TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ( x) = x i minimum globalne.

Wielkość: px
Rozpocząć pokaz od strony:

Download "TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ... 3. ( x) = x i 30 -30. minimum globalne."

Transkrypt

1 FUNKCJE TESTOWE OBLICENIA EWOLUCJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromoome EVOLUTIONAR OPERATORS AND RECEIVING FITNESS F. wykład 5 VALUE ftne f. value MIGRATION PHASE FITNESS F. communcaton COMPUTATION wth other SELECTION ubpopulaton F. RASTRIGINA - x mnmum globalne alne: x = 0, f (x) = -n n - l. zmennych) n 2 ( x) = co(8 ) = f x x ES TERMINATION CONDITION NO END 2 F. ACKLEA n n 2 f ( x) = 20exp 0.2 x exp co(2 π x) e n = n = -30 x 30 mnmum globalne alne: x = 0, f (x) = TPOWE OPERATOR KRŻOWANIA 5 Para rodzców para potomków wykle : 2 oobnk rodzcelke - 2 (przęż ężone) oobnk potomne. Pojedynczy oobnk potomny warant dwuoobnczy para oobnków w rodzcelkch; warant globalny jeden wodący n pomocnczych oobnków w rodzcelkch (po jednym dla każdego genu). Krzyżowane welooobncze: z weloma oobnkam potomnym; z jednym oobnkem potomnym. 6

2 OPERATOR KRŻOWANIA WMIENIAJĄCEGO Tworzą chromoomy potomne przez kładane ch z wartośc genów w chromoomów w rodzcelkch. Mogą być wykorzytywane zarówno przy kodo- wanu bnarnym, jak rzeczywtolczbowym. Ne dochodz do modyfkacj wartośc genów zawartych w chromoomach krzyżowanych oobnków w rodzcelkch (tylko ch przetaowane). 7 8 KRŻOWANIE JEDNOPUNKTOWE (prote) wybór r (z rozkładem jednotajnym) lczby c (punkt rozcęca) ca) ze zboru {, 2,..., n -} n - długość oobnka; Podzał chromoomów X X 2 poddawanych krzyżowanu na dwe częś ęśc ch klejane: = [X[,,..., X c, X2 c+,, X2 n]. X X c W werj z 2 oobnkam potomnym drug potomek: = [X[ 2,,..., X 2 c, X c+,, X n ] 9 0 KRŻOWANIE DWUPUNKTOWE wybór r 2 punktów w rozcęca ca c c 2 ; X X Podzał chromoomów X X 2 poddawanych krzyżo- wanu na 3 częś ęśc wymana środkowej częś ęśc: = [X[,,..., X c, X 2 c+,, X 2 c2, X c2+,, X n ] c W werj z 2 oobnkam potomnym drug potomek: = [X[ 2,,..., X 2 c, X c+,, X c2, X 2 c2+,, X 2 n ] c c = c 2 krzyżowane jednopunktowe KRŻOWANIE WIELOPUNKTOWE... 2

3 KRŻOWANIE RÓWNOMIERNER p e =0.5 Chromoom potomny: X jeśl wyloowano lczbę <p e ; = 2 X w przecwnym raze. X X wyloowano p e parametr krzyżowana (typowo p e =0.5) W werj z 2 oobnkam potomnym drug potomek: 2 X jeśl = X ; = X w przecwnym raze KRŻOWANIE DIAGONALNE Jet krzyżowanem welooobnczym. Tworzy r potomków w z rodzców w przy c = r - punktach krzyżowana. Oobnk potomne powtają w wynku kładana fragmentów w kodu po przekątnej. Dla 3 oobnków: = [X[,,..., X c, X 2 c+,, X 2 c2, X 3 c2+,, X 3 n ] = [X[ 2,,..., X 2 c, X 3 c+,, X 3 c2, X c2+,, X n ] W = [X[ 3,,..., X 3 c, X c+,, X c2, X 2 c2+,, X 2 n ] 5 X X 2 X 3 W W werj potomkem tylko potomek 6 OPERATOR KRŻOWANIA UŚREDNIAJĄCEGO Są pecyfczne dla kodowana rzeczywtolczbowego; Oddzałują na wartośc genów chromoomów poddawanych krzyżowanu; Wartośc każdego genu chromoomów potomnych ą lczbam zawerającym ę mędzy najwękzą najmnejzą wartoścą genu chromoomów rodzcelkch. 7 8

