Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS"

Transkrypt

1 Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1

2 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami, takimi jak selekcja naturalna, krzyżowanie i mutacja. Główną zaletą jest możliwość rozwiązania dowolnego problemu, którego propozycje rozwiązania można przedstawić w sformalizowany sposób, a następnie poddać ocenie. 2

3 Inspiracje biologiczne (1) Główne inspiracje biologiczne pochodzą z dzieła Karola Darwina On the Origin of Species. 1. Osobniki danego gatunku produkują więcej potomstwa, niż jest w stanie przetrwać do dorosłości. 2. Rozmiar populacji gatunku jest stały, jeśli nie występują zewnętrzne działania (działanie człowieka, katastrofy naturalne itp.). 3

4 Inspiracje biologiczne (2) 3. Dostępność pożywienia dla całego gatunku jest limitowana, ale stała w czasie, ponownie jeśli nie występują zewnętrzne działania. 4. Osobniki rywalizują o dostępność pożywienia. 5. Nie występują dwa identyczne osobniki, szczególnie w gatunkach rozmnażających się płciowo. 6. Niektóre różnice między osobnikami wpływają na ich indywidualną sprawność, a przez to zdolność do przetrwania. 4

5 Inspiracje biologiczne (3) 7. Różnice te są dziedziczone z pokolenia na pokolenie. 8. Słabsze osobniki mają mniej potomków, silniejsze więcej. 9. Osobniki, które przetrwają i wyprodukują potomstwo najprawdopodobniej przekażą mu swoje cechy. 5

6 Inspiracje biologiczne (4) 10. Gatunki będą powoli zmieniać się i coraz bardziej przystosowywać do środowiska, w którym żyją. Może to prowadzić nawet do powstania nowych gatunków. 6

7 Nazewnictwo (1) Populacja zbiór kandydatów na rozwiązanie (osobników). Genotyp forma zapisu propozycji rozwiązania (np. ciąg zerojedynkowy dla liczb rzeczywistych). Chromosom często tożsame z genotypem, jednak jeden genotyp może zawierać wiele chromosomów. Fenotyp określa jak rozwiązanie jest widziane przez środowisko (np. liczba rzeczywista przy optymalizacji). 7

8 Nazewnictwo (2) Każdy osobnik działa w środowisku, które ocenia osobnika. Ocena osobnika nazwana jest jego przystosowaniem (fitnessem). Funkcja przyporządkowująca oceny nazwana jest funkcją przystosowania (fitness function). W każdej iteracji algorytmu populacja rodzicielska zastępowana jest populacją potomną. Osobniki powstałe w tej samej iteracji należą do wspólnej generacji. 8

9 Pseudokod algorytmu ewolucyjnego 1. Stwórz populację P. 2. Dopóki nie jest spełniony warunek zatrzymania powtarzaj: 1. Dokonaj selekcji i zapisz wyselekcjonowane osobniki jako populację P. 2. Poddaj P krzyżowaniu. 3. Poddaj P mutacji. 9

10 Schemat działania algorytmów ewolucyjnych 10

11 Algorytmy genetyczne jako przykład algorytmów ewolucyjnych Często pojęcia algorytmów genetycznych i ewolucyjnych używane są (niepoprawnie) zamiennie. Algorytmy genetyczne są podklasą algorytmów ewolucyjnych, która charakteryzuje się binarną reprezentacją chromosomu. Każdy chromosom jest zerojedynkowym wektorem o ustalonej długości n. X = [X 0, X 1,, X n-1 ], gdzie X i {0,1} 11

12 Pseudokod - przypomnienie 1. Stwórz populację P. 2. Dopóki nie jest spełniony warunek zatrzymania powtarzaj: 1. Dokonaj selekcji i zapisz wyselekcjonowane osobniki jako populację P. 2. Poddaj P krzyżowaniu. 3. Poddaj P mutacji. 12

13 Inicjacja populacji P Populacja zazwyczaj tworzona jest z ustalonej liczby p osobników o losowych genach. P = {X i }, gdzie i = 1,, p-1 13

