Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
|
|
- Edyta Żurek
- 5 lat temu
- Przeglądów:
Transkrypt
1 Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji) b) Regula Falsi c) siecznych d) Newtona-Raphsona 2. Wyznaczanie zer wielokrotnych a) modyfikacja metod przy znajomości krotności pierwiastka b) modyfikacja metod siecznych i Newtona dla przypadku ogólnego c) Proces d 2 Aitkena 3. Rozwiązywanie układów równań nieliniowych 4. Wyznaczanie zer rzeczywistych i zespolonych wielomianów a) dzielenie wielomianów b) metoda iterowanego dzielenia 1
2 Równanie nieliniowe z jedną niewiadomą Poszukujemy zera rzeczywistego ciągłej funkcji f(x), czyli szukamy rozwiązania równania: 1 0 y x f(x)=x^3-x^2-4x+4 f(x)=xsin(x) 2
3 Uwagi: nie istnieją wzory pozwalające obliczyć dokładnie pierwiastki równania trzeba używać schematów iteracyjnych. Często w obliczeniach inżynierskich nie jest znana postać równania nieliniowego rozwiązanie problemu uzyskane metodą iteracyjną będzie przybliżone (z zadaną dokładnością) jak w każdej metodzie iteracyjnej, o tym jak szybko znajdziemy zadowalające przybliżenie pierwiastka zależeć będzie od samej metody, od przybliżenia założonego na starcie oraz od postaci funkcyjnej równania 3
4 Metoda połowienia (bisekcji) Rozwiązania szukamy w przedziale, w którym znajduje się miejsce zerowe funkcji, w tzw. przedziale izolacji pierwiastka (wewnątrz tego przedziału pierwsza pochodna funkcji nie zmienia znaku). Przedział wyznacza się na podstawie wykresu funkcji lub w przypadku wielomianów algebraicznych analitycznie. Algorytm 1. Dzielimy przdział izolacji na pół 2. Sprawdzamy czy spełniony jest warunek Założenia: w przedziale [a,b] znajduje się dokładnie jeden pierwiastek na końcach przedziału wartosci funkcji mają różne znaki tj. jeśli tak to mamy rozwiązanie, jeśli nie to przechodzimy do kolejnego puntu 3. z dwóch przedziałów [a,x 1 ] oraz [x 1,b] wybieramy ten, w którym wartości funkcji na krańcach przedziałów mają różne znaki 4. Powtarzamy kroki 1-3, co powduje że długości kolejnych przedziałów maleją 4
5 Lewe krańce przedziałów tworzą ciąg niemalejący ograniczony z góry. Natomiast prawe tworzą ciąg nie rosnący ograniczony z dołu. Istnieje ich wspólna granica w punkcie a. Punkt ten jest poszukiwanym rozwiązaniem równania nieliniowego. Przykład. Znaleźć w przedziale [1,2] metodą połowienia pierwiastek równania Wyniki kolejnych przybliżeń rozwiązania x f(x) Wadą metody wolna zbieżność w otoczeniu punktu stanowiącego rozwiązanie. Zaletą jest natomiast niezawodność metody. Wewnątrz przedziału wartość pierwszej pochodnej funkcji jest dodatnia (nie zmienia znaku) więc jest to przedział izolacji pierwiastka. 5
6 Wzór iteracyjny. Jeżeli g(y) stanowi funkcję odwrotną do f(x) to dla zbioru punktów funkcję g(y) można przybliżyć (aproksymować) wielomianem Lagrange'a Oznaczmy Jeśli x=a jest rozwiązaniem (pierwiastkiem) to wówczas y=0 Wzór ten można zapisać w bardziej ogólnej postaci (x i+1-j to wcześniej wyznaczone przybliżenia) gdzie wielomian l j ma postać Wzór na x i+1 określa metodę iteracyjną rozwiązywania równania nieliniowego. który jest n-punktowym wzorem iteracyjnym. Szczególnym przypadkiem są metody jednopunktowe wykorzystujące do znalezienia przybliżenia w i+1 iteracji przy znajomości przybliżenia wyznaczonego w i- tym kroku 6
7 Zbieżność metody iteracyjnej Ciąg przybliżeń jest zbieżny gdy Błąd rozwiązania w i-tej iteracji W punkcie x=a metoda jest rzędu p, jeśli istnieje liczba rzeczywista dla której zachodzi Liczbę C nazywamy stałą asymptotyczną błędu 7
8 Metoda Regula Falsi W metodzie tej wykorzystuje się założenie istnienia lokalnej liniowości funkcji (fałszywe, stąd nazwa). Zakładamy ponadto: 1) w przedziale [a,b] funkcja ma tylko jeden pierwiastek pojedynczy 2) f(a)f(b)<0 3) funkcja jest klasy C 2 4) pierwsza i druga pochodna nie zmieniają znaku w przedziale [a,b] Rys. Idea metody Regula Falsi dla funkcji wypukłej 8
9 Sposób postępowania (Regula Falsi): 1. przez punkty A i B prowadzimy prostą o równaniu: 2. punkt x 1 w którym prosta przecina oś 0x przyjmuje się za pierwsze przybliżenie szukanego pierwiastka równania: 3. sprawdzamy warunek, czy: f(x 1 )=0, jeśli tak to przerywamy oblicznia 4. jeśli to sprawdzamy na końcach którego przedziału ([A,x 1 ], [x 1,B]) wartości funkcji mają różne znaki przez te punkty prowadzimy kolejną prostą powtarzając kroki (1-4) Jeśli w przedziale [A,B] a) f (1) (x)>0 oraz f (2) (x)>0 to B jest punktem stacjonarnym (prawy brzeg ustalony) b) f (1) (x)>0 oraz f (2) (x)<0 to A jest punktem stacjonarnym Metoda generuje ciąg przybliżeń. Elementy ciągu wyznaczamy iteracyjnie: 9
10 Uwagi: Metoda Regula Falsi jest zbieżna do dowolnej funkcji ciągłej w przedziale [a,b] jeśli wartość pierwszej pochodnej jest ograniczona i różna od zera w otoczeniu pierwiastka Obliczenia przerywa się jeśli dwa kolejne przybliżenia różnią się o mniej niż założone e. Wadą jest wolna zbieżność ciągu przybliżeń rząd metody p=1. 10
11 Metoda siecznych Przykład. szukamy dodatniego pierwiastka równania Jest modyfikacją metody Regula Falsi. Prostą przeprowadza się przez dwa ostatnie przybliżenia x k i x k-1 (metoda dwupunktowa). Kolejne przybliżenia w metodzie siecznych wyznacza się według relacji rekurencyjnej: Regula Falsi Metoda siecznych x x Zbieżność metody jest większa niż w metodzie RF. Rząd metody x x x x Należy dodatkowo przyjąć, że f(x k ) mają tworzyć ciąg wartości malejących. Jeśli w kolejnej iteracji f(x k ) zaczyna rosnąć, należy przerwać obliczenia i ponownie wyznaczyć punkty startowe zawężając przedział izolacji. x x x x x
12 Metoda Newtona-Raphsona (metoda stycznych) Algorytm: 1) z końca przedziału [a,b] w którym funkcja ma ten sam znak co druga pochodna należy poprowadzić styczną do wykresu funkcji y=f(x) ( w ten sposób wykonujemy jedną iterację mniej, bo zbliżamy się od pierwiastka z jednej strony patrz rysunek) 2) styczna przecina oś 0X w punkcie x 1 który stanowi pierwsze przybliżenie rozwiązania 3) sprawdzamy czy f(x 1 )=0, jeśli nie to z tego punktu prowadzimy kolejną styczną 4) druga styczna przecina oś 0X w punkcie x 2 ktróry stanowi drugie przybliżenie 5) kroki 3-4 powtarzamy iteracyjne aż spełniony będzie warunek 12
13 Równanie stycznej poprowadzonej z punktu B: i dla y=0, otrzymujemy pierwsze przybliżenie: Równanie stycznej w k-tym przybliżeniu Wzór iteracyjny na położenie k-tego przybliżenia pierwiastka równania nieliniowego w metodzie Newtona Metoda Newtona jest więc metodą jednopunktową. 13
14 Oszacowanie rzędu metody Newtona Natomiast z tw. Lagrange'a wynika że Korzystamy z rozwinięcia Taylora: gdzie czyli punkt x 1 leży po lewej stronie punktu B. Powyższe warunki pokazują, że kolejne iteracje przybliżają nas do rozwiązania dokładnego Wiemy że f(a)=0, więc po przekształceniu wzoru Taylora otrzymujemy Korzystając ze wzoru na pierwsze przybliżenie, możemy oszacować odległość nowego przybliżenia od dokładnego rozwiązania: Rząd zbieżności metody wynosi p=2. czyli punkt x 1 leży na prawo od pierwiastka. 14
15 Przykład. Zastosować metodę Newtona do znalezienia pierwiastka kwadratowego dodatniej liczby c Szukamy miejsca zerowego funkcji Wykorzystujemy relację rekurencyjną co poprzekształceniu daje 15
16 Poszukiwanie pierwiastków wielokrotnych równania nieliniowego def. Liczbę a nazywamy r-krotnym (r 2 ) pierwiastkiem równania f(x)=0 wtedy i tylko wtedy, gdy jest (r-1) -krotnym pierwiastkiem równania: Metody: połowienia, RF, siecznych - nadają się do poszukiwania pierwiastków tylko o nieparzystej krotności, rząd metody siecznych obniża się (wolniejsza zbieżność) metoda Newtona - pozwala znaleźć pierwiastki o parzystej i nieparzystej krotności Aby utrzymać rząd metody (przyśpieszyć zbieżność) stosuje się modyfikacje wzorów rekurencyjnych. a) znamy krotność r pierwiastka równania Wówczas możemy wykorzystać tę informację w metodzie Newtona (w praktyce bardzo rzadko znamy wartość r przez co zastosowanie powyższego wzoru jest mocno ograniczone) 16
17 Obliczmy różnicę pomiędzy rozwiązaniem dokładnym a k+1 przybliżeniem Kombinacja dwóch ostatnich zależności prowadzi do związku pomiędzy błędami w k i w k+1 iteracji Gdzie Różniczkujemy G(x) j-krotnie Ponieważ Wykorzystujemy fakt że a jest pierwiastkiem r- krotnym Z rozwinięcia Taylora w punkcie x=a dostajemy oraz Więc metoda Newtona dla pierwiastka krotności r ma rząd zbieżności p=2. 17
18 b) Jeśli wiemy że pierwiastek jest wielokrotny ale nie znamy jego krotności r wówczas możemy badać zera funkcji Przykład. Wyznaczyć dodatni pierwiastek równania Funkcja u(x) ma zero krotności 1 w punkcie x=a. We wzorach iteracyjnych dokonujemy podstawienia u(x) za f(x) w metodzie siecznych w metodzie Newtona gdzie: m. Newtona m. Newtona - r m. Newtona - u(x) x x x x x x x x x x x x x x x
19 Proces d 2 Aitkena Jeśli metoda jest zbieżna liniowo to można ją w prosty sposób przyśpieszyć gdzie C i dąży do stałej asymptotycznej błędu. Po wielu iteracjach powinniśmy otrzymać przybliżenie Zwiększamy indeks i o 1 i eliminujemy stałą następnie obliczamy a Procedurę tę można stosować jedynie dla metod zbieżnych liniowo, gdy kolejne 3 przybliżenia są bliskie poszukiwanemu rozwiązaniu. 19
20 Układy równań nieliniowych Układ równań nieliniowych zapisujemy w postaci wektorowej Uwaga: pogrubiona czcionka oznacza wielkość wektorową Dla takiej postaci układu wyprowadza się wzory iteracyjne. Ogólny wzór iteracyjny (wielokrokowy) Zakladamy że funkcja wektorowa f ma w otoczeniu rozwiązania funkcję odwrotną Jeśli punkt 20 jest odwrotny do punktu x (wektora przybliżonych rozwiązań)
21 Funkcję odwrotną g(y) możemy rozwinąć w szereg Taylora w otoczeniu punktu y i gdzie: jest pochodną cząstkową funkcji h względem zmiennych w punkcie x, a wektor oznacza przyrosty (przesunięcia) w j-wymiarowej przestrzeni 21
22 Szukane rozwiązanie ma postać Po odrzuceniu reszty w rozwinięciu Taylora i uwzględnieniu powyższego warunku otrzymujemy n-wymiarowy odpowiednik metody Newtona. Dla m=0 (metoda jednokrokowa) Pochodne funkcji g można wyrazic poprzez pochodne funkcji f. Dla n=2 otrzymujemy Rząd zbieżności metody wynosi 2. Zazwyczaj zbieżność uzyskujemy tylko jeśli startujemy już z dobrym przybliżeniem rozwązania. uwaga: elementy macierzowe wyznaczamy w każdej iteracji 22
23 policzmy różniczki zupełne funkcji f1, f2,. i zapiszmy je w postaci macierzowej interesują nas przyrosty wektora x więc odwracamy zagadnienie (i macierz) Jeśli funkcje f1 i f2 rozwijamy w szereg w otoczeniu pierwiastka to możemy założyć: oraz 23
24 Problem poszukiwania rozwiązań układu równań nieliniowych można sformułować jako problem poszukiwania minimum poniższej fukcji Funkcja osiąga minimum globalne dla dokładnego rozwiązania x. Do jego znalezienia można użyć metody największego spadku (minimalizacja wartości funkcji). Wyznaczanie zer wielomianów metodą iterowanego dzielenia Metody dzielenia wielomianów Aby wyznaczyć zera zespolone konieczne jest przeprowadzenie dzielenia wielomianów a) przez czynniki liniowe (dwumian) b) przez czynniki kwadratowe (trójmian) 24
25 Wielomian dzielimy przez dwumian Wynikiem dzielenia jest Z porównania współczynników przy jednakowych potęgach otrzymujemy zależności Zatem współczynnki nowego wielomianu można obliczać rekurencyjnie 25
26 Dzieląc jeszcze raz wielomian otrzymamy Wartości współczynników c i wyznaczamy analogicznie jak w poprzednim przypadku. Obliczanie zer za pomocą iterowanego dzielenia Zera wielomianu możemy wyznaczyć iteracyjnie stosując zmodyfikowane wzory jednokrokowe np. metodę siecznych czy Newtona. Kolejne przybliżenia w metodzie siecznych wyznaczamy ze wzoru oraz w metodzie Newtona 26
27 Przykład. Znaleźć zera wielomianu dla parametrów 27
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Kubatury Gaussa (całka podwójna po trójkącie)
Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Metody Obliczeniowe w Nauce i Technice
7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 6 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 31 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/
Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
Metody Numeryczne. Wojciech Szewczuk
Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Procedury wyższych rzędów 1 Procedury wyższych rzędów jako abstrakcje konstrukcji programistycznych Intuicje Procedury wyższych rzędów
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Równania różniczkowe liniowe II rzędu
Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Pochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe
Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Metody Obliczeniowe w Nauce i Technice
8. Wyznaczanie pierwiastków wielomianów Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena Nowak
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a