4 KRŻOWANIE ARTMETCNE X X generowane lczby loowej k z zakreu (0,) lub jej arbtralny wybór; uśrednane arytmetyczne wartośc genów chromoomów w rodzcelkch: = X + k (X 2 - X ) X 2 k= W werj z 2 oobnkam potomnym drug potomek: = X 2 + X - Rodzc 2 Potomek 2 Potomek Rodzc Lna krzyżowana k= X KRŻOWANIE HEURSTCNE X X 2 Ne jet krzyżowanem uśrednaju rednającym! Generowane lczby loowej k z zakreu (0,); Tworzy ę (makymalne) jednego potomka: = k (X 2 - X ) + X przy założenu, że f(x 2 ) f(x ) Może e utworzyć potomka, który ne jet dopuzczalny, wówcza: wcza: X 2 Potomek Rodzc 2 Lna krzyżowana» generuje ę nową lczbę loową tworzy nowego potomka;» Jeśl po założonej onej lczbe prób b ne utworzono oobnka dopuzczalnego, to ne tworzy ę potomka. Rodzc X 2 MUTACJA RÓWNOMIERNAR TPOWE OPERATOR MUTACJI 23 Loowy wybór r genu w chromoome. Przyjęce przez gen wartośc loowej (z rozkładem równomernym) z zakreu dopuzczalnego dla danej zmennej: = [X,..., X k,..., X n ], X k = left(k), rght(k) Szczególne użyteczna u we wczenej faze dzałana ana AE (gdy pożą żądane jet zeroke przezukwane obzaru pozukwań optmum). 24

5 MUTACJA NIERÓWNOMIERNA Funkcja Δ(t,y) przyjmuje wartośc z zakreu [0,y]; Należy y do grupy tzw. mutacj ze trojenem. Modyfkacja wartośc wybranego genu o wartość pewnej funkcj Δ(t,y): gdze: = [X,..., X k,..., X n ], X k =X k + Δ (t, (t, rght(k)-x k ) gdy wyloowano 0 X k =X k Δ (t, (t, X k - left(k) gdy wyloowano 25 Prawdopodobeńtwo, że Δ(t,y) jet blke zero wzrata ze wzrotem czau oblczeń y 0 Δ(t,y) (ne zależy y jednak od zachowana ę AE). Początkowa faza oblczeń k y 0 Δ(t,y) Pod konec dzałana ana AE k 26 MUTACJA BREGOWA MUTACJA GAUSSOWSKA Jet odmaną mutacj równomernej, r w której: X k = left(k) gdy wyloowano 0 X k = rght(k) gdy wyloowano Przyjęce przez wyloowany gen wartośc loowej (z rozkładem Gaua) o wartośc oczekwanej równej r wartośc przed zmaną: = [X,..., X k,..., X n ], X k = X k +N(0, N(0,σ) Szczególne użyteczna, u gdy rozwązane zane optymalne leży na brzegu obzaru dopuzczalnego lub bardzo blko tego brzegu) ISTOTNOŚĆ OPERATORÓW W AG przyjmuje ę częto, że krzyżowane jet operatorem perwzoplanowym,, podcza gdy mutacja ma za zadane zapewnać dopływ śweżej ej krw do populacj jet operatorem o mnejzym znaczenu. Wśród d badaczy uprawających programowane ewolucyjne twerdz ę, że krzyżowane jet operatorem zbędnym dnym,, zaś mutacja jet jedynym mechanzmem przezukwana. Potrzebny jet co najmnej jeden tak operator genetyczny, który gwarantuje pójno jność przetrzen genotypów - operatorem tym jet najczęś ęścej mutacja. 29 OPERATOR GENETCNE ADAPTUJĄ- CMI SIĘ PRAWDOPODOBIEŃSTWAMI Użyteczność wękzo kzośc operatorów w genetycznych ne jet jednakowa w każdej faze dzałana ana algorytmu. Mechanzm adaptacj: Prawdop.. operatorów w genetycznych, które częś ęścej prowadzą do lepzych oobnków w potomnych wzrata koztem operatorów mających gorze wynk. Należy y zadbać,, aby ne zablokować żadnego z operatorów (prawdopodobeńtwa ne pownny oąga gać zera) Skuteczność dzałana ana operatora - ocenana przez zewnętrzny proce montorujący który teruje prawdop.. operatorów. Należy y uwzględn dnć w algorytme korzyśc wynkające z dzałana ana pewnych operatorów w wdoczne dopero po klku pokolenach. 30

6 OPTMALIACJA WIELO- KRTERIALNA SFORMUŁOWANIE OWANIE ADANIA Wele praktycznych problemów w podejmowana decyzj, projektowana tp. trudno jet formułowa ować jako zadane optymalzacj funkcj celu zwracającej cej jedną wartość ść. amat jednego lczbowego kryterum oceny mu ę uwzględna dnać cały y ch zbór. Nerzadko jednoczena mnmalzacja tych kryterów w jet nemożlwa z powodu ch wzajemnej przecznośc c Formalne: Dany jet zbór r (wektor) m funkcj: f (x) = [f[ (x)...f m (x)]. Celem jet jednoczena mnmalzacja wzytkch kryterów f j (x). reguły y krytera ne ą ze obą zgodne (mnmalzacja względem jednego z nch może e powodować wzrot nnych). Rozwązane zane x jet zdomnowane wtedy tylko wtedy gdy tneje dopuzczalne rozwązane zane y ne gorze od x (dla wzytkch kryterów). Jeśl rozwązane zane ne jet zdomnowane przez żadne nne rozwązane zane dopuzczalne to nazywamy je rozwązanem zanem nezdomnowanym lub rozwązanem zanem paretooptymalnym. 33 Przykład: Gra na gełdze paperów w wartoścowych Cel: kupowane akcj charakteryzujących cych ę mnmalnym ryzykem jak makymalnym zykem. reguły ne ma takch akcj, które pełna nałyby oba krytera jednocześne. ne. Należy odrzucć akcje, dla których tneje co najmnej jedna nna charakteryzująca ca ę jednocześne ne mnejzym ryzykem wyżz zą rentownośc cą. Akcje, które pozotały po takej elekcj, ą równoprawnym rozwązanam zanam zadana jednoczenej mnmalzacj ryzyka wpółczynnka cena/zyk. 34 Cel: Inwetowane w akcje o jak najmnejzym ryzyku jak najmnejzej wartośc wpółczynnka cena/zyk. ryzyko ryzyko zbór akcj nezdomnowanych adane optymalzacj welokryteralnej polega na pozukwanu zboru P punktów nezdomnowanych. Szczególne przypadk: Pozukwane nezdomnowanego punktu; Pozukwane zboru punktów nezdomnowanych: dużo o trudnejze w ogólnym przypadku nemożlwe do rozwązana; zana; częto potyka ę uprozczene, polegające na znalezenu możlwe najwękzej ch lczby). cena/zyk cena/zyk 35 36

7 Metody optymalzacj welokryteralnej A-pror: - decyzja podejmowana przed rozpoczęcem optymalzacj (pojedynczy cel uzykany a pror). wykłe metody optymalzacj mogą być użyte... Interaktywne: - decyzja podejmowana podcza przezukwana. Wymagana nterakcja z użytkownkem... A-poteror: - znalezene zboru rozwązań nezdomnowanych, natępne podjęce decyzj co do wyboru rozwązana. Koneczne metody optymalzacj welokryteralnej Metody optymalzacj welokryteralnej alety Wady A-PRORI INTERAKTWNE A-POSTERIORI nk kozt oblczenowy prote w mplementacj łatwo dotępne oprogramowane wymagana (nerealtyczne) duża wedza o probleme wymagana analza wrażlwośc decydent nadzoruje proce optymalzacj decydent uczy ę problemu nezbędna ntenywna nterakcja z decydentem wynk zależny od wedzy decydenta preferencje ą określane po faze optymalzacj uzykujemy węcej, nż rozwązane koztowne oblczenowo potrzebna druga faza dla dokonana wyboru; oprogramowane ne jet tek powzechne. 38 Jedno z kryterów w może e być uznane za wodące ce. Rozwązana zana pozukuje ę toując c metody właścwe w dla problemów w z ogranczenam Wprowadzene funkcj agregującej cej. Argumenty wartośc pozczególnych kładnk adnków wektorowego wkaźnka jakośc. W wynku - zagregowany,, kalarny wkaźnk jakośc f (x),, będący b natępne przedmotem optymalzacj: [ ] f ( x) = ϕ f ( x),.. f ( x)] m ϕ - funkcja agregująca ależne od funkcj ϕ różne metody kalaryzacj, np.:. ważone umowane kryterów, 2. metoda punktu dealnego, 3. metoda punktu najgorzych oczekwań. 40 WAŻONE SUMOWANIE SKŁADNIK ADNIKÓW WEKTOROWEGO WSKAŹNIKA JAKOŚCI Najczęś ęścej toowana technka kalaryzacj. Funkcja agregująca ϕ jet lnowa w potac umy ważonej kładnk adnków w wektorowego wkaźnka jakośc. m ϕ [ f( x),.. fm( x)] ] = wk fk( x) k = Wycena pozczególnych elementów w wektorowego wkaźnka jakośc. Wzajemne proporcje korzyśc trat wynkają z przyję-tych wpółczynnk czynnków w wagowych w k. 4 METODA PUNKTU IDEALNEGO Decydent podaje punkt, zwany dealnym,, znajdujący ę poza obzarem dopuzczalnym. Punkt ten to dealne wartośc wektorowego wkaźnka jakośc. SKALARACJA AD. WIELOKRTERIALNEGO Sprowadzene do problemu jednokryteralnego poprzez wprowadzene dodatkowego kryterum, porządkuj dkują- cego punkty nezdomnowane.. Określene makymalnych dopuzczalnych war- tośc pozczególnych kładnk adnków Problem welokryteralny prowadza ę do zagadne- na znalezena dowolnego punktu dopuzczalnego. Można zaakceptować pogorzene jednego z kryterów o pewną welkość ść,, jeśl kompenują to korzyśc wynkające z poprawy wartośc nnych kryterów; adane optymalzacj welokryteralnej prowadza ę do znalezena rozwąza zań nezdomnowanych znajdujących ę najblżej punktu dealnego. Funkcja agregująca ma potać: [ ] ( ),.. ( )] ( ) ϕ f x f x = f x f mn( ϕ ) m - f punkt dealny - norma wektora. 42

8 Metryka eukldeowa: f 2 (x) obzar rozw. dopuzczalny nezdomnowane Metryka max: f 2 (x) obzar dopuzczalny rozw. nezdomnowane METODA PUNKTU NAJGORSCH OCEKIWAŃ Metoda dualna do metody punktu dealnego. W metodze tej makymalzuje ę odległość od tzw. punktu najgorzych oczekwań. max( ϕ ) punkt dealny rozwązane zadana po kalaryzacj f (x) punkt dealny rozwązane zadana po kalaryzacj Kztałty ty zborów w jednakowej wartośc zagregowanej funkcj celu: f (x) 43 MINIMA LOKALNE SKALARNEJ FUNKCJI CELU atoowane metody kalaryzacj może e prowadzć do funkcj celu poadającej węcej nż jedno mnmum. Wkazane jet wówcza w wcza zatoowane jednej z metod optymalzacj welomodalnej. 44 Ewolucyjne metody optymalzacj welokryteralnej wykle bazują na podejścu Pareto; Rozwązana zana pownny być równomerne rozmezczone na fronce Pareto; AE przetwarzają jednocześne ne wele rozwąza zań,, lecz problemem jet globalność elekcj; Należy y wprowadzć odpowedne mechanzmy (wpółczynnk zatłoczena, nzowane tp.) AE: oobnk A jet lepzy od oobnka B jeśl A ma wyżze przytoowane. tu: : oobnk A jet lepzy od oobnka B jeśl go domnuje. Popularne AE optymalzacj welokryteralnej: VEGA: Vector Evaluated Genetc Algorthm (Schaffer 985), HLGA: Hajela' and Ln' Weghtng-baed GA (992), FFGA: Foneca' and Flemng' Multobjectve GA (993), NPGA: The Nched Pareto GA (Horn, Nafplot, Goldberg 994), NSGA: The Nondomnated Sortng GA (Srnva( Srnva, Deb 994), SPEA: The Strength Pareto EA (tzler( tzler, Thele 999). SPEA2 (tzler,, 200) NSGA-II (Deb( nn, 2000) np. NSGA-II II: Sortowane: Sortuje oobnk w fronty. Cel: wybrać N najlepzych pośród 2 N oobnków Stouje ę crowdng dtance jako kryterum dodatkowe. Operatory: - mutacja równomernar - krzyżowane prote - elekcja bazująca na turnejowej Populacja rodzcelka N N front front 2 front 3 Sortowane domnacyjne Sortowane crowdng dtance Nowa populacja N Populacja potomna

9 Podzał na fronty: Crowdng dtance : Dotyczy oobnków w należą żących do tego amego frontu. 2 kryterum (mnmalzacja) Front 3 Jet to mara wolnej przetrzen wokół danego rozwązana zana (w( węcej=lepej). Skutkuje wyborem oobnków w znajdujących ę w mnej zatłoczonych rejonach. Front 2 Front (nezdomnowane) kryterum (mnmalzacja)

Na poprzednim wykładzie:

Na poprzednim wykładzie: ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

Zagadnienia do omówienia

Zagadnienia do omówienia Zarządzane produkcją dr nż. Marek Dudek Ul. Gramatyka 0, tel. 6798 http://www.produkcja.zarz.agh.edu.pl Zagadnena do omówena Zasady projektowana systemów produkcyjnych część (organzacja procesów w przestrzen)

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza 5 0 6 15 Zadane. Dany jet zereg rozdzelczy

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Statyczna alokacja kanałów (FCA)

Statyczna alokacja kanałów (FCA) Przydzał kanałów 1 Zarys wykładu Wprowadzene Alokacja statyczna a alokacja dynamczna Statyczne metody alokacj kanałów Dynamczne metody alokacj kanałów Inne metody alokacj kanałów Alokacja w strukturach

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.

Bardziej szczegółowo

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań Algorytm FA Metaheurystyczna metoda poszukwań (Xn-She Yang, 2008), nsprowana przez: zachowana społeczne zjawsko bolumnescencj robaczków śwetojańskch (śwetlków) Zastosowane w zadanch optymalzacj z ogranczenam

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

ALGORYTMY IMMUNO- LOGICZNE

ALGORYTMY IMMUNO- LOGICZNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome wykład AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS 7 VALUE fitness

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Sprawozdanie Skarbnika Hufca Za okres 24.09.2011-24.11.2013. Wprowadzenie

Sprawozdanie Skarbnika Hufca Za okres 24.09.2011-24.11.2013. Wprowadzenie Skarbnk Hufca ZHP Kraków Nowa Huta phm. Marek Balon HO Kraków, dn. 21.10.2013r. Sprawozdane Skarbnka Hufca Za okres 24.09.2011-24.11.2013 Wprowadzene W dnu 24.09.2011r. odbył sę Zjazd Sprawozdawczo-Wyborczy

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012) 30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ PIOTR KRZEMIEŃ *, ANDRZEJ GAJEK ** WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ THE INFLUENCE OF THE SHAPE OF THE QUALITY FUNCTION AND

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Rozliczanie kosztów Proces rozliczania kosztów

Rozliczanie kosztów Proces rozliczania kosztów Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka Zestaw przezbrojenowy na nne rodzaje gazu 8 719 002 262 0 1 Dysza 2 Podkładka 3 Uszczelka PL (06.04) SM Sps treśc Sps treśc Wskazówk dotyczące bezpeczeństwa 3 Objaśnene symbol 3 1 Ustawena nstalacj gazowej

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1 DECYZJE nr 13 czerwec 2010 WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1 Tomasz Błaszczyk* Akadema Ekonomczna w Katowcach Macej Nowak** Akadema Ekonomczna w Katowcach Streszczene:

Bardziej szczegółowo

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego POLITECHIKA ŚLĄSKA Wydzał Inżyner Materałowej Metalurg Zakład Informatyk w Procesach Technologcznych Katedra Elektrotechnolog Kerunek: Zarządzane Inżynera Produkcj Specjalzacja: Informatyka w Zarządzanu

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE BINARNIE CZY INACZEJ? OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

Ą Ń ż ś ż ś Ż ż ść ż ż Ł ś śó ś Ź ź ż Ę Ą ś ż Ę ś ś żą Ź Ę Ń Ź ż Ę Ą ż Ź Ę Ź ś Ę ć ż Ń ż Ń Ą Ż ź ź ż Ę Ł ż ż ś źź ś ś ż ż ż ż ść ż Ę ż ż ż ś ż ś ż ż ś ż ż Ą ż Ń ś ż ż Ę ż ż ż Ę ś Ł ś ż ż ś ś ż ść

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM IV WEB ADVERTISING + LATENT SEMANTIC INDEXING

EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM IV WEB ADVERTISING + LATENT SEMANTIC INDEXING EPLORACJA ZAOBÓW INERNEU - IŁOZ AZIŃI LABORAORIU IV WEB AVERIING + LAEN EANIC INEXING. Laboratorum IV.. Web advertng algorytm BALANCE oraz podtawy algorytmu Adword.2. Latent emantc Indexng algorytm redukcj

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Ś ś Ł ń ń ś ś Ś ś Ę ę ś ę ś ĘŚ ś Ęś ę ĘŚĆ ĘŚ Ęś ĘŚ ĘŚ ę ĘŚĆ ĘŚĆ ĘŚĆ ĘŚĆ Ęś ĘŚĆ ĘŚ ĘŚĆ ń ĘŚĆ ĘŚ ĘŚĆ ę ĘŚ ś Ęś ń ś ś ś ę ź ę ś ę ś Ź ń ę ń ś ń ń ę ń ń ń ń Ę ś ń ęś ń ń ń ę ń Ż ś ń ń ę ń ś ń ń ń ę ś ń ś Ż

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY. Ćwiczenie 3 B. Stany dynamiczne Przetwornica impulsowa

LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY. Ćwiczenie 3 B. Stany dynamiczne Przetwornica impulsowa 90-924 Łódź, ul. Wólczańka 221/223, bud. B18 tel. (0)42 631 26 28 fak (0)42 636 03 27 e-mal ecretary@dmc.p.lodz.pl http://www.dmc.p.lodz.pl ABORATORIM PRZYRZĄDÓW I KŁADÓW MOCY Ćwczene 3 B Stany dynamczne

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

ANALIZA JEDNOSTKOWYCH STRAT CIEPŁA W SYSTEMIE RUR PREIZOLOWANYCH

ANALIZA JEDNOSTKOWYCH STRAT CIEPŁA W SYSTEMIE RUR PREIZOLOWANYCH ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ Nr 83 Budownctwo Inżynera Środowska z. 59 (4/1) 01 Bożena BABIARZ Barbara ZIĘBA Poltechnka Rzeszowska ANALIZA JEDNOSTKOWYCH STRAT CIEPŁA W SYSTEMIE RUR PREIZOLOWANYCH

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Ś Ą ć ć ć ń ę ę ń ę ę ń ę Ęć Ź Ó ń ę ń ę ę ę ę ę ć Ź ń ć ń Ń ńć ń ń Ś ć Ń Ść ń Ść ę Ść Ź ń Ś ć ń ć ń Ó ć Ź ń ę Ó ć ę ę ń ę ć ę ę Ó ń Ż ę ć ę ę ę Ś ć ę ę Ś Ę ę ń ń ń ę Ó Ć Ę Ć ć ę ć ć ę Ó ć ę Ó Ń ć ę Ś

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Wykaz ważniejszych oznaczeń... 5 Wykaz ważniejszych akronimów... 9

Wykaz ważniejszych oznaczeń... 5 Wykaz ważniejszych akronimów... 9 SPIS TREŚCI Wykaz ważnejzych oznaczeń... 5 Wykaz ważnejzych akronmów... 9 1. Wtęp... 11 1.1. Op uług WWW... 19 1.2. Klayfkacja ytemów webowych z jakoścą uług... 22 1.3. Sytemy z kryterum czaowym prezentowane

Bardziej szczegółowo

Instytut Badań Systemowych Polskiej Akademii Nauk

Instytut Badań Systemowych Polskiej Akademii Nauk Instytut Badań Systemowych Polskej Akadem Nauk ul. Newelska 6 0-447 Warszawa Przemysław Cholajda Zastosowane genetycznego generowana reguł rozmytych do wspomagana dagnostyk transformatorów Rozprawa doktorska

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna 1 2 Wprowadzenie We wszystkich algorytmach ewolucyjnych omawianych do tej pory, wszystkie osobniki były elementami jednej

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo