Techniki optymalizacji. Cz. 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Techniki optymalizacji. Cz. 1"

Transkrypt

1 Techniki optymalizacji Cz. 1 1

2 Przedstawiane metody/rozwiązania Rodzaje przedstawianych metod: klasyczne dla dziedziny optymalizacji ciągłej dawno zdefiniowane dokładnie przebadane Związki z metodami metaheurystycznymi: metody klasyczne mają zastosowania podrzędne heurystyczne lub dokładne (w zaleŝności od postaci wyników) metody lokalne potencjalne wykorzystanie: generowanie kolejnych rozwiązań (jako lokalnych ekstremów) w metodach metaheurystycznych 2

3 Przedstawiane metody/rozwiązania Postać problemu minimalizacja funkcji przy (ewentualnie istniejących) ograniczeniach ograniczenia na zakres zmienności ograniczenia robocze (właściwe) Postaci funkcji celu i ograniczeń (zawsze) dane analitycznie (zazwyczaj) dodatkowo uwarunkowane liniowe, kwadratowe, ciągłe, gładkie, Generowane rozwiązania dokładne przybliŝone 3

4 Przedstawiane metody/rozwiązania Więcej (na te tematy) m.in. w (klasycznych) ksiąŝkach Z. Galas i I. Nykowski (red.): Zbiór zadań. Część I. Programowanie liniowe, PWN, W-wa, 1986 Zbiór zadań. Część II. Programowanie nieliniowe, PWN, W-wa, 1988 S.I. Gass: Programowanie liniowe, PWN, W-wa, 1976 R.S. Garfinkel, G.L. Nemhauser: Programowanie całkowitoliczbowe W. Grabowski: Programowanie matematyczne, PWE, W-wa, I. Nykowski: Programowanie liniowe, PWE, W-wa, R. Wit: Metody programowania nieliniowego, WNT, W-wa, W.I. Zangwill: Programowanie nieliniowe T. Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem, PWE, W-wa, 2003 E. Ignasiak (red.): Badania operacyjne, PWE, W-wa, 2001, Z. Jędrzejczak, J. Skrzypek, K. Kukuła, A. Walkost: Badania operacyjne w przykładach i zadaniach, PWN, W-wa, 2002 W. Findeisen, J. Szymanowski, A. Wierzbicki: Teoria i metody obliczeniowe optymalizacji, PWN, 1977, 4

5 Przedstawiane metody/rozwiązania A takŝe w nowszych Z. Jędrzejczyk, K. Kukuła, J. Skrzypek, A. Walkosz: Badania operacyjne w przykładach i zadaniach, PWN, 2011 W. Findeisen, J. Szymanowski, A. Wierzbicki: Teoria i metody obliczeniowe optymalizacji, PWN, 2009, J. Kusiak, A. Danielewska-Tułecka, P. Oprocha: Optymalizacja. Wybrane metody z przykładami zastosowań, PWN, 2009 A. Ostanin: Metody optymalizacji z MATLAB. Ćwiczenia laboratoryjne, Nakom,

6 Ogólnie stosowane oznaczenia Oznaczenia danych Zmienne Stałe a, b, c, skalary (liczby rzeczywiste/zespolone) a, b, c, wektory (liczb rzeczywistych/zespolonych), przy czym przez wektor rozumie się zawsze wektor kolumnowy oznaczenie wektorów wierszowych: patrz niŝej interpretacja wektorów ( strzałki i punkty ) A, B, C, macierze (liczb rzeczywistych/zespolonych) 0 wektor zer 1 wektor jedynek O macierz zerowa I macierz jednostkowa 6

7 Ogólnie stosowane oznaczenia Oznaczenia operacji Transponowanie macierzy A: A T z definicji A T = [a ji ] dla A T = [a ij ] transponowanie jest wykorzystywane do wyraŝania wektorów wierszowych (a) T, (b) T, (c) T, wektory wierszowe Moduł (wartość bezwzględna) skalara x: x z definicji: x = sqrt(a 2 +b 2 ) dla x = a+bi (czyli a = Re(x), b = Im(x)) moduł wyraŝa odległość (euklidesową) skalara x od skalara 0+0i w szczególności dla skalarów rzeczywistych x = sqrt(x 2 ) Norma wektora x: x z definicji x = sqrt(x T x) norma wyraŝa (euklidesową) długość wektora norma jest wykorzystywana do zapisywania wektorów unormowanych a/ a, b/ b, c/ c, wektory unormowane 7

8 Ogólnie stosowane oznaczenia Oznaczenia funkcji Funkcje jednowymiarowe (skalarne od argumentu skalarnego) f(x), g(x), h(x), funkcje (rzeczywiste/zespolone) Funkcje wielowymiarowe (skalarne od argumentu wektorowego) f(x), g(x), h(x), funkcje (rzeczywiste/zespolone) 8

9 Wymagane (i wykorzystywane) pojęcia Podstawowe operacje na wektorach i macierzach wszędzie RóŜniczkowanie funkcji metody newtonowskie Szereg Taylora metody newtonowskie Gradient i hesjan metoda Newtona-Raphsona i jej pochodne Macierz nieujemnie/niedodatnio określona metoda Levenberga-Marquarda, metoda MDS Wartości własne macierzy metoda Levenberga-Marquarda, metoda MDS 9

10 Wizualizacja funkcji Problem wizualizacji funkcji Funkcje/argumenty rzeczywiste (zbiór liczb rzeczywistych jest obrazowany jako oś liczbowa) argument wektorowy o rozmiarze 1 1 (lub argument skalarny): dwa wymiary argument wektorowy o rozmiarze 2 1: trzy wymiary argument wektorowy o rozmiarze 3 1: cztery wymiary 10

11 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 1 1 (lub argument skalarny): dwa wymiary wykres dwuwymiarowy 11

12 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres trójwymiarowy 12

13 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres konturowy (bez tła)

14 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres konturowy (z tłem)

15 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary obraz dwuwymiarowy (ostatnio popularna nazwa ang.: heat map ) 15

16 Wizualizacja funkcji Problem wizualizacji funkcji Funkcje/argumenty zespolone (zbiór liczb zespolonych jest obrazowany jako płaszczyzna liczbowa) argument wektorowy o rozmiarze 1 1 (lub argument skalarny): cztery wymiary argument wektorowy o rozmiarze 2 1 (czyli skalarny): sześć wymiarów argument wektorowy o rozmiarze 3 1 (czyli skalarny): osiem wymiarów 16

17 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych np. Część rzeczywista wartości zespolonej Część urojona wartości zespolonej 17

18 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych albo np. Moduł wartości zespolonej Faza wartości zespolonej 18

19 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych liczba zespolona x czyli x = [ x re, x im ] dwa wymiary wizualizacja na płaszczyźnie wykorzystujemy definicje moduł: m = abs(x) = sqrt( (x re ) 2 + (x im ) 2 ) faza: f = angle(x) = arctan( x im / x re ) 19

20 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych funkcja zespolona dla argumentu zespolonego: y = f(x) zarówno x jak i y są liczbami zespolonymi czyli x = [ x re, x im ] oraz y = [ y re, y im ] moŝe być traktowana jak dwie, dwuargumentowe funkcje rzeczywiste:» y re = f 1 (x re,x im ), y im = f 2 (x re,x im ) jeŝeli wynik chcemy przedstawiać w postaci pary moduł-faza, to po zastosowaniu f(x) trzeba dodatkowo obliczyć moduł i fazę:» y re = f 1 (x re,x im ), y im = f 2 (x re,x im )» m = abs(y re,y im ), f = angle(y re,y im ) łącznie:» m = abs(f 1 (x re,x im ), f 2 (x re,x im )), f = angle(f 1 (x re,x im ), f 2 (x re,x im )) w obu przypadkach wymagane są cztery wymiary (a więc wizualizacja wymaga dwóch płaszczyzn) 20

21 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych f(x) = x Moduł? Faza? 21

22 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x Faza f(x) = x 22

23 Wizualizacja funkcji 23

24 Wizualizacja funkcji 24

25 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych f(x) = x 2 Moduł? Faza? 25

26 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x 2 Faza f(x) = x 2 26

27 Wizualizacja funkcji 27

28 Wizualizacja funkcji 28

29 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych f(x) = x 3 Moduł? Faza? 29

30 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x 3 Faza f(x) = x 3 30

31 Wizualizacja funkcji 31

32 Wizualizacja funkcji 32

33 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych f(x) = x 1/2 +log(x)/2.5 (log: podstawa e, tylko wartości główne) Moduł? Faza? 33

34 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x 1/2 +log(x)/2.5 Faza f(x) = x 1/2 +log(x)/2.5 34

35 Wizualizacja funkcji 35

36 Wizualizacja funkcji 36

37 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych f(x) = x 3/2 +log(x 3 )/2.5 (log: podstawa e, tylko wartości główne; sqrt: tylko wartości główne) Moduł? Faza? 37

38 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x 3/2 +log(x 3 )/2.5 Faza f(x) = x 3/2 +log(x 3 )/2.5 38

39 Wizualizacja funkcji 39

40 Wizualizacja funkcji 40

41 Optymalizacja w zastosowaniach Optymalizacja ma zastosowania w takich dziedzinach jak fizyka technika chemia inŝynieria informatyka biologia ekonomia... 41

42 Optymalizacja w Ŝyciu Problem majątku dwaj bracia odziedziczyli majątek po ojcu, który przykazał im podzielić się nim sprawiedliwie, nie podał jednak konkretnie, które dobra mają przypaść w spadku któremu z braci bracia natychmiast pokłócili się o majątek, poniewaŝ kaŝdy z nich proponował inny podział pozostałych po ojcu dóbr na dwie części: kaŝdy dzielił rzeczy w taki sposób, aby wartości obu części nie były równe, oczywiście przydzielając sobie część o większej wartości, a swemu bratu część o mniejszej wartości 42

43 Optymalizacja w Ŝyciu MoŜliwe rozwiązanie konfliktu jeden z braci dokonuje podziału dziedziczonych rzeczy na dwie części drugi podejmuje decyzję to tym, która część przypadnie komu w udziale 43

44 Optymalizacja w Ŝyciu Interesujące cechy zaproponowanego rozwiązania jeŝeli dokonujący podziału podzieli dziedziczone dobra na dwie części o nierównej wartości, to naraŝa się na to, Ŝe (wskutek decyzji drugiego z braci) przypadnie mu w udziale część mniej wartościowa dokonujący podziału powinien więc dąŝyć do tego, aby róŝnica wartości obu części spadku była jak najmniejsza, w rezultacie czego bracia zostaną sprawiedliwie obdzieleni spadkiem w idealnym przypadku wartości obu części będą jednakowe, ale taki podział moŝe nie być moŝliwy do zrealizowania 44

45 Optymalizacja w Ŝyciu Optymalizacyjny punkt widzenia tego problemu i jego rozwiązania tzw. problem min-max lub osoba dokonująca podziału wie, Ŝe jeŝeli któraś z utworzonych przez nią części majątku będzie większej wartości, to osoba wybierająca na pewno przydzieli tę część sobie (wniosek: tworzenie jakiejkolwiek części o wartości większej od innych części nie jest korzystne!) oznacza to, Ŝe osoba dokonująca podziału powinna minimalizować (min) wartość największej (max) z tworzonych części tzw. problem max-min osoba dokonująca podziału wie, Ŝe jeŝeli któraś z utworzonych przez nią części majątku będzie mniejszej wartości, to osoba wybierająca na pewno przydzieli sobie inną część (wniosek: tworzenie części o wartości mniejszej od innych części nie jest korzystne!) oznacza to, Ŝe osoba dokonująca podziału powinna maksymalizować (max) wartość najmniejszej (min) z tworzonych części 45

46 Elementy ekstremalne w zbiorach uporządkowanych W zbiorze X uporządkowanym relacjami,, < oraz > moŝna zdefiniować element najmniejszy: jest nim a X spełniający a x X a < x element największy: jest nim b X spełniający b x X b > x 46

47 Elementy ekstremalne w zbiorach uporządkowanych W zbiorze X uporządkowanym relacjami,, < oraz > moŝna zdefiniować element minimalny: jest nim c X spełniający x X c x ( x X x < c) element maksymalny: jest nim d X spełniający x X d x ( x X x > c) 47

48 Elementy ekstremalne w zbiorach uporządkowanych Definicje elementu minimalnego/maksymalnego wykorzystuje się w przypadku problemu optymalizacji funkcji f(x) zbiorem uporządkowanym jest przeciwdziedzina funkcji f(x) (która dla funkcji rzeczywistej stanowi podzbiór zbioru liczb rzeczywistych) poszukiwany jest argument funkcji (czyli element jej dziedziny D), dla którego wartość tej funkcji jest minimalna (niekoniecznie najmniejsza), czyli x* D taki, Ŝe x D f(x*) f(x) skrócony zapis powyŝszej zaleŝności: x* = argmin x D f(x) (x* będzie dalej nazywany rozwiązaniem (funkcji) ) 48

49 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) afinicznej (popularnie zwanej liniową) f(x) = ax + b f/ x = a kwadratowej: f(x) = ax 2 + bx + c f/ x = 2ax + b 2 f/ x 2 = 2a 49

50 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) afinicznej (popularnie zwanej liniową) f(x) = ax + b f/ x = a 2 f/ x 2 = 0 3 f/ x 3 = 0 kwadratowej: f(x) = ax 2 + bx + c f/ x = 2ax + b 2 f/ x 2 = 2a 3 f/ x 3 = 0 4 f/ x 4 = 0 50

51 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) liniowej f(x) = ax f/ x = a (ściśle) kwadratowej: f(x) = ax 2 f/ x = 2ax 2 f/ x 2 = 2a 51

52 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) liniowej f(x) = ax f/ x = a 2 f/ x 2 = 0 3 f/ x 3 = 0 (ściśle) kwadratowej: f(x) = ax 2 f/ x = 2ax 2 f/ x 2 = 2a 3 f/ x 3 = 0 4 f/ x 4 = 0 52

53 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci wektorowo/macierzowej liniowej: f(x) = a T x f/ x = a formy kwadratowej: f(x) = x T Ax f/ x = (A + A T )x 2 f/ x 2 = A + A T w szczególnym przypadku, gdy A T = A (czyli macierz A jest symetryczna) 2 f/ x 2 = A + A T = 2A T = 2A 53

54 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci wektorowo/macierzowej afinicznej: f(x) = a T x + b f/ x = a (pełnej) kwadratowej: f(x) = x T Ax + b T x + c f/ x = (A + A T )x + b 2 f/ x 2 = A + A T w szczególnym przypadku, gdy A T = A (czyli macierz A jest symetryczna) 2 f/ x 2 = A + A T = 2A T = 2A 54

55 Minimalizacja funkcji Niech f(x) będzie daną analitycznie funkcją rzeczywistą określoną dla kaŝdego wektora x naleŝącego do jakiegoś ustalonego obszaru zainteresowań S (zawartego w lub równego dziedzinie funkcji), np.: n-wymiarowej hiperprzestrzeni V n n-wymiarowego hipersześcianu H n wyznaczonego przez wektory [a 1,, a n ] oraz [b 1,, b n ], gdzie a 1 < b 1,, a n < b n O funkcji f(x) zakładamy w ogólności, Ŝe w obszarze S jest ciągła posiada przynajmniej dwie pierwsze pochodne (dane analitycznie) jej dwie pierwsze pochodne są ciągłe Niektóre metody zakładają takŝe, Ŝe f(x) w obszarze S jest wypukła 55

56 Minimalizacja funkcji Przykłady funkcji sformułowania skalarne f([x 1,x 2,x 3,x 4 ] T ) = (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 + (x 4 ) 2 f([x 1,x 2,x 3 ] T ) = (x 1 ) 2 + 2(x 2 ) 2 + 3x 1 f([x 1,x 2 ] T ) = e x 1 + e x 2 56

57 Minimalizacja funkcji Przykłady funkcji, c.d sformułowania wektorowe/macierzowe f(x) = a T x/ a / x, gdzie a jest ustalonym wektorem niezerowym (korelacja wektorów) f(x) = x T Ax/x T x gdzie A jest ustaloną macierzą (współczynnik Rayleigh a) f(x) = x T Ax + b T x + c, gdzie A jest ustaloną niezerową macierzą nieujemnie określoną b jest ustalonym wektorem c jest ustalonym skalarem (postać macierzowej funkcji kwadratowej) 57

58 Metody newtonowskie Mętlik terminologiczny istnieje wiele metod noszących (pełną lub częściową) nazwę Newtona, z których jedne słuŝą do poszukiwania ekstremów funkcji a inne do poszukiwania miejsc zerowych funkcji w ramach wykładu nazewnictwo tych metod będzie następujące poszukiwanie ekstremów funkcji metody optymalizacyjne poszukiwanie miejsc zerowych funkcji metody aproksymacyjne uwaga: nazywanie metod optymalizacyjnymi (w odróŝnieniu od nazywania ich aproksymacyjnymi) jest nieco mylące, poniewaŝ takŝe metody aproksymacyjne są starają się znajdować rozwiązania optymalnie (ewentualnie w przybliŝeniu optymalnie) i posługują się nieraz bardzo podobnymi technikami lepszą praktyką byłoby nazywanie metod poszukujacych ekstremów funkcji metodami ekstremalizacyjnymi (lub konkretnie, w zaleŝności od specyfiki metody minimalizacyjnymi względnie maksymalizacyjnymi) 58

59 Metody newtonowskie Mętlik terminologiczny, c.d. optymalizacyjne metody newtonowskie (m.in.) metoda jednowymiarowej optymalizacji Newtona (zwana takŝe metodą Newtona-Raphsona) metoda wielowymiarowej optymalizacji Newtona-Raphsona (zwana takŝe metodą Newtona), jest naturalnym uogólnieniem metody (jednowymiarowej optymalizacji) Newtona na wiele wymiarów metoda wielowymiarowej optymalizacji uogólniona Newtona (zwana takŝe metodą Cauchy ego), bezpośrednio wykorzystuje metodę (jednowymiarowej optymalizacji) Newtona metoda wielowymiarowej optymalizacji Cauchyego metoda wielowymiarowej optymalizacji Levenberga-Marquarda aproksymacyjne metody newtonowskie (m.in.) metoda jednowymiarowej aproksymacji Newtona 59

60 Metody newtonowskie W dalszej części wykładu metoda Newtona metoda aproksymacji jednowymiarowej metoda Newtona metoda optymalizacji jednowymiarowej metoda Newtona-Raphsona metoda optymalizacji wielowymiarowej modyfikacje metod Newtona-Raphsona (uogólniona metoda Newtona, metoda Cauchy ego i metoda Levenberga-Marquarda) metody optymalizacji wielowymiarowej 60

61 Metody newtonowskie Związek pomiędzy metodą (optymalizacyjną) Newtona a metodą (optymalizacyjną) Newtona-Raphsona metoda Newtona-Raphsona jest naturalnym uogólnieniem metody Newtona na wiele wymiarów nie mylić tego uogólnienia z metodą o nazwie uogólniona metoda Newtona! a więc oczywiście moŝe być stosowana w problemach jednowymiarowych metoda Newtona jest naturalnym uszczególnieniem metody Newtona-Raphsona na jeden wymiar a więc nie moŝe moŝe być stosowana w problemach wielowymiarowych 61

62 Dygresja Pytanie: w jakim sensie Newtona-Raphsona jest naturalnym uogólnieniem metody Newtona? Odpowiedź: w takim samym, w jakim zapisany macierzowo układ równań z wieloma niewiadomymi jest uogólnieniem zapisanego skalarnie jednego równania z jedną niewiadomą zapis skalarny: ax = b zapis macierzowy: Ax = b 62

63 Aproksymacja i optymalizacja: ilustracja problemów Przykład funkcji: f(x) = x 4 50x x

64 Aproksymacja i optymalizacja: ilustracja problemów Aproksymacja problem istnienia rozwiązań (miejsc zerowych) brak miejsc zerowych asymptotyczne zbliŝanie miejsca zerowe poza granicami przedziału zmienności... 64

65 Aproksymacja i optymalizacja: ilustracja problemów Aproksymacja problem jednoznaczności rozwiązań (miejsc zerowych) policzalne liczby miejsc zerowych niepoliczalne ilości miejsc zerowych policzalne liczby niepoliczalnych ilości miejsc zerowych... 65

66 Aproksymacja i optymalizacja: ilustracja problemów Optymalizacja problem istnienia rozwiązań brak rozwiązań asymptotyczne zbliŝanie rozwiązania poza granicami przedziału zmienności... 66

67 Aproksymacja i optymalizacja: ilustracja problemów Optymalizacja problem jednoznaczności rozwiązań (minimów/maksimów) policzalne liczby rozwiązań niepoliczalne ilości rozwiązań policzalne liczby niepoliczalnych ilości rozwiązań... 67

68 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji wartość funkcji 68

69 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji wartość funkcji i wartość jej (pierwszej) pochodnej 69

70 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji bez względu na ilość takich danych, to nie to samo, co cały przebieg funkcji! 70

71 Szereg Taylora Dane jest wyraŝenie T(x) = k=0.. a k (x x 0 ) k jest ono zaleŝne od zmiennego argumentu x, ustalonej wartości x 0 oraz ustalonych wartości a k (dla k=0.. ) wyraŝenie to reprezentuje sumę nieskończonego ciągu o elementach a k (x x 0 ) k (dla k=0.. ) T(x) jest więc sumą szeregu Przyjmując, Ŝe w 0 = 1 dla wszystkich w (takŝe dla w = 0), wyraŝenie T(x) moŝna przedstawić w postaci T(x) = a 0 + k=1.. a k (x x 0 ) k gdy dla wszystkich k większych od pewnego ustalonego n zachodzi a k (x x 0 ) k = 0, wyraŝenie T(x) moŝna przedstawić w postaci T(x) = a 0 + k=1..n a k (x x 0 ) k wyraŝenie to reprezentuje wtedy sumę skończonego ciągu o elementach a k (x x 0 ) k (dla k=1..n) T(x) jest wtedy wielomianem stopnia n od argumentu x 71

72 Szereg Taylora Dzięki podobieństwu do wielomianu, wyraŝenie T(x) moŝe być róŝniczkowane (operacja jest analogiczna do róŝniczkowania wielomianów) Tzn. jeŝeli: T(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 ) 4 + to: T (x) = 0 + a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 + 4a 4 (x x 0 ) 3 + T (x) = a a 3 (x x 0 ) + 4 3a 4 (x x 0 ) 2 + T (x) = a a 4 (x x 0 ) + 72

73 Szereg Taylora WyraŜenie T(x) moŝe zostać uŝyte do wyraŝania (w przybliŝony lub dokładny sposób) wartości pewnej funkcji f(x) (czyli funkcji zaleŝnej od argumentu x) wyraŝanie to ma szanse powodzenia, gdy moŝliwe jest znalezienie wartości x 0 oraz a k (dla k=0.. ), które gwarantują f(x) = T(x) (dla wszystkich x naleŝących do dziedziny funkcji f(x)) mówimy wtedy, Ŝe dokonano rozwinięcia wartości funkcji f(x) często operacji tej dokonuje się najpierw ustalając wartość x 0, a potem dopiero wartości a k (dla k=0.. ) mówimy wtedy, Ŝe dokonano rozwinięcia wartości funkcji f(x) wokół wartości x 0 operacja ta jest bardzo łatwa dla funkcji wielokrotnie róŝniczkowalnych 73

74 Szereg Taylora Niech dana będzie wielokrotnie róŝniczkowalna funkcja f(x), której wartość ma być wyraŝona z uŝyciem T(x), a więc f(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 )

75 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 0 równanie f(x) = T(x) ma postać f(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 ) 4 + niech x = x 0, wtedy f(x 0 ) = a 0 + a 1 (x 0 x 0 ) + a 2 (x 0 x 0 ) 2 + a 3 (x 0 x 0 ) 3 + a 4 (x 0 x 0 ) 4 + f(x 0 ) = a 0 + a a a a f(x 0 ) = a 0 a więc a 0 moŝna ustalić obliczając f(x 0 ) 75

76 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 1 w rezultacie jednokrotnego zróŝniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 + 4a 4 (x x 0 ) 3 + niech x = x 0, wtedy f (x 0 ) = a 1 + 2a 2 (x 0 x 0 ) + 3a 3 (x 0 x 0 ) 2 + 4a 4 (x 0 x 0 ) 3 + f (x 0 ) = a 1 + 2a a a f (x 0 ) = a 1 a więc a 1 moŝna ustalić obliczając f (x 0 ) 76

77 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 2 w rezultacie dwukrotnego zróŝniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 2a a 3 (x x 0 ) + 4 3a 4 (x x 0 ) 2 + niech x = x 0, wtedy f (x 0 ) = 2a a 3 (x 0 x 0 ) + 4 3a 4 (x 0 x 0 ) 2 + f (x 0 ) = 2a a a f (x 0 ) = 2a 2 a więc a 2 moŝna ustalić obliczając f (x 0 )/2 77

78 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 3 w rezultacie trzykrotnego zróŝniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 3 2a a 4 (x x 0 ) + niech x = x 0, wtedy f (x 0 ) = 3 2a 3 (x 0 x 0 ) + 4 3a 4 (x 0 x 0 ) 2 + f (x 0 ) = 3 2a a f (x 0 ) = 3 2a 3 a więc a 3 moŝna ustalić obliczając f (x 0 )/(2 3) 78

79 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 4 w rezultacie czterokrotnego zróŝniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 4 3 2a 4 + niech x = x 0, wtedy f (x 0 ) = 4 3 2a 4 + f (x 0 ) = 4 3 2a 4 a więc a 4 moŝna ustalić obliczając f (x 0 )/(2 3 4) 79

80 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a k (w ogólności) w rezultacie k-krotnego zróŝniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (k) (x) = k (k 1) 2 a k + niech x = x 0, wtedy f (k) (x) = k (k 1) 2 a k = k! a k a więc a k moŝna ustalić obliczając f (k) (x 0 )/(k!) 80

81 Szereg Taylora Czyli dla wielokrotnie róŝniczkowalnej f(x) mamy f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 )/2 (x x 0 ) 2 + f (x 0 )/3! (x x 0 ) 3 + Wykorzystując 0! = 1! = 1 mamy: f(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k gdzie f (0) (x) f(x) f (1) (x) f (x) f (2) (x) f (x) 81

82 Szereg Taylora Dzięki temu, Ŝe k! szybko rośnie, w wielu przypadkach, dla odpowiednio duŝych k zachodzi f (k) (x 0 )(x x 0 ) k << k! Oczywiście wtedy: f (k) (x 0 )(x x 0 ) k /k! << 1 czy wręcz f (k) (x 0 )(x x 0 ) k /k! 0 Dzięki temu moŝliwe jest skrócenie szeregu do kilku (np. n) początkowych elementów (czyli tych, dla których nie zachodzi f (k) (x 0 )(x x 0 ) k /k! 0) f(x) k=0..n f (k) (x 0 )/k! (x x 0 ) k 82

83 Szereg Taylora Szereg T(x) nosi nazwę szeregu Taylora gdy x 0 = 0, szereg Taylora nazywa się szeregiem MacLaurina Wiele znanych funkcji posiada rozwinięcia w szereg Taylora (względnie MacLaurina) Szereg Taylora moŝe być zapisany w sposób pozwalający na wyróŝnienie tzw. reszty (R n+1 ) f(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = k=0..n f (k) (x 0 )/k! (x x 0 ) k + R n+1 83

84 Szereg Taylora Przykład: sześcioelementowe T 6 (x) rozwinięcie funkcji e x w szereg Taylora wokół wartości x 0 = 0 funkcja i jej pochodne: (e x ) (0) = e x (e x ) (1) = (e x ) = e x (e x ) (2) = (e x ) = e x (e x ) (3) = (e x ) = e x (e x ) (4) = (e x ) = e x (e x ) (5) = (e x ) = e x... współczynniki a k a 0 = f (0) (x 0 )/(0!) = e 0 /1 = 1/1 = 1 a 1 = f (1) (x 0 )/(1!) = e 0 /1 = 1/1 = 1 a 2 = f (2) (x 0 )/(2!) = e 0 /2 = 1/2 a 3 = f (3) (x 0 )/(3!) = e 0 /6 = 1/6 a 4 = f (4) (x 0 )/(4!) = e 0 /24 = 1/24 a 5 = f (5) (x 0 )/(5!) = e 0 /120 = 1/

85 Szereg Taylora Ostateczny wzór: rozwinięcie nieskończone e x = T(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! +... rozwinięcie skończone, sześcioelementowe: e x T 6 (x) = k=0..5 f (k) (x 0 )/k! (x x 0 ) k = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! 85

86

87 Szereg Taylora Kolory wykresów: f(x) w(x) = 1 w(x) = 1 + x w(x) = 1 + x + x 2 /2! w(x) = 1 + x + x 2 /2! + x 3 /3! w(x) = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! w(x) = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! 87

88 Szereg Taylora Inny przykład: dwunastoelementowe T 6 (x) rozwinięcie funkcji sin(x) w szereg Taylora wokół wartości x 0 = 0 sin(x) T(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = = 0 + x + 0 x 3 /3! x 5 /5! + 0 x 7 /7! x 9 /9! + 0 x 11 /11!

89 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

90 Szereg Taylora PrzybliŜanie funkcji f(x) szeregiem Taylora niech dane będą ustalony obszar S funkcja f(x) określona w obszarze S i posiadająca wszystkie pochodne określone w obszarze S rozwinięcie T(x) funkcji f(x) w szereg Taylora wokół punktu y S dane jest następującym wzorem T(x) = f (0) (y)/(0!) (x y) 0 + f (1) (y)/(1!) (x y) 1 + f (2) (y)/(2!) (x y) 2 + uwaga: rozwinięcie moŝe obejmować nieskończoną lub skończoną liczbę (niezerowych) składników (w przypadku liczby skończonej ostatni element szeregu jest innej postaci /i stanowi tzw. resztę/) zastosowana notacja: f (k) (x) oznaczenie k-tej pochodnej funkcji f(x) w szczególności f (0) (x) f(x) funkcja f (1) (x) f (x) jej pierwsza pochodna f (2) (x) f (x) jej druga pochodna 90

91 Współczynnik i rząd zbieŝności ciągu Idea współczynnika i rzędu zbieŝności ciągu skalarów niech s 0, s 1, s 2, będzie ciągiem skalarów zbieŝnym do skalara s = lim k s k niech p 1 będzie maksymalną wartością, dla której istnieje granica β = lim k s k+1 s / s k s p wtedy wartość p nazywamy rzędem zbieŝności wartość β nazywamy współczynnikiem zbieŝności p-tego rzędu jeŝeli p = 1 i β (0,1), to ciąg ma zbieŝność liniową p = 1 i β = 0 lub p > 1, to ciąg ma zbieŝność superliniową (w znaczeniu: lepszą od liniowej) 91

92 Współczynnik i rząd zbieŝności ciągu Idea współczynnika i rzędu zbieŝności ciągu wektorów niech w 0, w 1, w 2, będzie ciągiem wektorów zbieŝnym do wektora w = lim k w k niech p 1 będzie maksymalną wartością, dla której istnieje granica β = lim k w k+1 w / w k w p, wtedy wartość p nazywamy rzędem zbieŝności wartość β nazywamy współczynnikiem zbieŝności p-tego rzędu jeŝeli p = 1 i β (0,1), to ciąg ma zbieŝność liniową p = 1 i β = 0 lub p > 1, to ciąg ma zbieŝność superliniową (w znaczeniu: lepszą od liniowej) 92

