Algorytmy ewolucyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy ewolucyjne"

Transkrypt

1 Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego

2 Problemy świata rzeczywistego często wymagają rozważenia wielu kryteriów oceny postępowania/rozwiązania. Przykłady: Kupno samochodu (cena vs jakośd) Planowanie produkcji (koszty vs czas vs jakośd)

3 Zakup samochodu Cena Koszt zakupu Kredytowanie Częstotliwośd rat Oprocentowanie Koszty eksploatacji Koszty paliwa Koszt części zamiennych Serwisowanie Spadek wartości samochodu po roku Opodatkowanie VAT Podatek od luksusu

4 Jak porównywad różne cele, jeśli są one nieporównywalne? Np. Koszt (jednostka: waluta) oraz jakośd ( jednostki:???)

5 Konkretne rozwiązanie x dominuje na pewnym obszarze przestrzeni poszukiwao, to znaczy, dowolne rozwiązanie z z tego obszaru jest gorsze od x, jeśli chodzi o wszystkie cele. Rozwiązanie z nie może byd uznane za optymalne w żadnym rozsądnym sensie. Jeśli dla rozwiązania x nie ma żadnego innego rozwiązania, które jest lepsze od x względem wszystkich celów, to rozwiązanie x jest w pewnym sensie optymalne

6 Problem optymalizacji wielokryterialnej Minimalizuj f i (x), i = 1,, m przy zakresach l(p) x p u(p), p = 1,, n przy ograniczeniach g k (x) 0, k = 1,, l h j (x)= 0, j = 1,, q Problemy maksymalizacji są analogiczne i można je sprowadzid do powyższego sformułowania.

7 Uwaga! Przestrzeo decyzyjna jest n-wymiarowa. Przestrzeo celów jest m-wymiarowa.

8 Zestaw potencjalnych rozwiązao problemu optymalizacji wielokryterialnej może byd podzielony na rozwiązania zdominowane niezdominowane

9 Rozwiązanie zdominowane Rozwiązanie z jest zdominowane, jeśli istnieje dopuszczalne rozwiązanie x, które jest: co najmniej tak dobre jak z ze względu na wszystkie wymiary, tzn. dla każdego celu f i (i=1,,m) f i (x) f i (z) dla wszystkich 1 i m ściśle lepsze od z co najmniej ze względu na jeden cel i f i (x) < f i (z) dla pewnego 1 i m

10 Rozwiązanie niezdominowane Każde rozwiązanie, które nie jest zdominowane przez żadne inne rozwiązanie dopuszczalne, nazywamy rozwiązanie niezdominowanym.

11 Koszt Rozwiązanie x dominuje na rozwiązanie z. z x Czas

12 Koszt Obszar dominowania rozwiązania x. z x Czas

13 Koszt Rozwiązanie x nie dominuje nad rozwiązaniem y x jest lepsze pod względem czasu, ale y jest lepsze pod względem kosztów. Również y nie dominuje nad x. z x y Czas

14 Zbiór optymalny w sensie Pareto Zbiór niezdominowanych rozwiązao z całej dopuszczalnej przestrzeni poszukiwao nazywamy zbiorem optymalnym w sensie Pareto (rozwiązania tworzą tzw. front Pareto). Rozwiązania z tego zbioru nie są zdominowane przez żadne inne więc w tym sensie są one optymalnymi rozwiązaniami dla problemu optymalizacji wielokryterialnej. Ostatecznie jednak zazwyczaj musimy zdecydowad się na tylko jedno rozwiązanie. Vilfred Pareto ( ) włoski ekonomista

15 Zbiór optymalny w sensie Pareto musi byd zbiorem niezdominowanym. Odwrotne twierdzenie nie musi byd prawdą. Zbiór niezdominowany może zawierad rozwiązania optymalne w sensie Pareto jak również pewne rozwiązania spoza tego frontu Pareto.

16 Koszt Front Pareto jest to zbiór rozwiązao niezdominowanych. Czas

17 Koszt Rozwiązania x oraz y tworzą zbiór rozwiązao niezdominowanych, ale nie tworzą frontu Pareto, a nawet do niego nie należą. y x Czas

18 Zadanie dowolnego algorytmu znajdującego zbiór optymalny w sensie Pareto polega na daniu w wyniku zbioru niezdominowanych rozwiązao, który przybliża zbiór optymalny w sensie Pareto tak, jak to tylko możliwe.

19 Dwa główne podejścia do rozwiązywania problemów wielokryterialnych Redukowanie do problemów z jednym kryterium Można stosowad znane algorytmy optymalizacji z jednym kryterium Dostajemy przeważnie jedno rozwiązanie Uwzględnianie wielu kryteriów w czasie trwania algorytmu

20 Redukowanie do problemów z jednym kryterium. Metoda sumy ważonej. Funkcje określające kryteria łączone są w jedną funkcję celu zgodnie ze wzorem: gdzie F( x) w [0,1] oraz 1 i i m 1 i m w 1 i f i w i ( x)

21 Redukowanie do problemów z jednym kryterium. Metoda sumy ważonej. Zalety Prostota Jeśli wagi są dodatnie, wtedy optymalne rozwiązanie dopuszczalne dla F jest również optymalne w sensie Pareto Jeśli x jest rozwiązaniem optymalnym w sensie Pareto, dla wypukłego problemu optymalizacji wielokryterialnej, to istnieje niezerowy dodatni wektor wag w taki, że x jest rozwiązaniem F. Wady - Dobór wag jest zazwyczaj subiektywny

22 Koszt A Niektóre z rozwiązao optymalnych w sensie Pareto (zielone) są schowane w niewypukłej przestrzeni celów i nie mogą byd wygenerowane jako liniowe sumy ważone. B Czas

23 Redukowanie do problemów z jednym kryterium. Metoda funkcji odległości Łączy wiele funkcji oceny w jedną na podstawie wektora poziomu popytu y. Rozwiązanie optymalne jest rozwiązaniem minimalizującym odległośd między F(x) a y. r m i r i y i x f x F 1 1 ) ( ) ( r m i r i i i y x f w x F 1 1 ) ( ) ( czasami

24 Redukowanie do problemów z jednym kryterium. Metoda funkcji odległości Jeśli r jest bardzo duże, wtedy problem przekształca się w problem minimalizacji największego odchylenia f i (x) - y i i jest nazywany problemem Czebyszewa z wagami.

25 Redukowanie do problemów z jednym kryterium. Metoda ε-ograniczeo. Pomysł polega na zachowaniu jedynie jednego kryterium (najważniejszego?), np. r, i na przekształceniu reszty celów w graniczenia: f i (x) ε i dla 1 i m oraz i r Parametry ε i reprezentują górne ograniczenia wartości f i. Zalety: Można stosowad problemy zarówno z wypukłymi jak i wklęsłymi przestrzeniami. Dla dowolnego wektora górnych ograniczeo rozwiązanie w tej metodzie jest optymalne w sensie Pareto Wada: Złożonośd określenia wartości górnych ograniczeo

26 Redukowanie do problemów z jednym kryterium. Metody te są często zbyt uproszczone i niezbyt pasują do rzeczywistych problemów. Noszą znamiona dostosowywania (tj. upraszczania) problemu do znanego nam algorytmu (np. optymalizacji z jednym kryterium)

27 Podejście ewolucyjne do wielokryterialnego podejmowania decyzji Rozwiązują problem znajdowania kolekcji rozwiązao przybliżających front Pareto. Problem wyboru jednego, konkretnego rozwiązania jest odłożony na później.

28 Podejście ewolucyjne do wielokryterialnego podejmowania decyzji Problem Algorytm ewolucyjny powinien rozłożyd rozwiązania wzdłuż granicy Pareto, a nie szukad jednego, najlepszego rozwiązania Wniosek Należy wygenerowad zbiór rozwiązao niezdominowanych jak najbliżej rzeczywistego frontu Pareto, dbając jednocześnie o różnorodnośd populacji

29 A B Mała różnorodnośd (źle) Duża różnorodnośd (dobrze) Uwaga: Zbiór rozwiązao na rys. B jest różnorodny ale tylko w przestrzeni celów nie implikuje to różnorodności w przestrzeni zmiennych decyzyjnych, ani z niej nie wynika.

30 Podejście ewolucyjne Przykład Zminimalizuj f i (x), i = 1, 2 przy - A x A f f 1 x) ( x ( x) ( x 2)

31 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2].

32 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2].

33 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2].

34 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2]. f 2 2 f2 ( f1 2) f 1

35 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2]. f 2 2 f2 ( f1 2) f 1

36 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2]. f 2 2 f2 ( f1 2) f 1

37 Podejście ewolucyjne Problem ten ma rozwiązanie optymalne w sensie Pareto dla x z przedziału [0, 2]. f 2 2 f2 ( f1 2) f 1

38 Podejście ewolucyjne Dwie klasy algorytmów Algorytmy mogące byd zastosowane w przypadku, w którym problem wielokryterialny jest przekształcany w sformułowanie z jednym kryterium Algorytmy z uwzględnieniem optymalności w sensie Pareto, bez stosowania żadnej formy łączenia ocen wynikających z różnych celów

39 Podejście ewolucyjne bez metody Pareto Algorytm podczas selekcji przełącza się między różnymi celami na podstawie metodą Pareto (tzw. selekcja Pareto) Osobnikom w populacji jest przypisywana waga na podstawie ich dominacji na innymi rozwiązaniami oraz ze względu na optymalnośd w sensie Pareto

40 Podejście ewolucyjne VEGA ang. Vector Evaluated Genetic Algorithm Dla problemu z m celami w każdym pokoleniu wybiera się 1/m rodziców na podstawie każdego z kryteriów osobno. Zapewnia to przeżywanie: Osobników dobrych ze względu na jedno kryterium (tzw. specjalistów) Osobników średnich ze względu na wszystkie kryteria (gdyż mają wiele szans zostania wybranym)

41 Podejście ewolucyjne VEGA ang. Vector Evaluated Genetic Algorithm Problem: VEGA ma problemy związane z tworzeniem gatunków, tzn. osobników doskonałych ze względu na różne kryteria Można temu zapobiegad, np. za pomocą krzyżowania nie losowego, lecz raczej osobników z różnych gatunków

42 Algorytm Fourmana Podejście ewolucyjne Podczas selekcji jest wybierane w sposób losowy jedno kryterium

43 Podejście ewolucyjne Algorytm Goldberga Ocenia rozwiązania na podstawie dominacji, a nie bezpośrednich wartości optymalizowanych celów Metoda działa iteracyjnie Najpierw wybierz w populacji wszystkie rozwiązania niezdominowane. Przypisz im ten sam wynik i usuo z dalszych rozważao. Określ, które z pozostałych rozwiązao są niezdominowane. Przypisz im ten sam wynik, ale gorszy niż poprzednia usuniętym rozwiązaniom. Usuo te rozwiązania z dalszych rozważao. Itd. Różnorodnośd rozwiązao jest zachowywana przez zastosowanie metody współdzielenia wartości (ang. fitness sharing) (w przestrzeni celów)

44 Podejście ewolucyjne NSGA (ang. Nondominated sorting Genetic Algorithm) W populacji jest określany ranking osobników ze względu na brak dominacji Osobnikom najlepszym (niezdominowanym) przypisywane jest przystosowanie równe liczbie osobników w populacji Do utrzymania różnorodności wykorzystywane jest współdzielenie wartości (ang. fitness sharing) w obrębie tej samej linii granicznej w przestrzeni celów ale obliczana jest w przestrzeni zmiennych decyzyjnych

45 Podejście ewolucyjne NPGA (ang. Niched Pareto Genetic Algorithm) Wykorzystuje binarną selekcję turniejową opartąna dominacji Pareto Dwaj losowo wybrani rodzice są porównywani z wybraną podpopulacją o rozmiarze s, tzn. każdy z dwóch rodziców jest porównywany z każdym z s rozwiązao z tej podpopulacji Liczy się liczba zdominowanych osobników z wylosowanej podpopulacji W razie remisu decyduje licznośd niszy: rodzic o mniejszej liczności niszy wygrywa, tzn. preferowani są rodzice z mniej zatłoczonych obszarów

46 Podejście ewolucyjne MOGA (ang. Multiobjective Genetic Algorithm) Każdy osobnik x jest oceniany na 1+liczba osobników, które dominują nad x Ocenę 1 mają osobniki niezdominowane Maksymalna wartośd oceny jest równa rozmiarowi populacji Oceny powyższe są podstawą do promowania osobników mniej zdominowanych Niszowanie jest wykorzystywane w celu utrzymania różnorodności

47 Podejście ewolucyjne Zastosowanie selekcji elitarnej Może ona polegad na gwarancji przeżycia osobników niezdominowanych Może to prowadzid do przedwczesnej zbieżności już po paru iteracjach wszystkie osobniki w populacji mogą byd niezdominowane (więc wszystkie kwalifikują się jako elita) jednak niekoniecznie muszą byd blisko rzeczywistego frontu Pareto.

48 Podejście ewolucyjne Lista nieobecności Sztuczne systemy immunologiczne Algorytmy rojowe Inne

49 KONIEC

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

MODEL OPTYMALIZACJI TRAS PRZEJAZDOWYCH JAKO NARZĘDZIE ZMNIEJSZENIA KOSZTÓW LOGISTYCZNYCH

MODEL OPTYMALIZACJI TRAS PRZEJAZDOWYCH JAKO NARZĘDZIE ZMNIEJSZENIA KOSZTÓW LOGISTYCZNYCH Małgorzata Baryła-Paśnik 1, Wiesław Piekarski 2, Andrzej Kuranc 3, Anna Piecak 4, Szymon Ignaciuk 5, Jacek Wawrzosek 6 Uniwersytet Przyrodniczy w Lublinie MODEL OPTYMALIZACJI TRAS PRZEJAZDOWYCH JAKO NARZĘDZIE

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

WIELOKRYTERIALNA OPTYMALIZACJA PRACY SYSTEMU WYTWARZANIA O STRUKTURZE PRZEPŁYWOWEJ

WIELOKRYTERIALNA OPTYMALIZACJA PRACY SYSTEMU WYTWARZANIA O STRUKTURZE PRZEPŁYWOWEJ WIELOKRYTERIALNA OPTYMALIZACJA PRACY SYSTEMU WYTWARZANIA O STRUKTURZE PRZEPŁYWOWEJ Dominik ŻELAZNY Streszczenie: Praca dotyczy harmonogramowania zadań w sekwencyjnym przepływowym systemie produkcyjnym.

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Marcin Anholcer Uniwersytet Ekonomiczny w Poznaniu 19 marca 2013, Ustroń Marcin Anholcer Stochastyczne zagadnienie rozdziału 1/ 15 1 Zagadnienie

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ INFORMATYKI ROZPRAWA DOKTORSKA ZASTOSOWANIE ALGORYTMÓW EWOLUCYJNYCH ORAZ METOD RANKINGOWYCH DO PLANOWANIA TRASY STATKU Z NAPĘDEM HYBRYDOWYM

Bardziej szczegółowo

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik W książce autorzy przedstawiają dyskretne problemy wielokryterialne, w których liczba rozpatrywanych przez decydenta wariantów decyzyjnych

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010 Wprowadzenie Plan prezentacji

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna 1 2 Wprowadzenie We wszystkich algorytmach ewolucyjnych omawianych do tej pory, wszystkie osobniki były elementami jednej

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI Scientific Bulletin of Che lm Section of Mathematics and Computer Science No. 1/2008 MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI ANDRZEJ ŁODZIŃSKI Wydział Zastosowań Informatyki

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Modelowanie sytuacji decyzyjnej

Modelowanie sytuacji decyzyjnej Modelowanie sytuacji decyzyjnej dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Systemy wspomagania decyzji

Bardziej szczegółowo

WIELOKRYTERIALNE ALGORYTMY EWOLUCYJNE W PLANOWANIU DROGI MORSKIEJ

WIELOKRYTERIALNE ALGORYTMY EWOLUCYJNE W PLANOWANIU DROGI MORSKIEJ JOANNA SZŁAPCZYŃSKA Akademia Morska w Gdyni Katedra Nawigacji WIELOKRYTERIALNE ALGORYTMY EWOLUCYJNE W PLANOWANIU DROGI MORSKIEJ Wielokryterialne algorytmy ewolucyjne rozszerzają klasyczny algorytm ewolucyjny

Bardziej szczegółowo

Autor: Agata Świderska

Autor: Agata Świderska Autor: Agata Świderska Optymalizacja wielokryterialna polega na znalezieniu optymalnego rozwiązania, które jest akceptowalne z punktu widzenia każdego kryterium Kryterium optymalizacyjne jest podstawowym

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Wielokryterialne wspomaganie

Wielokryterialne wspomaganie Wielokryterialne wspomaganie podejmowania decyzji Wykład ZARZĄDZANIE, I st. Maciej Wolny Wielokryterialne wspomaganie podejmowania decyzji Tytuł: Wprowadzenie do wielokryterialnego wspomagania decyzji

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Istnieje wiele heurystycznych podejść do rozwiązania tego problemu,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

Zastosowanie algorytmów genetycznych w projektowaniu optymalnego układu klawiatury

Zastosowanie algorytmów genetycznych w projektowaniu optymalnego układu klawiatury UNIWERSYTET GDAŃSKI Wydział Matematyki, Fizyki i Informatyki Michał Dettlaff nr albumu: 164 622 Zastosowanie algorytmów genetycznych w projektowaniu optymalnego układu klawiatury Praca magisterska na kierunku:

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

KLASYFIKACJA I PORÓWNANIE METOD KLASYCZNEJ OPTYMALIZACJI WIELOKRYTERIALNEJ

KLASYFIKACJA I PORÓWNANIE METOD KLASYCZNEJ OPTYMALIZACJI WIELOKRYTERIALNEJ ANTON SMOLIŃSKI anton.smolinski@zut.edu.pl Katedra Inżynierii Oprogramowania, Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie KLASYFIKACJA I PORÓWNANIE METOD KLASYCZNEJ OPTYMALIZACJI

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) 1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości

Bardziej szczegółowo

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Optymalizacja konstrukcji to bardzo ważny temat, który ma istotne znaczenie praktyczne. Standardowy proces projektowy wykorzystuje możliwości optymalizacji w niewielkim stopniu.

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

11. 11. OPTYMALIZACJA KONSTRUKCJI

11. 11. OPTYMALIZACJA KONSTRUKCJI 11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji

Bardziej szczegółowo