14 Warunek zatrzymania Warunkiem zatrzymania może być: Ustalona liczba iteracji, Osiągnięcie zadanego optimum, Brak poprawy przystosowania najlepszego osobnika w zadanej liczbie iteracji, itp. 14

15 Funkcja przystosowania Funkcja przystosowania F musi być monotoniczna i właściwa dla problemu. Dla każdej pary x i,x j jeśli x i jest lepsze od x j F(x i )>F(x j ) (zadanie maksymalizacji) Przyjmijmy jako testową funkcję ONEMAX, która zlicza liczbę jedynek w wektorze. Dla n = 5: X 0 = [ ], F(X 0 ) = 0 X 1 = [ ], F(X 1 ) = 2 X 2 = [ ], F(X 2 ) = 4 F max (X i ) = n 15

16 Selekcja Selekcja jest procesem, w którym wszystkie osobniki danej generacji poddane są ocenie, a następnie selektywnie przekazane do kolejnej generacji. Celem selekcji jest powielenie osobników silnie przystosowanych, zachowanie umiarkowanie przystosowanych oraz usunięcie najsłabszych. Poprzez zmiany liczności osobników modulowane jest prawdopodobieństwo przekazania genów. 16

17 Selekcja ruletkowa (1) Najpopularniejszy rodzaj selekcji to selekcja ruletkowa. W selekcji ruletkowej każdemu osobnikowi przyporządkowane zostaje prawdopodobieństwo przejścia do kolejnej generacji proporcjonalne do wartości jego przystosowania P (X i ) = F(X i ) / p-1 j=0 F(X j ) 17

18 Selekcja ruletkowa (2) Losowanie przypomina obrót ruletką. Prawdopodobieństwa odkładane są na tarczy ruletki, po czym wykonywany jest obrót. Problem: jeśli jeden osobnik ma znacząco wyższe przystosowanie populacja straci różnorodność i szybko zbiegnie do lokalnego optimum. F(X 0 )=1 F(X 1 )=2 F(X 2 )=3 F(X 3 )=4 F(X 4 )=40 P(X 0 )=0,02 P(X 1 )=0,04 P(X 2 )=0,06 F(X 3 )=0,08 P(X 4 )=0,8 18

19 Inne rodzaje selekcji W celu wyeliminowania ryzyka przedwczesnej zbieżności stosuje się inne rodzaje selekcji. Jednym z rozwiązań jest stworzenie rankingu i przyporządkowanie prawdopodobieństw na podstawie miejsc w rankingu (selekcja rankingowa) Kolejne to przeprowadzanie turniejów. Z populacji rodzicielskiej losowane jest q osobników (ze zwracaniem), zaś do populacji potomnej przekazywany jest najlepszy z nich. Proces powtarzany jest tak długo, aż zostanie osiągnięta zadana wielkość populacji p. Selekcja ta zwana jest selekcją turniejową. 19

20 Krzyżowanie Krzyżowanie jest operacją genetyczną, podczas której losowana jest ze zwracaniem ustalona liczba osobników (zazwyczaj 2), a następnie na podstawie ich genotypów tworzone są osobniki potomne. Proces ten odpowiada biologicznemu procesowi rozmnażania. Dzięki wymianie informacji genetycznej połączonej z promowaniem silnych osobników możliwe jest uzyskiwanie coraz silniejszych jednostek. 20

21 Krzyżowanie jednopunktowe (1) Krzyżowanie jednopunktowe operuje na dwóch osobnikach rodzicielskich i zazwyczaj tworzy dwa osobniki potomne. Pierwszym krokiem jest wybranie punktu krzyżowania. Następnie w punkcie krzyżowania łączy się chromosomy w taki sposób, aby u każdego z potomków znalazły się geny obu rodziców. 21

22 Krzyżowanie jednopunktowe (1) Rozważmy osobniki: X 0 = [ ] X 1 = [ ] W procesie krzyżowania wylosowano punkt s=2. W wyniku krzyżowania uzyskano: X 2 = [ ] X 3 = [ ] 22

23 Krzyżowanie równomierne (1) Krzyżowanie równomierne pozwala na szybszą wymianę genów między osobnikami. Pierwszym krokiem krzyżowania równomiernego jest wylosowanie wektora o długości n, który będzie określał do którego z osobników potomnych ma trafić dany gen. Krzyżowanie równomierne zazwyczaj daje lepsze rezultaty, niż krzyżowanie jednopunktowe lub dwupunktowe. 23

24 Krzyżowanie równomierne (2) 24

25 Krzyżowanie równomierne (3) Rozważmy osobniki: X 0 = [ ] X 1 = [ ] W procesie krzyżowania wylosowano wektor losowy s=[ ]. W wyniku krzyżowania uzyskano: X 2 = [ ] X 3 = [ ] 25

26 Mutacja (1) Rozważmy populacje (n=5, funkcja ONEMAX): X 0 = [ ], F(X 0 ) = 0 X 1 = [ ], F(X 1 ) = 2 X 2 = [ ], F(X 2 ) = 4 X 3 = [ ], F(X 2 ) = 4 X 4 = [ ], F(X 2 ) = 3 Czy w wyniku krzyżowania i selekcji możliwe jest uzyskanie X i : F(X i ) = 5? 26

27 Mutacja (2) Nie, ponieważ X i (X 4 = 0). Z tego względu stosuje się operator mutacji, który ma za zadanie wprowadzanie nowych genów do populacji. Dla algorytmów genetycznych mutacja polega na zmianie wartości genu na przeciwną. Operator mutacji klasycznie posiada jeden parametr: prawdopodobieństwo mutacji każdego genu r. Zazwyczaj r<0.01, ponieważ mutacja może niszczyć silne rozwiązania w populacji. 27

28 Mutacja (3) Algorytm mutacji polega na iterowaniu po kolejnych genach, losowaniu liczby z rozkładu jednostajnego i sprawdzaniu czy jest ona niższa niż liczba r. 28

29 Mutacja (4) Przykład dla osobnika X 0 = [ ], r=0.1: Oznaczenia: ig gen wejściowy, rnd wylosowana liczba, og - gen wyjściowy Kolejne kroki ig = 1, rnd = 0. 5, rnd>r, og = 1 ig = 1, rnd = 0. 7, rnd>r, og = 1 ig = 1, rnd = 0. 3, rnd>r, og = 1 ig = 1, rnd = 0. 2, rnd>r, og = 1 ig = 0, rnd = 0. 05, rnd<r, og = 1 Po mutacji: X 0 = [ ] 29

30 Funkcja Easom - optimtool 30

31 Przykłady zastosowań algorytmów ewolucyjnych (1) Optymalizacja funkcji w R n, Problem plecakowy i jego odmiany: Generowanie jadłospisów, Układanie planu zajęć. Problem komiwojażera, Niestandardowe zadania optymalizacji: np. Poszukiwanie takiego rozmieszczenia opakowań w kartonach, aby zajęły jak najmniej przestrzeni. Musimy jedynie potrafić zasymulować propozycje rozwiązania i poddać je ocenie. 31

32 Przykłady zastosowań algorytmów ewolucyjnych (2) Ewolucja pojazdów poruszających się w środowisku: Ewolucja kształtów: Dysza silnika odrzutowego: Kształt skrzydła samolotu

33 Bibliografia Thomas Weise. Global Optimization Algorithms Theory and Application. itweise.de, Germany, Łukasz Przybyłek. Zastosowanie metod sztucznej inteligencji w dietetyce. Praca inżynierska, klad10/w10.htm 33

34 Dziękujemy za uwagę 34

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Techniki ewolucyjne - algorytm genetyczny i nie tylko

Techniki ewolucyjne - algorytm genetyczny i nie tylko Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

ALGORYTMY GENETYCZNE

ALGORYTMY GENETYCZNE ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

6. Algorytm genetyczny przykłady zastosowań.

6. Algorytm genetyczny przykłady zastosowań. 6. Algorytm genetyczny przykłady zastosowań. 1. Zagadnienie magicznych kwadratów. Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Jak powstają nowe gatunki. Katarzyna Gontek

Jak powstają nowe gatunki. Katarzyna Gontek Jak powstają nowe gatunki Katarzyna Gontek Powstawanie gatunków (specjacja) to proces biologiczny, w wyniku którego powstają nowe gatunki organizmów. Zachodzi na skutek wytworzenia się bariery rozrodczej

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO AUTOMATYCZNEGO GENEROWANIA PLANU ZAJĘĆ 10

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO AUTOMATYCZNEGO GENEROWANIA PLANU ZAJĘĆ 10 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 21 XV Seminarium ZASTOSOWANIE KOMPUTERÓW w NAUCE i TECHNICE 2005 Oddział Gdański PTETiS ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH

Bardziej szczegółowo

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) 1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena

Bardziej szczegółowo

INTELIGENCJA OBLICZENIOWA. dr Katarzyna Grzesiak-Kopeć

INTELIGENCJA OBLICZENIOWA. dr Katarzyna Grzesiak-Kopeć INTELIGENCJA OBLICZENIOWA dr Katarzyna Grzesiak-Kopeć obliczenia ewolucyjne 2 Plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

ZARZĄDZANIE POPULACJAMI ZWIERZĄT ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy genetyczne

Obliczenia Naturalne - Algorytmy genetyczne Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA ZESZYTY NAUKOWE 81-92 Ewa FIGIELSKA 1 ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA Streszczenie: Pojęcie algorytmy ewolucyjne obejmuje metodologie inspirowane darwinowską zasadą doboru naturalnego stosowane

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych Nazwa modułu: Algorytmy genetyczne i ich zastosowania Rok akademicki: 2013/2014 Kod: JIS-2-201-AD-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność:

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA Wykład 6 Systemy komputerowe w planowaniu produkcji Dr inż. Mariusz Makuchowski Systemy komputerowe w planowaniu produkcji Obecnie utrzymanie znaczącej pozycji na rynku

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna

Bardziej szczegółowo

Obliczenia Naturalne - Strategie ewolucyjne

Obliczenia Naturalne - Strategie ewolucyjne Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia

Bardziej szczegółowo

Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne. Łukasz Pepłowski

Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne. Łukasz Pepłowski Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne Łukasz Pepłowski Plan Metody Stochastyczne Łańcuchy Markowa Dynamika Brownowska Metoda Monte Carlo Symulowane

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna 1 2 Wprowadzenie We wszystkich algorytmach ewolucyjnych omawianych do tej pory, wszystkie osobniki były elementami jednej

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi

Bardziej szczegółowo

Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier

Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach Instytut Informatyki Rozprawa doktorska Przemysław Juszczuk Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier Promotor:

Bardziej szczegółowo

1 Genetykapopulacyjna

1 Genetykapopulacyjna 1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE 1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS

Bardziej szczegółowo

Biologia molekularna z genetyką

Biologia molekularna z genetyką Biologia molekularna z genetyką P. Golik i M. Koper Konwersatorium 2: Analiza genetyczna eukariontów Drosophilla melanogaster Makrokierunek: Bioinformatyka i Biologia Systemów; 2016 Opracowano na podstawie

Bardziej szczegółowo

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących

Bardziej szczegółowo

wykład 4 Strategie przeszukiwania lokalnego i problemy optymalizacji dr inż. Joanna Kołodziejczyk Zakład Sztucznej Inteligencji ISZiMM

wykład 4 Strategie przeszukiwania lokalnego i problemy optymalizacji dr inż. Joanna Kołodziejczyk Zakład Sztucznej Inteligencji ISZiMM Strategie przeszukiwania lokalnego i problemy optymalizacji wykład 4 dr inż. Joanna Kołodziejczyk jkolodziejczyk@wi.ps.pl Zakład Sztucznej Inteligencji ISZiMM ESI - wykład 4 p. 1 Plan wykładu Przeszukiwanie

Bardziej szczegółowo

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Zastosowanie algorytmów genetycznych w prognozowaniu popytu

Zastosowanie algorytmów genetycznych w prognozowaniu popytu Zastosowanie algorytmów genetycznych w prognozowaniu popytu Grzegorz Chodak Instytut Organizacji i Zarządzania Politechnika Wrocławska e-mail: chodak@ines.ins.pwr.wroc.pl Witold Kwaśnicki Instytut Nauk

Bardziej szczegółowo

Implementation of Evolutionary Algorithms in the Knowledge-Based Economy

Implementation of Evolutionary Algorithms in the Knowledge-Based Economy MPRA Munich Personal RePEc Archive Implementation of Evolutionary Algorithms in the Knowledge-Based Economy Sieja, Marek and Wach, Krzysztof Cracow University of Technology, Cracow University of Economics

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Algorytmy ewolucyjne Warunki zaliczenia: Wykład

Bardziej szczegółowo

Na poprzednim wykładzie:

Na poprzednim wykładzie: ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.

Bardziej szczegółowo

Rozdział 3 Algorytmy genetyczne

Rozdział 3 Algorytmy genetyczne Fragment 3 rozdziału z książki: S.T. Wierzchoń, Sztuczne systemy immunologiczne. Teoria i zastosowania. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001 Rozdział 3 Algorytmy genetyczne Celem tego rozdziału

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI W ROZWI ZYWANIU ZADA OPTYMALIZACJI

METODY SZTUCZNEJ INTELIGENCJI W ROZWI ZYWANIU ZADA OPTYMALIZACJI METODY SZTUCZNEJ INTELIGENCJI W ROZWI ZYWANIU ZADA OPTYMALIZACJI Izabela Skorupska Studium Doktoranckie, Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski e-mail: iskorups

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Ewolucja Znaczenie ogólne: zmiany zachodzące stopniowo w czasie W biologii ewolucja biologiczna W astronomii i kosmologii ewolucja gwiazd i wszechświata

Bardziej szczegółowo

Wykorzystanie algorytmu genetycznego do generowania twarzy ludzkiej

Wykorzystanie algorytmu genetycznego do generowania twarzy ludzkiej Wykorzystanie algorytmu genetycznego do generowania twarzy ludzkiej Oleksandr Klosov* Kamil Jasiński** Streszczenie. Algorytmy genetyczne są przedmiotem aktywnych dyskusji w płaszczyźnie naukowej oraz

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM

Bardziej szczegółowo

Biologicznie motywowane metody sztucznej inteligencji

Biologicznie motywowane metody sztucznej inteligencji Biologicznie motywowane metody sztucznej inteligencji Problem marszrutyzacji Paweł Rychlik Jacek Gąsiorowski Informatyka, SSI, sem. 7 Grupa GKiO1 Prowadzący: dr inż. Grzegorz Baron 1. Wstęp Problem marszrutyzacji

Bardziej szczegółowo

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa

Bardziej szczegółowo

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Adam Hrazdil Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V hrazdil@op.pl

Bardziej szczegółowo

Plan. Sztuczne systemy immunologiczne. Podstawowy słownik. Odporność swoista. Architektura systemu naturalnego. Naturalny system immunologiczny

Plan. Sztuczne systemy immunologiczne. Podstawowy słownik. Odporność swoista. Architektura systemu naturalnego. Naturalny system immunologiczny Sztuczne systemy immunologiczne Plan Naturalny system immunologiczny Systemy oparte na selekcji klonalnej Systemy oparte na modelu sieci idiotypowej 2 Podstawowy słownik Naturalny system immunologiczny

Bardziej szczegółowo

Ewolucja Różnicowa Differential Evolution

Ewolucja Różnicowa Differential Evolution Ewolucja Różnicowa Differential Evolution Obliczenia z wykorzystaniem metod sztucznej inteligencji Arkadiusz Kalinowski Szczecin, 2016 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 1 / 22 Plan

Bardziej szczegółowo