93 Metoda Newtona (aproksymacyjna) Metoda (aproksymacyjna) Newtona metoda aproksymacji jednowymiarowej bez ograniczeń (z ewentualnymi ograniczeniami na zakres zmienności zmiennej) Dane jednowymiarowy obszar S (obszar musi spełniać kilka dodatkowych załoŝeń) określona w obszarze S funkcja f(x) (funkcja musi spełniać kilka dodatkowych załoŝeń) Cel metody znaleźć x 0 S taki, Ŝe f(x 0 ) = 0 (poszukiwanie miejsc zerowych funkcji f(x) w obszarze S) 93

94 Metoda Newtona (aproksymacyjna) Idea metody Newtona (aproksymacji jednowymiarowej) niech będzie dana analitycznie jednowymiarowa funkcja f(x), dla której poszukujemy minimum w pewnym obszarze (w praktyce: w przedziale), i o której zakładamy, Ŝe w tym właśnie przedziale jest ciągła posiada pierwszą pochodną (daną analitycznie), która jest ciągła uznaje się, Ŝe przebieg aproksymowanej, jednowymiarowej funkcji f(x) w otoczeniu pewnego ustalonego punktu x 0 jest taki sam, jak przebieg pewnej funkcji afinicznej, czyli funkcji postaci g(x) = ax + b, gdzie a 0, o parametrach a i b tak dobranych, aby dobrze odzwierciedlały przebieg funkcji f(x) do jakości takiego odzwierciedlenia przyczyniają się oczywiście powyŝsze załoŝenia dotyczące funkcji f(x), które (nie przez przypadek, oczywiście) są takŝe właściwościami funkcji afinicznej postaci g(x) = ax+b, gdzie a 0 przybliŝenie funkcji f(x) jest wykonywane z uŝyciem jej pochodnych 94

95 Metoda Newtona (aproksymacyjna) Idea metody Newtona (aproksymacji jednowymiarowej), c.d. za miejsce zerowe funkcji f(x) uznaje się miejsce zerowe funkcji g(x), przy czym: jeŝeli znaleziony punkt (czyli miejsce zerowe afinicznej funkcji g(x)) stanowi miejsce zerowe optymalizowanej funkcji f(x), to zadanie jest zakończone powyŝsze sprawdzenie moŝe nie być trywialne ogólne rozwiązanie tego problemu stanowi osobne zagadnienie (warunek stopu) jeŝeli znaleziony punkt (czyli miejsce zerowe afinicznej funkcji g(x)) nie stanowi miejsca zerowego aproksymowanej funkcji f(x), to przyjmuje się, Ŝe stanowi on lepsze przybliŝenie poszukiwanego miejsca zerowego i powtarza się całe postępowanie powyŝsze przyjęcie moŝe być błędne ogólne rozwiązanie tego problemu stanowi osobne zagadnienie (niezbieŝność) 95

96 Metoda Newtona (aproksymacyjna) Idea metody Newtona (aproksymacji jednowymiarowej), c.d. funkcja afiniczna i jej pochodna funkcja: g(x) = ax + b, gdzie a 0 jej pierwsza pochodna: g (x) = a połoŝenie miejsca zerowego funkcji afinicznej przyrównanie funkcji do zera: ax + b = 0 miejsce zerowe: x = b/a poniewaŝ (z załoŝenia) a 0, więc miejsce zerowe istnieje uwaga: w zaleŝności od a i b, funkcja g(x) = ax + b moŝe mieć róŝne liczby miejsc zerowych, a konkretnie: ma jedno miejsce zerowe, gdy a 0 nie ma miejsc zerowych, gdy a = 0 i b 0 ma nieskończenie wiele miejsc zerowych, gdy a = 0 i b = 0 96

97 Metoda Newtona (aproksymacyjna) PrzybliŜanie funkcji f(x) funkcją afiniczną z uŝyciem pochodnych jeŝeli odpowiednie pochodne funkcji f(x) istnieją w pewnym obszarze S, to w tym obszarze moŝliwe jest przybliŝenie tej funkcji wykorzystujące jej rozwinięcie w szereg Taylora wykorzystując dwuelementowe przybliŝenie q(x) rozwinięcia funkcji f(x) wokół punktu y S mamy dla kaŝdego x S f(x) q(x) = f(y) + f (y)(x y) funkcja q(x) stanowi przybliŝenie funkcji f(x) jest dwuelementowym rozwinięciem f(x) w szereg Taylora wokół punktu y ma postać g(x) = ax + b poniewaŝ q(x) = f(y) + f (y)(x y) = f(y) + f (y)x f (y)y = f (y)x + (f(y) f (y)y) a więc: a = f (y), b = f(y) f (y)y 97

98 Metoda Newtona (aproksymacyjna) Poszukiwanie przybliŝenia miejsca zerowego zakładamy, Ŝe dla kaŝdego x S spełniony jest warunek f (x) 0 powyŝsze załoŝenie oraz zaleŝności a = f (y) i b = f(y) f (y)y pozwalają na następujące określenie rozwiązania funkcji x = b/a = = (f(y) f (y)y)/f (y) = = (f (y)y f(y))/f (y) = = y f(y)/f (y) jeŝeli y jest dowolnym punktem ustalonego obszaru S, to (zgodnie z zasadą przybliŝania funkcji f(x) funkcją afiniczną) punkt x = y f(y)/f (y) jest miejscem zerowym funkcji f(x) lub lepszym przybliŝeniem tego miejsca zerowego niŝ punkt y 98

99 Metoda Newtona (aproksymacyjna) Schemat iteracyjny metody zasada ustalania następnego punktu na podstawie poprzedniego pozwala na sformułowanie następującego schematu iteracyjnego x k+1 = x k f(x k )/f (x k ) Algorytm 1. ustal punkt x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: oblicz x k+1 = x k f(x k )/f (x k ) podstaw k = k

100 Metoda Newtona (aproksymacyjna) Interpretacja geometryczna metody Dane: funkcja f(x) wraz z pochodną f (x), a dla nich x k (punkt na osi poziomej) f(x k ) (punkt na osi pionowej) f (x k ) (tangens kąta zawartego pomiędzy osią poziomą a prostą styczną do wykresu funkcji w punkcie x k ) 100

101 Metoda Newtona (aproksymacyjna) Interpretacja geometryczna metody Więcej informacji o funkcji (w tym przypadku dość skomplikowanej) 101

102 Metoda Newtona (aproksymacyjna) Interpretacja geometryczna metody Poszukiwane: x k+1 (przybliŝenie miejsca zerowego) 102

103 Metoda Newtona (aproksymacyjna) Interpretacja geometryczna metody Wykorzystując f (x k ) = tg(α) oraz tg(α) = f(x k )/(x k x k+1 ) otrzymujemy zaleŝność f(x k )/(x k x k+1 ) = f (x k ) 103

104 Metoda Newtona (aproksymacyjna) Interpretacja geometryczna metody Przekształcenie zaleŝności f(x k )/(x k x k+1 ) = f (x k ) daje f(x k )/f (x k ) = x k x k+1 i ostatecznie x k+1 = x k f(x k )/f (x k ) 104

105 Metoda Newtona (aproksymacyjna) Mocno uproszczona wersja metody (sytuacja f (x) 1) x k+1 = x k f(x k ) gdy f(x) > 0, to x k+1 < x k gdy f(x) = 0, to koniec gdy f(x) < 0, to x k+1 > x k 105

106 Metoda Newtona (aproksymacyjna) Potencjalne warunki stopu metody osiągnięcie miejsca zerowego teoretycznie badamy: f(x k ) = 0 praktycznie badamy: f(x k ) ε ustabilizowanie wyniku teoretycznie badamy: x k+1 = x k praktycznie badamy: x k+1 x k ε przekroczenie maksymalnej liczby iteracji k > k 0 gdzie ε jest małą, dodatnią wartością rzeczywistą (dokładność obliczeń) k 0 jest duŝą, dodatnią wartością całkowitą (maksymalna liczba iteracji) 106

107 Metoda Newtona (aproksymacyjna) ZbieŜność metody metoda nie gwarantuje zbieŝności dla kaŝdego wektora początkowego przyczyny ewentualnej niezbieŝności zerowość pierwszej pochodnej (a więc nie istnieje jej odwrotność) rezultat: nie moŝna obliczyć x k+1 niewłaściwy krok metody (choć prawidłowo obliczony) rezultat: f(x k+1 ) f(x k ) w przypadkach zbieŝnych: zbieŝność rzędu drugiego (czyli wysoka!) 107

108 Metoda Newtona (aproksymacyjna) Czy są moŝliwe sytuacje, w których (aproksymacyjna) metoda Newtona nie działa wcale? tak przyczyny pochodna nieokreślona (nie moŝna zainicjować ciągu {x k }) pochodna dla pewnego x k zerowa (nie moŝna utworzyć elementu x k+1 ) ciąg {x k } jest niezbieŝny, a więc np.: ciąg {x k } dąŝy do + ciąg {x k } dąŝy do ciąg {x k } jest cykliczny ciąg {x k } przejawia inne powody niezbieŝności» np.: +1, 2, +4, 8, +16, 32, +64, 128, +256, 108

109 Metoda Newtona (aproksymacyjna) Czy są moŝliwe sytuacje, w których (aproksymacyjna) metoda Newtona nie działa jednoznacznie (w jakimś sensie)? tak przyczyna istnienie wielu miejsc zerowych z których róŝne mogą zostać osiągnięte (zaleŝnie od doboru punktu startowego) 109

110 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x miejsce zerowe funkcji: x z = przyjęty warunek stopu: f(x)

111 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 = 1 osiągnięto warunek stopu 111

112 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 = 5 osiągnięto warunek stopu 112

113 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu 113

114 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu 114

115 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 115

116 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 116

117 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 117

118 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = 4x 3 100x + 300, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 118

119 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 5 miejsce zerowe funkcji: x z = 5 przyjęty warunek stopu: f(x)

120 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 5, f(x) 10 6, x 0 = 1 osiągnięto warunek stopu 120

121 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 5, f(x) 10 6, x 0 = 1 osiągnięto warunek stopu 121

122 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 5, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu 122

123 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 5, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu 123

124 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2 miejsce zerowe funkcji: x z = 0 przyjęty warunek stopu: f(x)

125 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2, f(x) 10 6, x 0 = 1 osiągnięto warunek stopu (uwaga: zbieŝność rzędu pierwszego) 125

126 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2, f(x) 10 6, x 0 = 1 osiągnięto warunek stopu (uwaga: zbieŝność rzędu pierwszego) 126

127 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu (uwaga: zbieŝność rzędu pierwszego) 127

128 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2, f(x) 10 6, x 0 = 1000 osiągnięto warunek stopu (uwaga: zbieŝność rzędu pierwszego) 128

129 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2, f(x) 10 6, x 0 = 0 osiągnięto warunek stopu 129

130 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2 miejsce zerowe funkcji: x z = przyjęty warunek stopu: f(x)

131 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 131

132 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 132

133 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2, f(x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 133

134 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2, f(x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: brak zbieŝności) 134

135 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 1/3 miejsce zerowe funkcji: x z = 0 przyjęty warunek stopu: f(x)

136 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 1/3, f(x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: brak zbieŝności) 136

137 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x miejsce zerowe funkcji: brak ( x (,+ ) : f(x) > 0) przyjęty warunek stopu: f(x)

138 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2 + 1, f(x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: dzielenie przez zero) 138

139 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2 6x miejsce zerowe funkcji: brak ( x (,+ ) : f(x) > 0) przyjęty warunek stopu: f(x)

140 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 2 6x + 100, f(x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: brak zbieŝności) 140

141 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. uzasadnienia niektórych niezbieŝności 141

142 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2 czy moŝna wyjaśnić niezbieŝność dla x 0 = 0? 142

143 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 3 2x + 2 pochodna: f (x) = 3x 2 2 schemat: x n+1 = x n f(x n )/f (x n ) = x n ((x n ) 3 2x n + 2)/(3(x n ) 2 2) iteracja: x 0 = 0 x 1 = 0 ( )/( ) = 2/( 2) = 1 x 2 = 1 ( )/( ) = 1 1/1 =

144 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 1/3 czy moŝna wyjaśnić niezbieŝność dla x 0 0? 144

145 Metoda Newtona (aproksymacyjna) Przykład poszukiwania zer funkcji, c.d. f(x) = x 1/3 pochodna: f (x) = (1/3) x 1/3 1 = (1/3) x 2/3 schemat: x n+1 = x n f(x n )/f (x n ) = x n ((x n ) 1/3 )/((1/3) (x n ) 2/3 ) = x n 3(x n ) 1/3 ( 2/3) = x n 3(x n ) 3/3 = x n 3x n = 2x n iteracja: x 0 = 1 x 1 = 2 1 = 2 x 2 = 2 ( 2) = 4 x 3 = 2 4 =

146 Przykład ciekawego zastosowania metody Newtona Pierwiastki rzeczywiste z (rzeczywistych) liczb nieujemnych pytanie: jak obliczyć pierwiastek kwadratowy z 1000? odpowiedź: skorzystać z kalkulatora! pytanie: jak kalkulator moŝe obliczyć pierwiastek kwadratowy z 1000? odpowiedź: moŝe skorzystać z (aproksymacyjnej) metody Newtona 146

147 Przykład ciekawego zastosowania metody Newtona Aproksymacyjna metoda Newtona w poszukiwaniu pierwiastków kwadratowych z rzeczywistych liczb nieujemnych dla nieujemnych p zachodzi x = sqrt(p) x 2 = p x 2 p = 0 wniosek: sqrt(p) jest miejscem zerowym funkcji f(x) = x 2 p 147

148 Przykład ciekawego zastosowania metody Newtona Aproksymacyjna metoda Newtona w poszukiwaniu pierwiastków kwadratowych z rzeczywistych liczb nieujemnych, c.d. wyprowadzenie (aproksymacyjnego) schematu iteracyjnego funkcja: f(x) = x 2 p pochodna: f (x) = 2x schemat: x k+1 = x k f(x k )/f (x k ) = = x k ((x k ) 2 p)/(2x k ) = = x k (x k ) 2 /(2x k ) + p/(2x k ) = = x k x k /2 + p/(2x k ) = = (1/2) x k + (p/2)/x k = = (1/2) x k + (1/2) p/x k = = (1/2) (x k + p/x k ) (średnia arytmetyczna z x k oraz p/x k ) załoŝenie: x k 0 dla wszystkich k, w szczególności x 0 0 po przyjęciu x 0 > 0, wobec nieujemności p, mamy gwarancję, Ŝe dla wszystkich k zachodzi x k 0 148

149 Przykład ciekawego zastosowania metody Newtona Aproksymacyjna metoda Newtona w poszukiwaniu pierwiastków kwadratowych z rzeczywistych liczb nieujemnych, c.d. algorytm (wejscie p, wyjscie y) if (p < 0) y = error elseif (p = 0) y = 0 else x 0 = p for k=0 to 19 x k+1 = (1/2) (x k + p/x k ) end y = x 20 uwagi liczba iteracji dostosowana do kalkulatora 9-cio pozycyjnego demonstrowane wyniki nie uwzględniają tego faktu (zostały wygenerowane w arytmetyce typu double) 149

150 Przykład ciekawego zastosowania metody Newtona p = 1000 /20 iteracji/ y = x k 150

151 Przykład ciekawego zastosowania metody Newtona p = 2 /20 iteracji/ y = x k 151

152 Przykład ciekawego zastosowania metody Newtona p = 9 /20 iteracji/ y = 3 x k 152

153 Przykład ciekawego zastosowania metody Newtona p = /20 iteracji/ y = x k 153

154 Przykład ciekawego zastosowania metody Newtona x k p = (dziewięć dziewiątek) /20 iteracji/ y =

155 Przykład ciekawego zastosowania metody Newtona Co się dzieje, gdy załoŝenie p 0 nie jest spełnione ale schemat iteracyjny zostanie uruchomiony? 155

156 Przykład ciekawego zastosowania metody Newtona x k p = 1 (wbrew załoŝeniu!) /2 iteracje/ x 0 = 1, x 1 = 0, czyli jest x 2 nieokreślone (formalny wynik: y = error ) 156

157 Przykład ciekawego zastosowania metody Newtona x k p = 3 (wbrew załoŝeniu!) /20 iteracji/ cykliczność ciągu {x k } (formalny wynik: y = error ) 157

158 Przykład ciekawego zastosowania metody Newtona x k p = 10 (wbrew załoŝeniu!) /20 iteracji/ niezbieŝność ciągu {x k } (formalny wynik: y = error ) 158

159 Przykład ciekawego zastosowania metody Newtona x k p = 10 (wbrew załoŝeniu!) /200 iteracji/ niezbieŝność ciągu {x k } (formalny wynik: y = error ) 159

160 Przykład ciekawego zastosowania metody Newtona x k p = 10 (wbrew załoŝeniu!) /2000 iteracji/ niezbieŝność ciągu {x k } (formalny wynik: y = error ) 160

161 Przykład ciekawego zastosowania metody Newtona x k p = 10 (wbrew załoŝeniu!) /2000 iteracji/ niezbieŝność ciągu {x k } (formalny wynik: y = error ) 161

162 Przykład ciekawego zastosowania metody Newtona x k p = 10 (wbrew załoŝeniu!) /2000 iteracji/, zawęŝone wartości niezbieŝność ciągu {x k } (formalny wynik: y = error ) 162

163 Metoda Newtona (optymalizacyjna) Metoda (optymalizacyjna) Newtona metoda optymalizacji jednowymiarowej bez ograniczeń (z ewentualnymi ograniczeniami na zakres zmienności zmiennej) Dane jednowymiarowy obszar S (obszar musi spełniać kilka dodatkowych załoŝeń) określona w obszarze S funkcja f(x) (funkcja musi spełniać kilka dodatkowych załoŝeń) Cel metody znaleźć x* S taki, Ŝe x S f(x*) f(x) (minimalizacja funkcji f(x) w obszarze S) 163

164 Metoda Newtona (optymalizacyjna) Idea metody Newtona (optymalizacji jednowymiarowej) niech będzie dana analitycznie jednowymiarowa funkcja f(x), dla której poszukujemy minimum w pewnym obszarze (w praktyce: w przedziale), i o której zakładamy, Ŝe w tym właśnie przedziale jest ciągła jest wypukła posiada pierwszą i drugą pochodną (dane analitycznie), które są ciągłe uznaje się, Ŝe przebieg optymalizowanej, jednowymiarowej funkcji f(x) w otoczeniu pewnego ustalonego punktu x 0 jest taki sam, jak przebieg pewnej funkcji kwadratowej, czyli funkcji postaci g(x) = ax 2 + bx + c, gdzie a > 0, o parametrach a, b i c tak dobranych, aby dobrze odzwierciedlały przebieg funkcji f(x) do jakości takiego odzwierciedlenia przyczyniają się oczywiście powyŝsze załoŝenia dotyczące funkcji f(x), które (nie przez przypadek, oczywiście) są takŝe właściwościami funkcji kwadratowej postaci g(x) = ax 2 + bx + c, gdzie a > 0 przybliŝenie funkcji f(x) jest wykonywane z uŝyciem jej pochodnych 164

165 Metoda Newtona (optymalizacyjna) Idea metody Newtona (optymalizacji jednowymiarowej), c.d. za rozwiązanie funkcji f(x) uznaje się rozwiązanie funkcji g(x), przy czym: jeŝeli znaleziony punkt (czyli rozwiązanie kwadratowej funkcji g(x)) stanowi rozwiązanie optymalizowanej funkcji f(x), to zadanie jest zakończone powyŝsze sprawdzenie moŝe nie być trywialne ogólne rozwiązanie tego problemu stanowi osobne zagadnienie (warunek stopu) jeŝeli znaleziony punkt (czyli rozwiązanie kwadratowej funkcji g(x)) nie stanowi rozwiązania optymalizowanej funkcji f(x), to przyjmuje się, Ŝe stanowi on lepsze przybliŝenie poszukiwanego rozwiązania i powtarza się całe postępowanie powyŝsze przyjęcie moŝe być błędne ogólne rozwiązanie tego problemu stanowi osobne zagadnienie (niezbieŝność) 165

166 Metoda Newtona (optymalizacyjna) Idea metody Newtona (optymalizacji jednowymiarowej), c.d. funkcja kwadratowa i jej dwie pierwsze pochodne funkcja: g(x) = ax 2 + bx + c, gdzie a > 0 jej pierwsza pochodna: g (x) = 2ax + b jej druga pochodna: g (x) = 2a połoŝenie rozwiązania funkcji kwadratowej: punkt zerowania się (pierwszej) pochodnej przyrównanie pierwszej pochodnej do zera: 2ax + b = 0 rozwiązanie: x = b/2/a pierwsza pochodna jest funkcją afiniczną, która zmienia znak w punkcie x = b/2/a (jest ujemna dla x < b/2/a i dodatnia dla x > b/2/a), z czego wynika, Ŝe funkcja g(x) posiada ekstremum w punkcie x = b/2/a poniewaŝ (z załoŝenia) a > 0, więc takŝe 2a > 0, a zatem ekstremum funkcji g(x) jest typu minimum uwaga: w zaleŝności od a, funkcja g(x) = ax 2 + bx + c moŝe mieć minima, maksima albo punkty przegięcia, a konkretnie: funkcja ma minimum, gdy a > 0 funkcja ma punkt przegięcia, gdy a = 0 funkcja ma maksimum, gdy a < 0 166

167 Metoda Newtona (optymalizacyjna) PrzybliŜanie funkcji f(x) funkcją kwadratową z uŝyciem pochodnych jeŝeli wszystkie pochodne funkcji f(x) istnieją w pewnym obszarze S, to w tym obszarze moŝliwe jest przybliŝenie tej funkcji wykorzystujące jej rozwinięcie w szereg Taylora 167

168 Metoda Newtona (optymalizacyjna) PrzybliŜanie funkcji f(x) funkcją kwadratową z uŝyciem pochodnych niech dane będą ustalony obszar S funkcja f(x) określona w obszarze S i posiadająca wszystkie pochodne określone w obszarze S rozwinięcie T(x) funkcji f(x) w szereg Taylora wokół punktu y S dane jest następującym wzorem T(x) = f (0) (y)(x y) 0 /(0!) + f (1) (y)(x y) 1 /(1!) + f (2) (y)(x y) 2 /(2!) + = f(y) 1/1 + f (y)(x y)/1 + f (y)(x y) 2 /2 + = f(y) + f (y)(x y) + f (y)(x y) 2 /2 + (rozwinięcie obejmuje nieskończoną liczbę składników) zastosowana notacja: f (k) (x) oznaczenie k-tej pochodnej funkcji f(x) w szczególności f (0) (x) f(x) funkcja f (1) (x) f (x) jej pierwsza pochodna f (2) (x) f (x) jej druga pochodna 168

169 Metoda Newtona (optymalizacyjna) PrzybliŜanie funkcji f(x) funkcją kwadratową z uŝyciem pochodnych dla dowolnej funkcji f(x) dla kaŝdego x S wykorzystując nieskończoną liczbę składników rozwinięcia otrzymujemy T(x) = f(x) skończoną liczbę składników rozwinięcia otrzymujemy T(x) f(x) dla szczególnej funkcji, spełniającej f (k) (x) = 0 dla wszystkich k 3 dla kaŝdego x S wykorzystując trzy pierwsze składniki rozwinięcia otrzymujemy T(x) = f(x) przykładem takiej funkcji jest g(x) = ax 2 + bx + c, poniewaŝ: g (x) = 2ax + b g (x) = 2a g (x) = 0 g (x) = 0 itd. 169

170 Metoda Newtona (optymalizacyjna) PrzybliŜanie funkcji f(x) funkcją kwadratową z uŝyciem pochodnych wykorzystując trzyelementowe przybliŝenie q(x) rozwinięcia funkcji f(x) wokół punktu y S mamy dla kaŝdego x S f(x) q(x) = f(y) + f (y)(x y) + f (y)(x y) 2 /2 funkcja q(x) stanowi przybliŝenie funkcji f(x) jest trzyelementowym rozwinięciem f(x) w szereg Taylora wokół punktu y ma postać g(x) = ax 2 + bx + c poniewaŝ q(x) = f(y) + f (y)(x y) + f (y)(x y) 2 /2 = = f(y) + f (y)x f (y)y + f (y)(x y) 2 /2 = = f(y) + f (y)x f (y)y + f (y)(x 2 2xy+y 2 )/2 = = f(y) + f (y)x f (y)y + f (y)x 2 /2 2f (y)xy/2 + f (y)y 2 /2 = = f(y) + f (y)x f (y)y + f (y)x 2 /2 f (y)xy + f (y)y 2 /2 = = f (y)x 2 /2 + f (y)x f (y)xy + f(y) f (y)y + f (y)y 2 /2 = f (y)/2 x 2 + (f (y) f (y)y) x + (f(y) f (y)y+f (y)y 2 /2) a więc: a = f (y)/2, b = f (y) f (y)y, c = f(y) f (y)y+f (y)y 2 /2 170

171 Metoda Newtona (optymalizacyjna) Schemat iteracyjny metody zakładamy, Ŝe dla kaŝdego x S spełniony jest warunek f (x) 0 powyŝsze załoŝenie oraz zaleŝności a = f (y)/2 i b = f (y) f (y)y pozwalają na następujące określenie rozwiązania funkcji x = b/2/a = = (f (y) f (y)y)/2/(f (y)/2) = (f (y) f (y)y)/f (y) = = (f (y)/f (y) f (y)y/f (y)) = (f (y)/f (y) y) = = y f (y)/f (y) jeŝeli y jest dowolnym punktem ustalonego obszaru S, to (zgodnie z zasadą przybliŝania funkcji f(x) funkcją kwadratową) punkt x = y f (y)/f (y) jest rozwiązaniem funkcji f(x) lub lepszym przybliŝeniem tego rozwiązania niŝ punkt y 171

172 Metoda Newtona (optymalizacyjna) Schemat iteracyjny metody zasada ustalania następnego punktu na podstawie poprzedniego pozwala na sformułowanie następującego schematu iteracyjnego x k+1 = x k f (x k )/f (x k ) Algorytm 1. ustal punkt x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: oblicz x k+1 = x k f (x k )/f (x k ) podstaw k = k

173 Metoda Newtona (optymalizacyjna) Potencjalne warunki stopu metody osiągnięcie minimum teoretycznie badamy: f (x k ) = 0 praktycznie badamy: f (x k ) ε ustabilizowanie wyniku teoretycznie badamy: x k+1 = x k praktycznie badamy: x k+1 x k ε przekroczenie maksymalnej liczby iteracji k > k 0 gdzie ε jest małą, dodatnią wartością rzeczywistą (dokładność obliczeń) k 0 jest duŝą, dodatnią wartością całkowitą (maksymalna liczba iteracji) 173

174 Metoda Newtona (optymalizacyjna) ZbieŜność metody metoda nie gwarantuje zbieŝności dla kaŝdego wektora początkowego przyczyny ewentualnej niezbieŝności zerowość drugiej pochodnej (a więc nie istnieje jej odwrotność) rezultat: nie moŝna obliczyć x k+1 niewłaściwy krok metody (choć prawidłowo obliczony) rezultat: f(x k+1 ) f(x k ) w przypadkach zbieŝnych: zbieŝność rzędu drugiego (czyli wysoka!) 174

175 Metoda Newtona (optymalizacyjna) Czy są moŝliwe sytuacje, w których (optymalizacyjna) metoda Newtona nie działa wcale? tak przyczyny druga pochodna nieokreślona (nie moŝna zainicjować ciągu {x k }) druga pochodna dla pewnego x k zerowa (nie moŝna utworzyć elementu x k+1 ) ciąg {x k } jest niezbieŝny, a więc np.: ciąg {x k } dąŝy do + ciąg {x k } dąŝy do ciąg {x k } jest cykliczny ciąg {x k } przejawia inne powody niezbieŝności» np.: +1, 2, +4, 8, +16, 32, +64, 128, +256, 175

176 Metoda Newtona (optymalizacyjna) Czy są moŝliwe sytuacje, w których (optymalizacyjna) metoda Newtona nie działa jednoznacznie (w jakimś sensie)? tak przyczyna istnienie wielu minimów z których róŝne mogą zostać osiągnięte (zaleŝnie od doboru punktu startowego) 176

177 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x minimum funkcji: x* = przyjęty warunek stopu: f (x)

178 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 = 1 osiągnięto warunek stopu 178

179 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 = 5 osiągnięto warunek stopu 179

180 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu 180

181 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu 181

182 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 182

183 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 183

184 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 184

185 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = x 4 50x x , f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 185

186 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.5x 2 5x + 50 minimum funkcji: x* = 5 przyjęty warunek stopu: f(x)

187 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.5x 2 5x + 50, f (x) 10 6, x 0 = 1 osiągnięto warunek stopu 187

188 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.5x 2 5x + 50, f (x) 10 6, x 0 = 1 osiągnięto warunek stopu 188

189 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.5x 2 5x + 50, f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu 189

190 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.5x 2 5x + 50, f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu 190

191 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3 minimum funkcji: x*: brak (lim x x 3 = ) przyjęty warunek stopu: f(x)

192 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3, f (x) 10 6, x 0 = 1 osiągnięto warunek stopu (problem: wynik nie jest minimum!) (uwaga: zbieŝność rzędu pierwszego) 192

193 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3, f (x) 10 6, x 0 = 1 osiągnięto warunek stopu (problem: wynik nie jest minimum!) (uwaga: zbieŝność rzędu pierwszego) 193

194 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3, f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu (problem: wynik nie jest minimum!) (uwaga: zbieŝność rzędu pierwszego) 194

195 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3, f (x) 10 6, x 0 = 1000 osiągnięto warunek stopu (problem: wynik nie jest minimum!) (uwaga: zbieŝność rzędu pierwszego) 195

196 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = (1/3)x 3, f (x) 10 6, x 0 = 0 osiągnięto warunek stopu (problem: wynik nie jest minimum) 196

197 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.25x 4 x 2 + 2x + 10 minimum funkcji: x* = przyjęty warunek stopu: f(x)

198 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.25x 4 x 2 + 2x + 10, f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 198

199 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.25x 4 x 2 + 2x + 10, f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 199

200 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.25x 4 x 2 + 2x + 10, f (x) 10 6, x 0 losowy z rozkladu N(0,1) osiągnięto warunek stopu 200

201 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.25x 4 x 2 + 2x + 10, f (x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: brak zbieŝności) 201

202 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.75x 4/3 minimum funkcji: x* = 0 przyjęty warunek stopu: f(x)

203 Metoda Newtona (optymalizacyjna) Przykład poszukiwania minimów funkcji, c.d. f(x) = 0.75x 4/3, f(x) 10 6, x 0 = 1 nie osiągnięto warunku stopu (problem: brak zbieŝności) 203

204 Metody Newtona: porównanie Porównanie: optymalizacyjna a aproksymacyjna metoda Newtona dzięki odpowiednim załoŝeniom dotyczącym funkcji f(x) optymalizacyjny schemat iteracyjny x k+1 = x k f (x k )/f (x k ) dla funkcji f(x) prowadzi do: znalezienia rozwiązania funkcji f(x) (argumentu zapewniającego minimum) a jednocześnie znalezienia miejsca zerowego funkcji f (x) (argumentu zapewniającego zerowość) a więc jest jednocześnie schematem aproksymacyjnym dla funkcji f (x) przez analogię: schematem aproksymacyjnym dla funkcji f(x) jest więc x k+1 = x k f(x k )/f (x k ) (reszta algorytmu jest takŝe analogiczna) 204

205 Metoda Newtona-Raphsona Metoda Newtona-Raphsona metoda optymalizacji wielowymiarowej bez ograniczeń (z ewentualnymi ograniczeniami na zakres zmienności zmiennych) Dane wielowymiarowy obszar S określona w obszarze S funkcja f(x) Cel metody znaleźć x* S taki, Ŝe x S f(x*) f(x) (minimalizacja funkcji f(x) w obszarze S) 205

