkulację wektora magnetycznego B czyli całkę wziętą wzdłuż zamkniętego płaskiego konturu L (na oznaczenie elementu konturu używamy dl, zaś elementu przewodnika dl ) cyrkulacja wektora B wzdłuż zamkniętego płaskiego konturu L jest równa iloczynowi µ0 i całkowitego prądu I przecinającego powierzchnię ograniczoną tym konturem.

15 Pole magnetyczne długiego prostoliniowego przewodnika z prądem - prawo Biota i Savarta: Pole db odcinka z prądem o długości dl w punkcie P (w odległości a od osi przewodnika) wynosi Aby uzależnić db tylko od kąta θ zastosujemy podstawienia: Po scałkowaniu po całej (nieskończonej) długości przewodnika otrzymujemy Zatem w odległości a od osi przewodnika prostoliniowego wartość pola B wynosi

16 Pole magnetyczne długiego prostoliniowego przewodnika z prądem - prawo Ampere a Przewodnik z prądem otaczamy płaskim konturem L o kształcie okręgu leżącym w płaszczyźnie prostopadłej do przewodnika. Przewodnik przechodzi przez środek okręgu. Kontur L dzielimy na nieskończenie małe odcinki dl. z których każdy jest równoległy do lokalnego kierunku pola B - iloczyn skalarny pod znakiem całki zostaje zamieniony na zwykły iloczyn BdL, przy czym wartość B jest stała i może zostać wyniesiona przed znak całki. Otrzymujemy stąd równanie

17 pole magnetyczne B wewnątrz i na zewnątrz długiego przewodnika o kształcie walca, przez który płynie prąd o natężeniu I. Po scałkowaniu mamy czyli wewnątrz przewodnika pole B rośnie liniowo wraz ze wzrostem r Na zewnątrz przewodnika, gdy r > R, pole B maleje hiperbolicznie jak wokół prostego przewodnika

18 pole B na osi solenoidu zawierającego N zwojów, przez który płynie prąd I.. Przyjmujemy, że wartość pola B jest równa zeru na zewnątrz ściany uzwojenia. Pionowe boki prostokąta są prostopadłe do wektora B, a zatem iloczyn skalarny B dl jest na tych bokach równy zeru. W ten sposób całkowanie w prawie Ampere a redukuje się do zwykłej całki wzdłuż boku leżącego na osi solenoidu.

19 Prąd przesunięcia Prąd przesunięcia jest tym prądem, który jest wywołany zmianą ładunków na okładkach kondensatora, (co oznacza przesunięcie między okładkami ładunków o tej samej wartości, ale o przeciwnych znakach). Jeżeli kondensator ma okładki o powierzchni A to ładunek zgromadzony na każdej z nich ma wartośćσa, gdzie σ jest gęstością ładunku. gdzie j D jest gęstością prądu przesunięcia Φ D jest strumieniem wektora D

20 Całkowity prąd jest teraz sumą prądu przesunięcia I D (displacement) i prądu przewodzenia I C (conduction) Prawo Ampere a, w postaci ogólnej

21 wirowe pole magnetyczne Powstaje: -wokół przewodnika z prądem - wokół linii zmieniającego się pola elektrycznego Oznacza to, że prąd przesunięcia I D jest w prawie Ampere a traktowany tak, jak i zwykły prąd przewodzenia I C. Ponieważ prąd przesunięcia I D jest równy prędkości zmian strumienia wektora przesunięcia D cyrkulację wektora B wzdłuż konturu

22 Indukcja elektromagnetyczna zmiana pola magnetycznego obejmującego obwód elektryczny powoduje powstanie siły elektromotorycznej w tym obwodzie, co w przypadku obwodu zamkniętego powoduje przepływ prądu elektrycznego.

23 Źródłem zjawisk indukcyjnych jest znowu siła Lorentza F pojawiająca się, gdy ładunek q porusza się z prędkością v w polu magnetycznym B Gdy przewodnik przesuwamy w polu B, to ruchome nośniki ładunku zostaną przesunięte pod działaniem siły Lorentza tak daleko aż pojawi się w przewodniku pole elektryczne E i siła działająca na nośniki F = qe zrównoważy siłę Lorentza. Kiedy prostoliniowy przewodnik o długości l porusza się z jednostajną prędkością v w jednorodnym polu magnetycznym B skierowanym prostopadle do osi przewodnika i do wektora prędkości v

24 warunek równowagi między siłą Lorentza a siłą odpychania między ładunkami zapiszemy w postaci równania gdzie V jest różnicą potencjałów na końcach przewodnika o długości l. Wartość tej różnicy potencjałów wynosi zatem

25 Prawo Faradaya Michael Faraday ( ) stwierdził, że siła elektromotoryczna E pojawia się w przewodniku gdy otaczające ten przewodnik pole magnetyczne ulega zmianie, wartość generowanej siły elektromotorycznej jest proporcjonalna do szybkości zmian pola magnetycznego oraz że kierunek indukowanej siły elektromotorycznej zależy od kierunku, w którym następują zmiany pola magnetycznego. Wszystkie te fakty są zawarte w jednym tylko równaniu - zmiana wartości wektora B; -zmiana wartości pola powierzchni da; -zmiana kąta między B i da; - jednoczesna zmiana B i da; - jednoczesna zmiana B i kąta; - jednoczesna zmiana da i kąta.

26 W ogólnym przypadku, nawet wtedy, gdy nie ma żadnych przewodników, siła elektromotoryczna jest równa cyrkulacji pola elektrycznego E wzdłuż konturu zamkniętego prawo Faradaya w postaci uogólnionej

27 Reguła Lenza Reguła Lenza (znak minus w prawie Faradaya) ustala, że kierunek prądu indukowanego w procesie indukcji elektromagnetycznej jest taki, aby własne pole magnetyczne tego prądu miało taki kierunek zmian, który przeciwdziała zmianom pola indukującego. aby osłabiać pole narastające ale wzmacniać pole słabnące.

28 Kierunek indukowanego prądu Prądy wirowe Pole magnetyczne prądów wirowych jest tak skierowane, że ta część tarczy, która wychodzi z pola będzie z powrotem wciągana do pola natomiast ta część tarczy, która wchodzi w obszar pola będzie z tego pola wypychana.

29 Efekt Halla Polega on na wystąpieniu różnicy potencjałów w przewodniku, w którym płynie prąd elektryczny, gdy przewodnik znajduje się w poprzecznym do płynącego prądu polu magnetycznym. Napięcie to, zwane napięciem Halla, pojawia się między płaszczyznami ograniczającymi przewodnik, prostopadle do płaszczyzny wyznaczanej przez kierunek prądu i wektor indukcji pola magnetycznego. Jest ono spowodowane działaniem siły Lorentza na ładunki poruszające się w polu magnetycznym.

30 Prawo Faradaya Uogólnione prawo Ampera Prawo Gaussa dla pola elektrycznego Prawo Gaussa dla pola magnetycznego

31

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Podstawy fizyki sezon 2 6. Indukcja magnetyczna Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu

Bardziej szczegółowo

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70 Wykład 7. Pole magnetyczne Siła magnetyczna W pobliżu przewodników z prądem elektrycznym i magnesów działają siły magnetyczne -magnes trwały, elektromagnes, silnik elektryczny, prądnica, monitor komputerowy...

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Indukcja Faradaya

Podstawy fizyki sezon 2 5. Indukcja Faradaya Podstawy fizyki sezon 2 5. Indukcja Faradaya Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prawo Gaussa dla

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

R o z d z i a ł 8 POLE MAGNETYCZNE

R o z d z i a ł 8 POLE MAGNETYCZNE R o z d z i a ł 8 POLE MAGNETYCZNE Oddziaływania magnetyczne odkryto wcześniej niż oddziaływania elektryczne. Wiąże się to z istnieniem w przyrodzie tzw. magnesów trwałych (np. rudy żelaza magnetytu),

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Wykład 14. Część IV. Elektryczność i magnetyzm

Wykład 14. Część IV. Elektryczność i magnetyzm Część IV. Elektryczność i magnetyzm Wykład 14. 14.1. Eksperyment Oersteda 14.2. Indukcja elektromagnetyczna Prawo Faraday a indukcyjność 14.3. Równania Maxwella 1 Część IV. Elektryczność i magnetyzm. 14.1

Bardziej szczegółowo

POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych. Marian Talar

POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych. Marian Talar POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych 7 stycznia 2007 2 Pole magnetyczne 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Zjawiska magnetyczne

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, Spis treści

Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, Spis treści Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, 2016 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania XI XIII XXI 21. Prawo Coulomba

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Indukcja własna i wzajemna. Prądy wirowe

Indukcja własna i wzajemna. Prądy wirowe Indukcja własna i wzajemna. Prądy wirowe Indukcja własna (samoindukcja) Warunkiem wzbudzenia SEM indukcji w obwodzie jest przenikanie przez ten obwód zmiennego strumienia magnetycznego, przy czym sposób

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Magnetyzm. Wykład 13.

Magnetyzm. Wykład 13. Szczęście to łza, która się otarło i uśmiech, który się wywołało. Maxence van der Meersch Wykład 13. Magnetyzm 13.1. Pole magnetyczne Siła Lorentza Efekt Halla Siła magnetyczna 13.2. Prawo Biota-Savarta

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

2. Dany jest dipol elektryczny. Obliczyć potencjał V dla dowolnego punktu znajdującego się w odległości r znacznie większej od rozmiarów dipola.

2. Dany jest dipol elektryczny. Obliczyć potencjał V dla dowolnego punktu znajdującego się w odległości r znacznie większej od rozmiarów dipola. Na egzaminie wybranych będzie 8 zagadnień spośród zamieszczonych poniżej. Każda odpowiedź będzie punktowana w skali od 0 do 5. Maksymalna liczba punktów możliwych do zdobycia wynosi zatem 40. Skala ocen:

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe

Bardziej szczegółowo

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego powstawanie pola magnetycznego W przestrzeni otaczającej przewodnik z prądem elektrycznym istnieje pole magnetyczne. Jego istnienie przejawia się tym, że oddziałuje

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Podstawy Fizyki II. Strona 1

Podstawy Fizyki II. Strona 1 Strona 1 Strona SPIS TREŚCI WSTĘP... 5 1. MAGNETYZM... 7 1.1. POLE MAGNETYCZNE... 8 1.. RUCH ŁADUNKU W POLU MAGNETYCZNYM... 9 1.3. POLE MAGNETYCZNE PRĄDU... 16 1.4. ZJAWISKO INDUKCJI ELEKTROMAGNETYCZNEJ...

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo