PROBLEMY NIEROZSTRZYGALNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROBLEMY NIEROZSTRZYGALNE"

Transkrypt

1 PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną liczbą kafelków w każdym z rodzajów, ale ich zestaw jest zadany) T Dla zestawu 1. - TAK T Dla zestawu 2. - NIE Zestaw 2:! M.Rawski Wstęp do Informatyki 1

2 PROBLEMY NIEROZSTRZYGALNE cd T Twierdzenie T Dla każdego algorytmu (zapisanego w dającym się efektywnie wykonać języku programowania), który byłby przeznaczony do rozstrzygania problemu domina, istnieje nieskończenie wiele dopuszczalnych zestawów danych wejściowych, dla których algorytm ten będzie działał w nieskończoność lub poda błędną odpowiedź. T Wniosek T Problem domina jest problemem nierozstrzygalnym M.Rawski Wstęp do Informatyki 2

3 PROBLEMY NIEROZSTRZYGALNE cd PROBLEMY NIEROZSTRZYGALNE (LUB NIEOBLICZALNE) W ogóle nie istnieją algorytmy PROBLEMY TRUDNO ROZWIĄZYWALNE Nie istnieją wielomianowe algorytmy PROBLEMY ŁATWO ROZWIĄZYWALNE Istnieją rozsądne (wielomianowe) algorytmy nieograniczoność liczby przypadków do sprawdzenia nie jest dostatecznym warunkiem nierozstrzygalności problemu! jeśli nierozstrzygalność się pojawia, to wynika z natury problemu i jest często sprzeczna z intuicją M.Rawski Wstęp do Informatyki 3

4 Problem węża domino T Czy dysponując skończonym zbiorem typów kafelków można połączyć dwa dane punkty nieskończonej siatki całkowitoliczbowej wężem domino? T Jeżeli postawimy problem węża domino na pewnym obszarze R, to: dla R ograniczonego problem jest oczywiście rozstrzygalny dla R będącego całą płaszczyzną problem jest rozstrzygalny dla R będącego półpłaszczyzną problem jest nierozstrzygalny X Y M.Rawski Wstęp do Informatyki 4

5 Problem stopu w algorytmie Mając jako dane wejściowe tekst poprawnego programu zapisanego w pewnym języku, sprawdzić(tzn. zbudować algorytm, który by sprawdzał), czy program zatrzyma się dla pewnych dopuszczalnych dla niego danych. T X N T Algorytm 1 T 1.dopóki X 1 wykonuj X X -2 T 2. zatrzymaj obliczenia T X N T Algorytm 2 T T 1. dopóki X 1 wykonuj: T 1.1.dla X parzystego X X / 2 T 1.2. dla X nieparzystego X 3* X zatrzymaj obliczenia algorytm zatrzymuje się dla X nieparzystych nie zatrzymuje się dla X parzystych dla wszystkich sprawdzanych liczb algorytm zatrzymywał się nie udowodniono, że zatrzymuje się dla dowolnej liczby naturalnej M.Rawski Wstęp do Informatyki 5

6 Problem stopu w algorytmie cd T np. dla X = 7 generuje ciąg wartości: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 T program lub algorytm dopuszczalne dane R X czy program R zatrzymuje się dla danych X? czy istnieje taki program? TAK NIE T Problem stopu jest nierozstrzygalny. M.Rawski Wstęp do Informatyki 6

7 Odmiany problemu domina Czy podanym zestawem kafelków można pokryć obszar T zachowując odpowiedniość kolorów na styku kafelków? T = prostokąt C x N (tzw. problem ograniczony ze stałą szerokością) T = kwadrat N x N (tzw. problem ograniczony) T jest nieskończony (tzw. problem nieograniczony) T jest nieskończony i wskazany kafelek ma się powtórzyć nieskończenie wiele razy (tzw. problem okresowy) T Rodzaj problemu domina Status algorytmiczny ograniczony ze stałą szerokością łatwo rozwiązywalny ograniczony trudno rozwiązywalny nieograniczony nierozstrzygalny okresowy wysoce nierozstrzygalny M.Rawski Wstęp do Informatyki 7

8 Klasy problemów algorytmicznych Klasy problemów algorytmicznych WYSOCE NIEROZSTRZYGALNE NIEROZSTRZYGALNE TRUDNO ROZWIĄZYWALNE ŁATWO ROZWIĄZYWALNE PROBLEMY WYSOCE NIEROZSTRZYGALNE Nie można sprowadzić do tych, dla których nie istnieją algorytmy Teoria Praktyka PROBLEMY NIEROZSTRZYGALNE W ogóle nie istnieją algorytmy PROBLEMY TRUDNO ROZWIĄZYWALNE Nie istnieją rozsądne algorytmy PROBLEMY ŁATWO ROZWIĄZYWALNE Istnieją rozsądne (wielomianowe) algorytmy M.Rawski Wstęp do Informatyki 8

9 KOMPUTER PROSTY I UNIWERSALNY T Jak dalece można uprościć struktury danych? T Przykład tablicy dwuwymiarowej T Przykład drzewa * 45 * -3 * * 91 * 0 * 12 * * -15 * 11 * 17 N I F O R M A T Y K A I * * N * F * O * * R * M * A * T * * Y * K * A M.Rawski Wstęp do Informatyki 9

10 Linearyzacja struktur danych T Każdą strukturę danych da się zlinearyzować tzn. zapisać na jednowymiarowej taśmie # # # # T T Przyjmujemy najprostszy model pamięci: nieskończona jednowymiarowa taśma dopuszczalny zestaw symboli (alfabet), które mogą być zapisywane w komórkach taśmy pusta komórka oznaczana symbolem # M.Rawski Wstęp do Informatyki 10

11 KOMPUTER PROSTY I UNIWERSALNY T Jak dalece można uprościć struktury sterujące? T znajdowanie się procesora w określonym miejscu programu nazywamy jego stanem T przejście do innego miejsca (stanu) zależy od stanu aktualnego i od wartości pewnych jednostek danych stan aktualny symbole alfabetu a b c możliwe stany następne M.Rawski Wstęp do Informatyki 11

12 Maszyna Turinga pojedynczy symbol alfabetu STEROWANIE (diagram przejść pomiędzy stanami) głowica odczytująco -zapisująca Części składowe: skończony alfabet symboli (do zapisywania danych) # # # # nieskończona taśma skończony zbiór stanów, w których może znajdować się maszyna nieskończona taśma podzielona na komórki przechowujące pojedyncze symbole alfabetu krokowo poruszająca się głowica odcztująco-zapisująca diagram przejść miedzy stanami, który steruje głowicą tak, że zmiany następują po każdym jej zatrzymaniu stan początkowy i stany końcowe (elementy uzupełniające w diagramie przejść) M.Rawski Wstęp do Informatyki 12

13 Diagram przejść - graf skierowany T Podstawowe elementy diagramu przejść: stan (wierzchołek grafu) etykieta akcja przejście nazwa stanu a / b L T T T T T symbol alfabetu - wyzwalacz przejścia kierunek przesunięcia głowicy (L lub P) symbol alfabetu zapisywany w komórce maszyna jest deterministyczna tzn. z żadnego stanu nie wychodzi więcej niż jedno przejście z tym samym wyzwalaczem jeden ze stanów jest wyróżniony jako stan początkowy nazwa stanu stany, z których nie wychodzą żadne przejścia, nazywane są stanami końcowymi w stanie początkowym głowica jest ustawiona na pierwszej od lewej niepustej komórce taśmy nazwa stanu M.Rawski Wstęp do Informatyki 13

14 Wykrywanie polindromów T Przykład diagramu przejść dla maszyny Turinga ruch dla a # / # L test dla a a / # L b / b L a / # P b / b P a / a P b / b L a / a L # / # L # / # L zaznacz TAK NIE powrót b / # P b / b P a / a P # / # L a / a L b / # L ruch dla b # / # L test dla b # / # P M.Rawski Wstęp do Informatyki 14

15 Wykrywanie polindromów T Przykład działania maszyny Turinga # # a b b a # # # # # b b a # # # # # b b a # # # # # b b a # # M.Rawski Wstęp do Informatyki 15

16 TEZA CHURCHA-TURINGA T Maszyna Turinga: ma skończenie wiele stanów zapisuje po jednym symbolu na liniowej taśmie Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! Teza CT M.Rawski Wstęp do Informatyki 16

17 Modele komputera uniwersalnego T Różne inne modele komputera uniwersalnego: rachunek lambda (Church) system produkcji dla symboli (Post) klasa funkcji rekurencyjnych (Kleen)... i wiele innych Wszystkie modele są równoważne w sensie klasy problemów algorytmicznych, które rozwiązują! M.Rawski Wstęp do Informatyki 17

18 Algorytm uniwersalny algorytm A T Konsekwencją tezy CT jest istnienie algorytmów uniwersalnych program P realizujący algorytm A napisany w uniwersalnym języku L 2 uniwersalny program U napisany w języku L 1 - symuluje wynik programu w języku L 2 na jego danych program P wykonaj program P na danych X wyniki (jeśli są) dane X można zbudować uniwersalną maszynę Turinga, która może symulować działanie dowolnej maszyny Turinga na dowolnych danych (trzeba opisać na taśmie zlinearyzowany diagram przejść, reprezentując każde przejście jako parę stanów z podaną etykietą przejścia) M.Rawski Wstęp do Informatyki 18

19 Algorytm uniwersalny T Rozwijając tezę CT można dojść do wniosku, że: T jeśli jakiś (szybki) komputer rozwiązuje pewien problem w czasie O(f(N)), to istnieje równoważna mu maszyna Turinga, która potrzebuje na rozwiązanie tego problemu nie więcej niż O(p(f(N))) czasu, dla pewnej ustalonej funkcji wielomianowej p T Zatem: klasa problemów obliczalnych (rozstrzygalnych) jest silna tj. niewrażliwa na zmianę modelu obliczeń lub języka zapisu algorytmu klasa problemów łatwo rozwiązywalnych P jest także silna (tzw. teza obliczania sekwencyjnego, czyli wykonywanego krok po kroku) klasa NP jest silna klasa problemów o wykładniczej złożoności czasowej jest silna klasa problemów o liniowej złożoności czasowej nie jest silna tzn. złożoność tych problemów może zależeć od przyjętego modelu obliczeń M.Rawski Wstęp do Informatyki 19

20 Klasy problemów P i NP - formalnie T Formalnie klasy problemów P i NP definiuje się w kategoriach obliczeń na maszynie Turinga: problemy z klasy P są rozwiązywalne przez zwykłe maszyny Turinga w czasie wielomianowym problemy z klasy NP są rozwiązywalne przez niedeterministyczne maszyny Turinga w czasie wielomianowym T Na mocy tezy CT wystarczyło by pokazać, że pewien problem NP-zupełny nie może być rozwiązany za pomocą maszyny Turinga w czasie krótszym niż wykładniczy, aby wykazać, że P NP. a / b P? a / b L przejście niedeterministyczne M.Rawski Wstęp do Informatyki 20

21 Obliczenia współbieżne rozwiązywanie problemu algorytmicznego za pomocą współpracujących ze sobą wielu procesorów wykorzystanie komputerów równoległych, składających się z wielu rozłącznych elementów przetwarzających modele obliczeń i przetwarzania informacji w środowiskach rozproszonych (sieci telekomunikacyjne, systemy rezerwacji biletów lotniczych, długoterminowe prognozy pogody wyznaczane równolegle w wielu centrach obliczeniowych) algorytm sekwencyjny algorytm równoległy X 3 Y 4 X 3 Y 4 2 kroki 1 krok X 3 Y X X 3 Y X M.Rawski Wstęp do Informatyki 21

22 Przykład sumowania zarobków w czasie logarytmicznym T Naturalny algorytm sekwencyjny o koszcie O(N): dodawanie N razy do sumy bieżącej T Algorytm równoległy o koszcie O(log N): krok 1 krok 2 krok log 2 N N/2 procesorów N/4 procesorów 1 procesor Σ Σ Σ Σ Σ Σ M.Rawski Wstęp do Informatyki 22

23 Obliczenia współbieżne T O szybkości algorytmów równoległych, oczywiście poza liczbą dostępnych procesorów, decydują także struktury danych i metody komunikacji! T W algorytmie sumowania N liczb: dla osiągnięcia redukcji z O(N) do O(log N) potrzebujemy N/2 procesorów mając do dyspozycji ustaloną liczbę procesorów poprawimy przetwarzanie tylko o stałą (np. 100 razy szybciej), ale nie o rząd wielkości uzyskanie poprawy rzędu wielkości wymaga rozszerzającej się równoległości tzn. liczba procesorów rośnie proporcjonalnie do N M.Rawski Wstęp do Informatyki 23

24 Sortowanie równoległe T Rozważmy sekwencyjny algorytm sortowania przez scalanie: T procedura sortuj-listę L; T jeśli L zawiera tylko jeden element, to jest posortowana; T w przeciwnym razie wykonaj co następuje: T podziel listę L na dwie połowy L 1 i L 2 ; T wywołaj sortuj-listę L 1 ; T wywołaj sortuj-listę L 2 ; T scal listy L 1 i L 2 w jedną posortowaną listę; T wróć do poziomu wywołania. T -złożoność czasowa O(N log N) M.Rawski Wstęp do Informatyki 24

25 Sortowanie równoległe T Rozważmy sekwencyjny algorytm sortowania przez scalanie: T procedura sortuj-listę L; T jeśli L zawiera tylko jeden element, to jest posortowana; T w przeciwnym razie wykonaj co następuje: T podziel listę L na dwie połowy L 1 i L 2 ; T wywołaj równocześnie równolegle-sortuj-listę L 1 i równoleglesortuj-listę L 2 ; T wróć do poziomu wywołania. M.Rawski Wstęp do Informatyki 25

26 Sortowanie równoległe -Analiza złożoności N/2 par scalanie w czasie 1 porównania N/4 par scalanie w czasie 3 porównań N/8 par scalanie w czasie 7 porównań para scalanie w czasie N - 1 porównań T zatem całkowita liczba porównań wyniesie: T ( N - 1 ) 2 N - liczba rzędu O(N) M.Rawski Wstęp do Informatyki 26

27 Złożoność iloczynowa T Złożoność iloczynowa: liczba procesorów czas złożoność rozmiaru algorytmu najlepsza złożoność iloczynowa nie będzie lepsza niż dolne ograniczenie sekwencyjnej złożoności problemu Rodzaj algorytmu Nazwa algorytmu Liczba procesorów (rozmiar) Czas (najgorszy przypadek) Iloczyn (rozmiar czas) sortowanie bąbelkowe 1 O(N 2 ) O(N 2 ) sekwencyjny sortowanie przez scalanie 1 O(N log N) O(N log N) równoległe sortowanie O(N) O(N) O(N 2 ) przez scalanie równoległy sieć sortująca parzystonieparzyście O(N (log N) 2 ) O((log N) 2 ) O(N (log N) 4 ) optymalna sieć sortująca O(N) O(log N) O(N log N) M.Rawski Wstęp do Informatyki 27

28 Co można, a czego nie T Co można, a czego nie można osiągnąć równoległością: T wiele problemów można rozwiązać szybciej niż sekwencyjnie T można niektóre problemy rozwiązywać szybciej nawet o rząd wielkości, jeśli da się zastosować rozszerzającą się równoległość T dla problemów nierozstrzygalnych nie da się skonstruować algorytmu równoległego - klasa problemów rozwiązywalnych jest niewrażliwa na dodanie równoległości T wszystkie problemy klasy NP mają rozwiązania równoległe znajdowane w czasie wielomianowym, ale T liczba procesorów potrzebnych do rozwiązania problemu NP-zupełnego w rozsądnym czasie rośnie wykładniczo T do końca nie wiadomo, czy problemy klasy NP są rzeczywiście trudno rozwiązywalne i trzeba szukać ratunku w równoległości T rzeczywiste komputery równoległe mają silne ograniczenia związane z przepustowością połączeń pomiędzy procesorami T nie wiadomo, czy można zastosować równoległość, nawet z niewielomianową liczbą procesorów, do rozwiązania w czasie wielomianowym problemu o udowodnionej sekwencyjnej złożoności wykładniczej M.Rawski Wstęp do Informatyki 28

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Informatyka 1. Złożoność obliczeniowa

Informatyka 1. Złożoność obliczeniowa Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Obliczenia współbieżne czyli zmiana założenia o sekwencyjnym działaniu procesora rozwiązywanie problemu algorytmicznego za pomocą współpracujących ze sobą wielu procesorów wykorzystanie komputerów równoległych,

Bardziej szczegółowo

Podstawy Programowania. Złożoność obliczeniowa

Podstawy Programowania. Złożoność obliczeniowa Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

Maszyna Turinga (Algorytmy Część III)

Maszyna Turinga (Algorytmy Część III) Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych

Bardziej szczegółowo

Podstawy Programowania

Podstawy Programowania Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

Podstawy Programowania. Złożoność obliczeniowa

Podstawy Programowania. Złożoność obliczeniowa Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

MASZYNA TURINGA UPRASZCZANIE DANYCH

MASZYNA TURINGA UPRASZCZANIE DANYCH MASZYNA TURINGA Maszyna Turinga jest prostym urządzeniem algorytmicznym, uderzająco prymitywnym w porównaniu z dzisiejszymi komputerami i językami programowania, a jednak na tyle silnym, że pozwala na

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Podstawy Programowania

Podstawy Programowania Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

Podstawy Informatyki Maszyna Turinga

Podstawy Informatyki Maszyna Turinga Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Podstawy Informatyki. Sprawność algorytmów

Podstawy Informatyki. Sprawność algorytmów Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych

Bardziej szczegółowo

Elementy Teorii Obliczeń

Elementy Teorii Obliczeń Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych

Bardziej szczegółowo

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

INFORMATYKA SORTOWANIE DANYCH.

INFORMATYKA SORTOWANIE DANYCH. INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Maszyna Turinga Złożoność obliczeniowa

Maszyna Turinga Złożoność obliczeniowa Maszyna Turinga Złożoność obliczeniowa Weryfikacja poprawności programu W celu uniezależnienia się od typu komputera służącego do realizowania obliczeń, musimy się posłużyć ogólnym abstrakcyjnym modelem

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

O ISTOTNYCH OGRANICZENIACH METODY

O ISTOTNYCH OGRANICZENIACH METODY O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1 Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,

Bardziej szczegółowo

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Maszyna Turinga, ang. Turing Machine (TM)

Maszyna Turinga, ang. Turing Machine (TM) Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga

Bardziej szczegółowo

Dopełnienie to można wyrazić w następujący sposób:

Dopełnienie to można wyrazić w następujący sposób: 1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie

Bardziej szczegółowo

Wprowadzenie do maszyny Turinga

Wprowadzenie do maszyny Turinga Wprowadzenie do maszyny Turinga Deterministyczna Maszyna Turinga (DTM) jest pewną klasą abstrakcyjnych modeli obliczeń. W tej instrukcji omówimy konkretną maszynę Turinga, którą będziemy zajmować się podczas

Bardziej szczegółowo

Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1

Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1 Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się

Bardziej szczegółowo

Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok.

Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok. Złożoność problemów Przykład - wieże Hanoi Problem jest zamknięty (dolne ograniczenie złożoności = złożoność algorytmu rekurencyjnego lub iteracyjnego) i ma złożoność O(2 N ). Mnisi tybetańscy podobno

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Zasady analizy algorytmów

Zasady analizy algorytmów Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Złożoność obliczeniowa. wykład 1

Złożoność obliczeniowa. wykład 1 Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Problemy łatwe i trudne Problemy łatwe to problemy rozwiązywalne w czasie wielomianowym. Problemy trudne to takie, których

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Poprawność algorytmów

Poprawność algorytmów Poprawność algorytmów Jeśli uważasz, że jakiś program komputerowy jest bezbłędny, to się mylisz - po prostu nie zauważyłeś jeszcze skutków błędu, który jest w nim zawarty. Jakie błędy można popełnić? Błędy

Bardziej szczegółowo

Złożoność informacyjna Kołmogorowa. Paweł Parys

Złożoność informacyjna Kołmogorowa. Paweł Parys Złożoność informacyjna Kołmogorowa Paweł Parys Serock 2012 niektóre liczby łatwiej zapamiętać niż inne... (to zależy nie tylko od wielkości liczby) 100...0 100 100... 100 100 100 25839496603316858921 31415926535897932384

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Teoria obliczeń czyli czego komputery zrobić nie mogą

Teoria obliczeń czyli czego komputery zrobić nie mogą Teoria obliczeń czyli czego komputery zrobić nie mogą Marek Zaionc Uniwersytet Jagielloński Materiały do wykładu: P. Odifreddi, Classical Recursion Theory, North Holland 1989. J.H. Hopcroft, J.D. Ullman

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Maszyna Turinga Złożoność obliczeniowa

Maszyna Turinga Złożoność obliczeniowa Zadania łatwe i trudne Złożoność obliczeniowa Zadania łatwe Sortowanie Szukanie pierwiastków wielomianów Szukanie maksimum funkcji ciągłej i różniczkowalnej Mnożenie macierzy Zadania trudne Szukanie maksimum

Bardziej szczegółowo

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę

Bardziej szczegółowo

OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ

OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ Dwa konteksty obliczalności OBLICZALNE i NIEOBLICZALNE problemy (kontekst informatyczny) liczby (kontekst matematyczny) Problem nieobliczalny jest to problem nierozwiązywalny

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

10110 =

10110 = 1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny

Bardziej szczegółowo

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest

Bardziej szczegółowo

Część I. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zadanie 1.1. (0 3)

Część I. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zadanie 1.1. (0 3) Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Część I Zadanie 1.1. (0 3) 3 p. za prawidłową odpowiedź w trzech wierszach. 2 p. za prawidłową odpowiedź

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

1. Analiza algorytmów przypomnienie

1. Analiza algorytmów przypomnienie 1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu?

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy

Bardziej szczegółowo

Algorytmy i Struktury Danych, 2. ćwiczenia

Algorytmy i Struktury Danych, 2. ćwiczenia Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów

Bardziej szczegółowo

Modelowanie procesów współbieżnych

Modelowanie procesów współbieżnych Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Zakładamy, że maszyna ma jeden stan akceptujacy.

Zakładamy, że maszyna ma jeden stan akceptujacy. Złożoność pamięciowa Rozważamy następujac a maszynę Turinga: 1 0 0 1 1 0 1 1 1 1 Taśma wejściowa (read only) 1 0 1 1 0 0 0 1 0 0 1 Taśma robocza (read/write) 0 1 1 0 0 1 0 0 1 Taśma wyjściowa (write only)

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 INFORMATYKA

EGZAMIN MATURALNY 2012 INFORMATYKA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 INFORMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Zadanie 1. a) (0 2) Egzamin maturalny z informatyki CZĘŚĆ I Obszar standardów

Bardziej szczegółowo