206 Metoda Newtona-Raphsona Naturalne uogólnienie metody Newtona n wymiarów niech x = [x 1, x 2,, x n ] T będzie wektorem o rozmiarze n 1 f(x) będzie funkcją jednowymiarową od wektora x trzyelementowe rozwinięcie q(x) funkcji f(x) w szereg Taylora wokół wektora y S dane jest następującym wzorem q(x) = f(y) + ( f (y)) T (x y) + 1/2 (x y) T H f (y)(x y) gdzie f (y) gradient funkcji f(x) od wektora y H f (y) hesjan funkcji f(x) od wektora y 206

207 Metoda Newtona-Raphsona Definicja gradientu f funkcji f(x) dla x = [x 1, x 2,, x n ] T gradient (wektor o rozmiarze n 1) f/ x 1 f = f/ x 2 f/ x n (istnieje, gdy f(x) posiada wszystkie pierwsze pochodne) 207

208 Metoda Newtona-Raphsona Cechy gradientu f funkcji f(x) dla x = [x 1, x 2,, x n ] T gradient f funkcji f(x) jest w ogólności wektorem pierwszych pochodnych funkcji f(x) (po odpowiednich elementach wektora x) gradient f (y) funkcji f(x) od wektora y jest wektorem wartości pierwszych pochodnych funkcji f(x) obliczonych dla wektora y interpretacja graficzna: gradient funkcji w punkcie (o ile istnieje i jest niezerowy) jest wektorem wskazującym kierunek, w którym wzrost wartości tej funkcji w otoczeniu tego punktu jest maksymalny w punktach ekstremalnych (ale nie tylko) gradient jest wektorem zerowym (dlatego jest naturalnie wykorzystywany w warunkach stopu) 208

209 Metoda Newtona-Raphsona Graficzna interpretacja gradientu 209

210 Metoda Newtona-Raphsona Definicja hesjanu H f funkcji f(x) dla x = [x 1, x 2,, x n ] T hesjan (macierz o rozmiarach n n) f 2 /( x 1 x 1 ) f 2 /( x 1 x 2 ) f 2 /( x 1 x n ) H f = f 2 /( x 2 x 1 ) f 2 /( x 2 x 2 ) f 2 /( x 2 x n ) f 2 /( x n x 1 ) f 2 /( x n x 2 ) f 2 /( x n x n ) (istnieje, gdy f(x) posiada wszystkie drugie pochodne) 210

211 Metoda Newtona-Raphsona Cechy hesjanu H f funkcji f(x) dla x = [x 1, x 2,, x n ] T hesjan H f funkcji f(x) jest w ogólności macierzą drugich pochodnych funkcji f(x) (po odpowiednich parach elementów wektora x) hesjan H f (w) funkcji f(x) od wektora w jest macierzą wartości drugich pochodnych funkcji f(x) obliczonych dla wektora w uwaga: interpretacja graficzna hesjanu jest bardziej złoŝona niŝ interpretacja graficzna gradientu, poniewaŝ gradient jest wektorem (który posiada naturalną interpretację graficzną w postaci strzałki), podczas gdy hesjan jest macierzą (wiele strzałek?) 211

212 Metoda Newtona-Raphsona Pewne właściwości hesjanu H f funkcji f(x) poniewaŝ dla wszystkich i oraz j zachodzi f 2 /( x i x j ) = f 2 /( x j x i ), więc hesjan H f (w) dla kaŝdego wektora w jest macierzą symetryczną tw. Schwarza (jeŝeli pochodne istnieją i są ciągłe, to są sobie równe) jeŝeli dwukrotnie róŝniczowalna funkcja f(x) jest wypukła w obszarze S, to jej hesjan H f (s) jest dla kaŝdego wektora s z obszaru S macierzą nieujemnie określoną (prawdziwe jest takŝe stwierdzenie odwrotne) 212

213 Metoda Newtona-Raphsona Uogólnienie schematu iteracyjnego na n wymiarów, c.d. analogiczna do przypadku jednowymiarowego zasada ustalania następnego wektora na podstawie poprzedniego pozwala na sformułowanie następującego schematu iteracyjnego x k+1 = x k (H f (x k )) 1 f (x k ) Algorytm 1. ustal wektor x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: oblicz x k+1 = x k (H f (x k )) 1 f (x k ) podstaw k = k

214 Metoda Newtona-Raphsona Potencjalne warunki stopu metody osiągnięcie minimum teoretycznie badamy: f (x k ) = 0 praktycznie badamy: f (x k ) ε ustabilizowanie wyniku teoretycznie badamy: x k+1 = x k praktycznie badamy: x k+1 x k ε przekroczenie maksymalnej liczby iteracji k > k 0 gdzie ε jest małą, dodatnią wartością rzeczywistą (dokładność obliczeń) k 0 jest duŝą, dodatnią wartością całkowitą (maksymalna liczba iteracji) 214

215 Metoda Newtona-Raphsona ZbieŜność metody metoda nie gwarantuje zbieŝności dla kaŝdego wektora początkowego przyczyny ewentualnej niezbieŝności osobliwość hesjanu (a więc nie istnieje jego odwrotność) rezultat: nie moŝna obliczyć x k+1 niewłaściwy krok metody (choć prawidłowo obliczony) rezultat: f(x k+1 ) f(x k ) w przypadkach zbieŝnych: zbieŝność rzędu drugiego (czyli wysoka!) 215

216 Metoda Newtona-Raphsona Idea kroku metody wektor dodawany do wektora x k w celu przekształcenia go w wektor x k+1 nosi nazwę kroku metody i jest oznaczany przez s k w metodzie Newtona-Raphsona s k = (H f (x k )) 1 f (x k ) (ale w innych metodach wektor ten moŝe być ustalany inaczej) 216

217 Metoda Newtona-Raphsona s k x k x k+1 Ilustracja kroku metody s k = (H f (x k )) 1 f (x k ) (reprezentowany strzałką) 217

218 Metoda Newtona-Raphsona Metoda Newtona jest szczególnym przypadkiem metody Newtona-Raphsona, poniewaŝ gdy x jest wektorem jednoelementowym, czyli x = [x] (rozmiar 1x1), to f(x) = f([x]) jest funkcją jednowymiarową, którą moŝna zapisywać jako f(x) f (x) = f ([x]) = [ f/ x 1 ] = [f (x)] jest wektorem jednoelementowym, który moŝna zapisywać jako f (x) H f (x) = H f ([x]) = [ f 2 /( x 1 x 1 )] = [f (x)] jest macierzą jednoelementową, którą moŝna zapisywać jako f (x) A więc zapis x k+1 = x k (H f (y)) 1 f (y) sprowadza się do x k+1 = x k (f (x)) 1 f (x) czyli do x k+1 = x k f (x)/f (x) 218

219 Metoda Newtona-Raphsona Przykład minimalizacji funkcji od argumentu dwuwymiarowego (argumenty mają postać x = [x 1, x 2 ] T ) funkcja f(x) = (x 1 ) 2 + 2(x 2 ) 2 + 3x 1 gradient f = f/ x 1 = 2x hesjan f/ x 2 4x 2 H f = f 2 /( x 1 x 1 ) f 2 /( x 1 x 2 ) = 2 0 f 2 /( x n x 1 ) f 2 /( x n x 2 )

220 Metoda Newtona-Raphsona Przykład minimalizacji, c.d. gradient w kolejnych iteracjach poniewaŝ gradient nie jest wektorem stałych, więc będzie musiał być wyliczany w kaŝdej iteracji hesjan w kolejnych iteracjach poniewaŝ hesjan jest macierzą stałych, więc będzie taki sam we wszystkich iteracjach odwrotność hesjanu (takŝe identyczna we wszystkich iteracjach) (H f ) 1 = 1/ /4 przyjęty warunek stopu: f (x k ) = 0 220

221 Metoda Newtona-Raphsona Przykład minimalizacji, c.d. rozwiązanie początkowe x 0 =

222 Metoda Newtona-Raphsona Przykład minimalizacji, c.d. x 0 = 1 2 pierwsza iteracja f (x 0 ) = = poniewaŝ warunek stopu nie jest spełniony, więc obliczamy x 1 = x 0 (H f (y)) 1 f (y) x 1 = 1 1/2 0 5 = 1 5/2 = 3/ /

223 Metoda Newtona-Raphsona Przykład minimalizacji, c.d. x 1 = 3/2 0 druga iteracja f (x 1 ) = 2 ( 3/2) + 3 = poniewaŝ warunek stopu jest spełniony, więc wektor x 1 jest rozwiązaniem (stanowi minimum funkcji f(x)) uwaga: dzięki temu, Ŝe f (x 1 ) = 0, kolejne rozwiązania, tzn. x 2, x 3,, spełniałyby x 1 = x 2 = x 3 = 223

224 Przykład zastosowania metody Newtona-Raphsona Problem najmniejszych kwadratów (PMK) i jego rozwiązanie problem najmniejszych kwadratów moŝe (i zazwyczaj jest ) rozwiązywany tzw. metodą najmniejszych kwadratów (MNK) PNK jest problemem dopasowania prostej/płaszczyzny/ do zbioru pewnych punktów, czyli problemem odkrycia zaleŝności liniowej pomiędzy ustalonymi zmiennymi wejściowymi a wyjściowymi PNK jest (typowym) problemem optymalizacyjnym, jednak na tyle prostym, ze posiada jawne rozwiązanie analityczne 224

225 Przykład zastosowania metody Newtona-Raphsona Wywód PNK startujacy od rozwiązania układu równań niec dany będzie układ Xb = y, gdzie X, b i y są macierzami/wektorami o wymiarach X mxn, b nx1, y mx1, w którym X i y są (odpowiednio) macierzą oraz wektorem stałych, natomiast b jest wektorem zmiennych rozwiązanie układu polega na znalezieniu wektora b zapewniającego równość: Xb = y w ogólności, róŝne moŝliwe przypadki opisuje twierdzenie Kroneckera-Capelli ego; w szczególności (dla X będącego macierzą pełnego rzędu) moŝliwe są następujące sytuacje gdy m < n, to Xb = y moŝe mieć nieskończenie wiele rozwiązań gdy m = n, to Xb = y moŝe mieć jedno rozwiązanie gdy m > n, to Xb = y moŝe mieć zero rozwiązań co oznacza, Ŝe nie istnieje wektor b zapewniający równość Xb = y 225

226 Przykład zastosowania metody Newtona-Raphsona Wywód PNK startujący od rozwiązania układu równań, c.d. RozwaŜamy sytuację, w której nie istnieje wektor b zapewniający równość Xb = y wtedy moŝna szukać x takiego, aby wektor Xb był jak najbardziej bliski wektorowi y, tzn. aby wektor Xb y był jak najbardziej bliski wektorowi 0 formalnie: szukamy wektora b minimalizującego wartość wyraŝenia (skalarnego) Xb y 2 uwaga: znane jest optymalne rozwiązanie analityczne tego problemu, mające postać: b = (X T X) 1 X T y (jest wynik tzw. metody najmniejszych kwadratów, MNK) 226

227 Przykład zastosowania metody Newtona-Raphsona Rozwiązywanie PNK metodą Newtona-Raphsona Niech s(b) = Xb y 2 poniewaŝ dla rzeczywistych w zachodzi w 2 w T w, więc takŝe Xb y 2 = (Xb y) T (Xb y) przekształcając to wyraŝenie otrzymujemy: Xb y 2 = (Xb y) T (Xb y) = ((Xb) T y T )(Xb y) = = (b T X T y T )(Xb y) = b T X T (Xb y) y T (Xb y) = = b T X T Xb b T X T y (y T Xb y T y) = b T X T Xb b T X T y y T Xb + y T y = = b T X T Xb 2b T X T y + y T y 227

228 Przykład zastosowania metody Newtona-Raphsona Rozwiązywanie PNK metodą Newtona-Raphsona, c.d. Ustalamy następujące składowe: gradient: s (b) = 2X T Xb 2X T y = 2(X T Xb X T y) (zaleŝy liniowo od b) hesjan: H s (b) = 2X T X (nie zaleŝy od b) zatem (H s (b k )) 1 = (1/2)(X T X) 1 (nie zaleŝy od b) A więc (H s (b)) 1 s (b) = (1/2)(X T X) 1 2(X T Xb X T y) = = (X T X) 1 (X T Xb X T y) = (X T X) 1 X T Xb (X T X) 1 X T y = = Ib (X T X) 1 X T y = b (X T X) 1 X T y 228

229 Przykład zastosowania metody Newtona-Raphsona Rozwiązywanie PNK metodą Newtona-Raphsona, c.d. Po zaadaptowaniu schematu iteracyjnego metody Newtona-Raphsona x k+1 = x k (H f (x k )) 1 f (x k ) do funkcji s(b) (zmienną jest wektor b) powstaje schemat: b k+1 = b k (H s (b k )) 1 s (b k ) Wykorzystując równość (H s (b)) 1 s (b) = b (X T X) 1 X T y otrzymujemy ostatecznie: b k+1 = b k (b k (X T X) 1 X T y) = b k b k + (X T X) 1 X T y = (X T X) 1 X T y Czyli dla dowolnego b 0 zachodzi: b 1 = b 0 (b 0 (X T X) 1 X T y) = b 0 b 0 + (X T X) 1 X T y = (X T X) 1 X T y 229

230 Przykład zastosowania metody Newtona-Raphsona Rozwiązywanie PNK metodą Newtona-Raphsona, c.d. Uzyskany wynik w postaci b 1 = (X T X) 1 X T y powstaje w wyniku wykonania jednego (pierwszego) kroku nie zaleŝy od b 0 (tzn. dla kaŝdego b 0 wektor b 1 będzie taki sam) stanowi rozwiązanie optymalne (czyli wynik wygenerowany przez MNK) Wniosek: dla kaŝdego rozwiązania początkowego metoda Newtona-Raphsona znajduje optymalne rozwiązanie PNK w jednym kroku 230

231 Więcej o metodach iteracyjnych Krok (wielowymiarowej) metody iteracyjnej wektor dodawany do wektora x k w celu przekształcenia go w wektor x k+1 nosi nazwę kroku metody i jest oznaczany przez s k 231

232 Więcej o metodach iteracyjnych Ogólna postać (wielowymiarowych) metod iteracyjnych wyraŝona z jawnym wykorzystaniem kroku metody Algorytm 1. ustal wektor x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: znajdź s k oblicz x k+1 = x k + s k podstaw k = k

233 Więcej o metodach iteracyjnych Wersja algorytmu Newtona-Raphsona z jawnym wykorzystaniem kroku metody Algorytm 1. ustal wektor x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: oblicz s k = (H f (x k )) 1 f (x k ) oblicz x k+1 = x k + s k podstaw k = k

234 Więcej o metodach iteracyjnych Wyznaczając krok metody moŝliwe jest rozwaŝenie osobno kierunku poszukiwań: d k wektor (zasadniczo niezerowy) reprezentuje wyłącznie kierunek (tzn. kierunek kroku metody) jeŝeli jest niezerowy, to jest zwykle przedstawiany postaci unormowanej (tzn. o długości 1) długości kroku: α k skalar (zasadniczo niezerowy) specyfikuje wyłącznie długość (tzn. długość kroku metody) moŝe być wyznaczany tylko wtedy, gdy d k 0 wtedy: krok metody s k = α k d k 234

235 Więcej o metodach iteracyjnych Kierunek poszukiwań i długość kroku na podstawie wektora kroku mając s k (który w metodzie Newtona-Raphsona obliczamy jako s k = (H f (x k )) 1 f (x k )) moŝna (o ile s k 0) zawsze znaleźć kierunek poszukiwań d k i długość kroku α k wykorzystując zaleŝności d k = s k / s k α k = s k (choć tak naprawdę nie są juŝ wtedy one metodzie potrzebne) uwaga: krok metody, a tym samym kierunek poszukiwań i długość kroku mogą nie istnieć! w niektórych innych metodach kolejność pozyskiwania tych elementów moŝe być jednak inna (najpierw kierunek i długość, a potem krok), co pozwala tym metodom pokonywać pewne słabości metody Newtona-Raphsona 235

236 Więcej o metodach iteracyjnych Ogólna postać (wielowymiarowych) metod iteracyjnych wyraŝona z jawnym wykorzystaniem kierunku poszukiwań oraz długości kroku Algorytm 1. ustal wektor x 0 i podstaw k = 0 2. dopóki nie zachodzi warunek stopu, wykonuj: znajdź d k znajdź α k oblicz s k = α k d k oblicz x k+1 = x k + s k podstaw k = k

237 Problemy metody Newtona-Raphsona Potencjalne problemy kierunek poszukiwań nie istnieje jest bliski wektorowi zerowemu nie jest właściwy w szczególności: nie tworzy kata rozwartego z gradientem długość kroku jest bliska zeru jest niewłaściwa Problemy te nie są wynikiem jakiegoś błędu postepowania, lecz wynikiem stosowania w metodzie (zawsze skończonego) przybliŝania funkcji f(x)) 237

238 Idea niezaleŝnego kierunku poszukiwań i długości kroku Problem długości kroku w metodzie Newtona-Raphsona obserwacja: dla znalezionego kroku metody s k = (H f (x k )) 1 f (x k ) długość tego kroku α k = s k moŝe być nieoptymalna, tzn. moŝe się okazać, Ŝe lepsze przybliŝenie muminum funkcji otrzymuje się dla długości kroku większej lub mniejszej od obliczonej 238

239 Idea niezaleŝnego kierunku poszukiwań i długości kroku Inna metoda poszukiwania kroku metody s k ustal d k 0 znajdź α k 0 minimalizujące funkcję f(α k ) = f(x k + α k d k ) w praktyce interesują nas wartości α k > 0 oblicz s k = α k d k Metoda ta zawiera wewnętrzny problem optymalizacji jest to zawsze problem optymalizacji jednowymiarowej z ograniczeniem na zakres zmiennej (zmienna nieujemna) jako taki moŝe być rozwiązywany np. metodą Newtona (z modyfikacją uwzględniającą nieujemność zmiennej) 239

240 Uogólniona metoda Newtona x k Ilustracja problemu: znajdź α k 0 minimalizujące f(α k ) = f(x k + α k d k ) 240

241 Uogólniona metoda Newtona d k Ilustracja problemu: znajdź α k 0 minimalizujące f(α k ) = f(x k + α k d k ) 241

242 Ilustracja problemu: znajdź α k 0 minimalizujące f(α k ) = f(x k + α k d k ) 242

243 Uogólniona metoda Newtona 0 Ilustracja problemu: znajdź α k 0 minimalizujące f(α k ) = f(x k + α k d k ) α k 243

244 Idea niezaleŝnego kierunku poszukiwań i długości kroku Przykład tworzenia (jednowymiarowej) funkcji f(α k ) = f(x k + α k d k ) funkcja: f(x) = (x 1 ) 2 + 2(x 2 ) 2 + 3x 1 x k = 1 2 d k = 5/2 2 wtedy x k + α k d k = 1 5/2 α k 2 2α k f(α k ) = (1 5/2 α k ) 2 + 2(2 2α k ) 2 + 3(1 5/2 α k ) = = 57/4 (α k ) 2 57/2 α k

245 Idea niezaleŝnego kierunku poszukiwań i długości kroku WaŜna implikacja warunku znajdź α k 0 : d k musi być tak dobrany, Ŝe aby dotrzeć do minimum funkcji z wektora x k naleŝy poruszać się w stronę wyznaczoną wektorem d k ( do przodu ) a więc przyjęcie np. d k = f (x k ) jest dopuszczalne bo wektor f (x k ) wskazuje kierunek maksymalnego spadku funkcji znalezione α k będzie potencjalnie dodatnie d k = f (x k ) jest niedopuszczalne bo wektor f (x k ) wskazuje kierunek maksymalnego wzrostu funkcji znalezione α k będzie zawsze zerem Sytuacje szczególne (powinny być uwzględnione w warunkach stopu metod) d k = 0 α k = 0 245

246 Idea niezaleŝnego kierunku poszukiwań i długości kroku Poszukiwanie dowolnej (niekoniecznie nieujemnej) długości kroku metody s k ustal d k 0 znajdź α k minimalizujące funkcję f(α k ) = f(x k + α k d k ) (zamiast: znajdź α k 0 minimalizujące funkcję f(α k ) = f(x k + α k d k ) ) oblicz s k = α k d k Metoda ta zawiera wewnętrzny problem optymalizacji jest to zawsze problem optymalizacji jednowymiarowej bez ograniczeń jako taki moŝe być rozwiązywany np. (optymalizacyjną) metodą Newtona 246

247 Uogólniona metoda Newtona x k Ilustracja problemu: znajdź α k minimalizujące f(α k ) = f(x k + α k d k ) 247

248 Uogólniona metoda Newtona ±d k Ilustracja problemu: znajdź α k minimalizujące f(α k ) = f(x k + α k d k ) 248

249 Ilustracja problemu: znajdź α k minimalizujące f(α k ) = f(x k + α k d k ) 249

250 Uogólniona metoda Newtona 0 Ilustracja problemu: znajdź α k minimalizujące f(α k ) = f(x k + α k d k ) α k 250

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

WIELOMIANY SUPER TRUDNE

WIELOMIANY SUPER TRUDNE IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,

Bardziej szczegółowo

Wykresy i własności funkcji

Wykresy i własności funkcji Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

1.UKŁADY RÓWNAŃ LINIOWYCH

1.UKŁADY RÓWNAŃ LINIOWYCH UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo