Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie."

Transkrypt

1 Prąd d zmienny prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. 1

2 Oś wartości natężenia prądu Oś czasu 2

3 Definicja natężenia prądu zmiennego i dq = dt 0 q ładunek, t czas Natężeniem prądu nazywamy iloraz wartości ładunku dq przepływającego w jednostce czasu dt przez poprzeczny przekrój przewodnika 3

4 Prąd elektryczny o sinusoidalnym przebiegu w czasie prąd sinusoidalny Jest to prąd przemienny, czyli symetryczny względem osi czasu, zmieniający się w czasie wg zależności gdzie ( t) i = I sin ω m i-natężenie prądu (prąd) -wartość chwilowa, Im-amplituda prądu (największa wartość funkcji sinusoidalnej), ω - pulsacja t czas 4

5 prąd i kąt ω t Wykres prądu sinusoidalnego w funkcji kąta. Strzałki pokazują umowny kierunek ruchu ładunków. 5

6 15 10 prąd i kąt ω t

7 Z wzoru wynika, że ( t) i = I ω m sin wielkość zawarta w nawiasie (ωt) jest argumentem funkcji trygonometrycznej, a więc jest kątem, czyli jest drogą kątową. Droga kątowa = prędkość kątowa x czas = ω t α Oznacza to, że ω ma sens prędkości kątowej 7

8 Można również napisać i = I ( α ) m sin Jednostką α (kąta) jest radian lub stopień. Zależność pomiędzy miarą kąta wyrażoną w stopniach i w radianach jest następująca: kąt w radianach = (kąt w stopniach/180). π o 45 α = 45 α = π = 180 π 4 8

9 15 10 Im prąd i kąt ωt π -15 Wykres prądu sinusoidalnego w zależności od kąta wyrażonego w stopniach i w radianach. 9

10 Okres Okres T jest odstępem pomiędzy jednakowymi wartościami prądu sinusoidalnego (rosnącego lub malejącego). Np. pomiędzy odpowiednimi wartościami zerowymi (rysunek). Miarą okresu jest czas., po którym następuje powtórzenie przebiegu. Miarą okresu jest również kąt (okres odpowiada kątowi 2π lub 360 stopniom). 10

11 prąd i Im T π T/2 kąt ωt π 180 o 1 / 2 T 2π Sinusoida z zaznaczonymi wielkościami na osi czasu. ½okresu (1/2T) odpowiada: 180 w stopniach π w radianach 1 okres (T) odpowiada: 360 w stopniach 2π w radianach 11

12 Częstotliwość Częstotliwość f jest wielkością określającą ile pełnych okresów przebiegu sinusoidalnego przypada na 1 sekundę. Częstotliwość f = 1 T T = 0, 02s 1 1 f = = = 50Hz T 0,02 12

13 1kHz = 10 3 Hz 1MHz = 10 6 Hz 1GHz = 10 9 Hz 13

14 15 10 prąd i kąt ω t Częstotliwość 50Hz i 150Hz Częstotliwość 50Hz i 150Hz 14

15 15 10 prąd i kąt ω t Częstotliwość 50Hz i 250Hz 15

16 15 10 prąd i kąt ω t Częstotliwość 50Hz, 150Hz i 250Hz 16

17 17

18 Fale radiowe 3kHz 3THz 18

19 Podział pasma radiowego Nazwa fal Częstotliw ość Długość Nazwa angielska Skrót angielski 3-30 Hz tys. km Extremely low frequency ELF Hz 1-10 tys. km Super low frequency SLF Hz km Ultra low frequency ULF fale myriametrowe, fale bardzo długie 3-30 khz km Very low frequency VLF fale kilometrowe, f ale długie khz 1-10 km Low frequency LF 19

20 Nazwa fal Częstotliw ość Długość Nazwa angielska Skrót angielski fale hektometrowe, fale średnie khz m Medium frequency MF fale dekametrowe, fale krótkie 3-30 MHz m High frequency HF fale metrowe, fale ultrakrótkie MHz 1-10 m Very high frequency VHF 20

21 Nazwa fal Częstotliw ość Długość Nazwa angielska Skrót angielski fale decymetrowe MHz mm Ultra high frequency UHF fale centymetrowe 3-30 GHz mm Super high frequency SHF fale milimetrowe GHz 1-10 mm Extremely high frequency EHF fale submilimetrow e GHz µm 21

22 Faza początkowa Pokazane dotychczas przebiegi sinusoidalne były narysowane w taki sposób, że miejsce zerowe sinusoidy przypadało w początku układu współrzędnych. Jest to wygodny sposób prezentowania przebiegu sinusoidalnego, bowiem w jego opisie matematycznym nie występuje tzw przesunięcie fazowe, czyli dodatkowy kąt ilustrujący odłegłość przejścia sinusoidy przez zero od początku układu wpspółrzędnych, Przykłady: 22

23 Faza początkowa równa zeru Wykres prądu sinusoidalnego w zakresie od kąta 0 do 360 stopni 1,5 1 0,5 0-0, ,5 ( t) i = I ω m sin 23

24 Faza początkowa równa zeru Wykres prądu sinusoidalnego w zakresie od kąta -360 do +360 stopni 1,5 1 0, ,5-1 -1,5 ( t) i = I ω m sin 24

25 Faza początkowa nie jest równa zeru 1,5 1 0, ,5-1 -1,5 Faza początkowa o = 30 ψ ( ) i = I sin ωt + 30 m 25

26 Faza początkowa nie jest równa zeru 1,5 1 0, ,5-1 -1,5 Faza początkowa o = 60 ψ ( ) i = I sin ωt 60 m 26

27 Prezentacja fazy początkowej na wykresie wskazowym 15 I m kąt ωt prąd i φ=45 0 o ψ = 45 i = I sin( ω t + ψ ) m i = Im sin( ωt + 45) 27

28 Prezentacja fazy początkowej na wykresie wskazowym 15 kąt ωt prąd i φ=-45 0 i = Im sin( ωt 45) -15 i = I sin( ωt ψ ) m o ψ = 45 I m 28

29 Zakres zmian od ψ = 0 doψ = 360 o 29

30 Przesunięcie fazowe Dwie wielkości sinusoidalne mogą być w fazie tj. φ1=φ2 lub mogą być przesunięte względem siebie w fazie φ1 φ2. 2 1,5 1 0, , ,5-2 Sinusoidy znajdujące się w fazie ψ1 =ψ 2 = 60 o 30

31 Sinusoidy przesunięte względem siebie w fazie o ψ1 = ,5 1 0,5 ψ o 2 = , Różnica faz = przesunięcie fazowe ϕ = ψ1 ψ 2 = ϕ ,5 ( ) = o 90 31

32 Ilustracja przesunięcia fazowego na wykresie wskazowym I m1 I m2 o ϕ = 30 i = Im1 sin t ( ω + 1) 1 ψ i = I sin t ( ω + 2) 2 m2 ψ 32

33 Modyfikacja poprzedniego wykresu o ψ1 = 0 ( 30) i sin 1 = Im1 ωt + I m1 o ϕ = 30 I m2 ( t) i Im sin ω 2 = 2 33

34 2 1,5 1 0, , ,5-2 ( 30) i1 = Im1 sin ωt ( t) i Im sin ω niebieski 2 = czerwony 2 34

35 Wartości zastępcze prądu zmiennego Operowanie wartością chwilową prądu zmiennego jest bardzo kłopotliwe. Wartość ta nie odzwierciedla bezpośrednio działania energetycznego prądu, które jest efektem jego przepływu w dłuższym czasie. W związku z tym wprowadzono bardzo wygodną metodę zastępowania wielkości chwilowych przez wielkości uśrednione w czasie. Takimi wielkościami uśrednionymi są: wartość skuteczna prądu sinusoidalnego, wartośćśrednia prądu sinusoidalnego 35

36 Wartość skuteczna prądu sinusoidalnego DEFINICJA Wartością skuteczną prądu sinusoidalnego nazywamy taką wartość prądu stałego, który płynąc przez rezystor w czasie t=t wywołuje wydzielenie się takiej samej ilości energii cieplnej jak prąd sinusoidalny. Porównanie I R Przy prądzie stałym można napisać: A = RI 2 T 36

37 i R Energia przy prądzie zmiennym zmienia się w czasie, wobec zmian wartości prądu. Jej wartość chwilowa Jest proporcjonalna do kwadratu wartości chwilowej prądu. W dłuższym czasie przyjętym do rozważań, a mianowicie w czasie okresu T, jej wartość jest równa: A = T 2 Ri dt = 0 R T 0 i 2 dt Założono tutaj, że rezustancja R=const. 37

38 Ponieważ dążymy do uzyskania równoważności obu przypadków (prąd stały, prąd zmienne) z punktu widzenia energetycznego przyjmujemy, że przy prądzie zmiennym i odpowiednim prądzie stałym wydziela się taka sama energia cieplna. T 2 R i dt = 0 RI 2 T Otrzymujemy ogólną (niezależną od przebiegu prądu zmiennego) definicję wartości skutecznej prądu zmiennego I = 1 T T 0 i 2 dt 38

39 W przypadku prądu o przebiegu sinusoidalnym podstawiamy ( t) i = I sin ω m I T = I m sin ( ωt)dt T 0 I T 1 2 = I m sin ( ωt)dt T 0 39

40 Wartość skuteczna prądu sinusoidalnego I = I 2 m 2 = I m 2 0,707 Interpretację wartości skutecznej prądu przedstawia rysunek poniżej. I m ~i^2 prąd i, kwadrat i I kąt ω t i

41 Wartość średnia prądu zmiennego Wartościąśrednią wielkości zmiennej w czasie nazywamy wyrażenie I sr = 1 T T 0 idt W przypadku prądu sinusoidalnego (przemiennego) wartość średnia jest równa 0. Wynika to z wykresu funkcji sinusoidalnej, która jest symetryczna ( z przesunięciem o T/2) względem osi czasu. W praktyce wielkość ta ma znaczenie nie dla pełnego okresu, lecz dla T/2, co dotyczy przypadku prostowania prądu zmiennego za pomocą tzw. prostowników. Wtedy definicja wartości średniej jest następująca 41

42 I sr T T = idt = T T 0 0 I m sin 2 π ( ωt) dt = I m 0,637 I m 1 0 prąd i, I, Isr 0 I Isr ką t ω t

43 Podsumowanie 1. Wielkości sinusoidalne mogą mieć różne częstotliwości, różne fazy początkowe, różne przesunięcia fazowe oraz różne amplitudy. 2. W praktyce, zwykle rozważamy sinusoidy o jednakowych częstotliwościach (częstotliwość techniczna 50Hz) o różnych amplitudach, przesunięte w fazie. 3. W celu uproszczenia możliwości operowania prądem sinusoidalnym wprowadza się zastępczą wielkość o nazwie wartość skuteczna prądu, która odpowiada prądowi zmiennemu z punktów widzenia efektu energetycznego. 43

44 4. Uproszczenie ilustracji graficznych wartości prądów, ich przesunięcia fazowego umożliwia przedstawienie prądów na wykresie wskazowym. Wartość skuteczna (lub rzadziej maksymalna) prądu jest tu przedstawiana w postaci strzałki o długości proporcjonalnej do wartości prądu. 5. Usytuowanie strzałki (wskazu) na płaszczyźnie w odniesieniu do osi poziomej określa fazę początkową, zaś w odniesieniu do innego wskazu, określa przesunięcie fazowe pomiędzy wskazami. 44

45 Podsumowanie dc. Wszystkie dotychczas pokazane wykresy, zależności i metody dotyczące prądów odnoszą się w tym samym stopniu napięć: Wyróżniamy zatem w odniesieniu do prądów i napięć: Wartości chwilowe i, u Wartości maksymalne I m, U m Wartości skuteczne I, U 45

46 Sinusoida napięcia i sinusoida prądu U I w 2 1,5 1 0, , ,5-2 46

47 Elementy pasywne w obwodach prądu zmiennego Rezystancja (rezystor, opornik) R[ Ω] Indukcyjność (cewka) L[ H ] Pojemność (kondensator) C[ F] 47

48 Funkcje energetyczne elementów pasywnych Rezystor (R): W rezystorze następuje przetwarzanie energii elektrycznej na energię cieplną. Cewka (L) W cewce, energia związana z przepływem prądu elektrycznego, jest magazynowana w polu magnetycznym. Kondensator (C) W kondensatorze, energia związana z ładunkami na okładkach jest magazynowana w polu elektrycznym. 48

49 Trzy elementy pasywne R, L, C odgrywają w obwodach prądu zmiennego zasadniczą rolę przy tworzeniu pola magnetycznego elektrycznego (elektromagnetycznego) i przekształcaniu energii elektrycznej na energię cieplna. Zależność wartości R, L, C elementów pasywnych od ich parametrów materiałowych i konstrukcji 49

50 Rezystor: Rezystor (opornik) charakteryzuje wartość rezystancji (oporności). W przypadku oporników wykonanych z drutu obowiązuje tu zależność: S ρ R = l ρ s [ Ω] l R = l ρ S 50

51 Wartość rezystancji jest tym większa im dłuższy jest drut, z którego wykonany jest rezystor, im większa jest jego rezystywność oraz im mniejszy przekrój poprzeczny drutu. Cewka Cewka (solenoid) jest scharakteryzowana przez wartość jej indukcyjności L. Wielkość ta jest zależna od liczby zwojów cewki (z) jej wymiarów geometrycznych (długość i przekrój) oraz od ośrodka, w którym wytwarzane jest pole magnetyczne (rdzeń cewki) L z 2 µ µ o r l [ H] S 51

52 µ o µ r przenikalność magnetyczna względna przenikalność magnetyczna Np. dla próżni (powietrze) µ r 1 Ferromagnetyk (np. żelazo) µ r itp 52

53 Indukcyjność cewki z rdzeniem ferromagnetycznym jest wielokrotnie większa od indukcyjności cewki bez rdzenia. Przenikalność magnetyczna rdzenia jest zależna od natężenia pola magnetycznego, jest więc zależna od natężenia prądu w cewce. Dlatego też indukcyjność cewki z rdzeniem nie jest stała, lecz zależy od prądu. L Fe z 2 µ o µ r s ( i) l 53

54 Kondensator S Jest scharakteryzowany przez wartość pojemności C d Zależy ona od powierzchni okładek S, odległości pomiędzy okładkami d oraz o środowiska wypełniającego przestrzeń między okładkami ε ε rs C = o d [ F] 54

55 εo ε r Stała dielektryczna Względna przenikalność dielektryczna ε r 1 kilkanascie W celu uzyskania dużej pojemności należy umieszczać okładki o dużej powierzchni (duże S), blisko siebie (małe d) Podsumowanie W obwodach padu zmiennego istotną rolę odgrywają trzy elementy pasywne: R, L, C 55

56 Reaktancje Symbol ogólny X W obwodzie prądu zmiennego na indukcyjności L oraz na pojemności C istnieją napięcia, zależne od przebiegu prądu w czasie. Na indukcyjności u L = L di dt Na pojemności 1 u c = idt C 56

57 W przypadku prądu o przebiegu sinusoidalnym ( t) i = Im sin ω Otrzymujemy dla indukcyjności u L = L d [ I sin( ωt) ] m dt = I m ( ) ( ) ωl cos ωt u L = I m X L cos ( ωt) 57

58 X L = ωl [ Ω] Reaktancja indukcyjna Stąd U = IX L L Prawo Ohma dla indukcyjności I = U X L L 58

59 Otrzymujemy dla pojemności u c 1 = C I m 1 ωc ( ) ( ) sin ωt dt = I m cos ωt u c = I m X C cos ( ωt) 59

60 X C 1 = ω C [ Ω] Reaktancja pojemnościowa Stąd U = IX C C Prawo Ohma dla pojemności I = U X C C 60

61 Podsumowanie: Przy prądzie zmiennym- sinusoidalnym, na indukcyjności i pojemności istnieją napięcia UL i UC proporcjonalne do wartości reaktancji XL i XC. Reaktancje XL i XC zależą od pulsacji, czyli od częstotliwości prądu. ω = 2πf X = ωl L 1 X = C ωc Związki pomiędzy wartościami skutecznymi napięć i prądów można zapisać w postaci analogicznej do prawa Ohma. I = U X L L I = U X C C 61

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska pokój: 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 10.00-10.45 Thursday: 10.30-11.15 Literatura podstawowa: 1. Podstawy

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Elektronika cyfrowa Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Część notatek z wykładu znajduje się na: http://zefir.if.uj.edu.pl/planeta/wyklad_elektronika/ 1 Pracownia

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 36 ZAWADA OBWODÓW RLC. Kraków, 2004/2015/2016

Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 36 ZAWADA OBWODÓW RLC. Kraków, 2004/2015/2016 Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 36 ZAWADA OBWODÓW RLC Kraków, 2004/2015/2016 Marek Kasprowicz na podstawie instrukcji Józefa Zapłotnego i Piotra Janasa ZAKRES WYMAGANYCH

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan Dynamika układów elektrycznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele elektryczne opisują zjawiska zachodzące podczas przemieszczania się ładunków elektrycznych pomiędzy punktami obwodu o różnych

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Podstawy fizyki sezon 2 6. Indukcja magnetyczna Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

MGR Prądy zmienne.

MGR Prądy zmienne. MGR 7 7. Prądy zmienne. Powstawanie prądu sinusoidalnego zmiennego. Wielkości charakteryzujące przebiegi sinusoidalne. Analiza obwodów zawierających elementy R, L, C. Prawa Kirchhoffa w obwodach prądu

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

Przyrządy pomiarowe w elektronice multimetr

Przyrządy pomiarowe w elektronice multimetr Przyrządy pomiarowe w elektronice multimetr Miernik uniwersalny służy do pomiaru istotnych parametrów elementów elektronicznych: rezystancji pojemności napięć, prądów stałych i zmiennych (50Hz) na elementach

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

II. Elementy systemów energoelektronicznych

II. Elementy systemów energoelektronicznych II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

OBWODY MAGNETYCZNE SPRZĘśONE

OBWODY MAGNETYCZNE SPRZĘśONE Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Elektroniczne Systemy Przetwarzania Energii

Elektroniczne Systemy Przetwarzania Energii Elektroniczne Systemy Przetwarzania Energii Zagadnienia ogólne Przedmiot dotyczy zagadnień Energoelektroniki - dyscypliny na pograniczu Elektrotechniki i Elektroniki. Elektrotechnika zajmuje się: przetwarzaniem

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO mgr inż. Grzegorz Strzeszewski ZespółSzkółnrwWyszkowie 01 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia 2.3. Bierne elementy regulacyjne 2.3.1. rezystory, Rezystory spełniają w laboratorium funkcje regulacyjne oraz dysypacyjne (rozpraszają energię obciążenia) Parametry rezystorów. Rezystancja znamionowa

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Drgania w obwodach RLC i fale elektromagnetyczne

Drgania w obwodach RLC i fale elektromagnetyczne Rozdział 7 Drgania w obwodach RLC i fale elektromagnetyczne 7.1 Drgania elektryczne 7.1.1 Obwód LC drgania nietłumione W obwodach, zawierających elementy o określonej indukcyjności, pojemności i oporze

Bardziej szczegółowo

Wykład VI UKŁADY LINIOWE PRĄDU PRZEMIENNEGO JEDNOFAZOWEGO

Wykład VI UKŁADY LINIOWE PRĄDU PRZEMIENNEGO JEDNOFAZOWEGO Wykład VI UKŁADY LINIOWE PRĄDU PRZEMIENNEGO JEDNOFAZOWEGO OPIS PRZEBIEGÓW PRĄDU SINUSOIDALNEGO Prąd sinusoidalnie przemienny jest generowany przez źródła, jakimi są generatory przemiennej sinusoidalnie

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE Parametry sygnału sinusoidalnego Sygnały sinusoidalne zwane również harmonicznymi są opisane w dziedzinie czasu następującym wzorem (w opisie przyjęto oznaczenie sygnału napięciowego) : Wielkości występujące

Bardziej szczegółowo

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej W układach elektronicznych występują: Rezystory Rezystor potocznie nazywany opornikiem jest jednym z najczęściej spotykanych

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 12) 1.1. (0

Bardziej szczegółowo

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA Sprawdzanie prawa OHMA i praw KHHOFFA -0 Dr inŝ. Tadeusz Mączka. Sprawdzanie prawa OHMA i praw KHHOFFA. Wstęp: kłady elektryczne, moŝna traktować jako zbiory obwodów elektrycznych, przez które przepływają

Bardziej szczegółowo

1 Elementy RLC w obwodach prądu przemiennego

1 Elementy RLC w obwodach prądu przemiennego 1 Elementy RLC w obwodach prądu przemiennego Obecnie w większości krajów świata stosuje się prąd przemienny (sinusoidalnie zmienny) do zaopatrywania odbiorców przemysłowych oraz indywidualnych w energię

Bardziej szczegółowo

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO Jako przykład wykorzystania prawa przepływu rozważmy ferromagnetyczny rdzeń toroidalny o polu przekroju S oraz wymiarach geometrycznych podanych na Rys. 1. Załóżmy,

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA 1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.

Bardziej szczegółowo

Podstawowe układy energoelektroniczne

Podstawowe układy energoelektroniczne WYKŁAD 3 Podstawowe układy energoelektroniczne Podział ze względu na charakter przebiegów wejściowych i wyjściowych Przebieg wejściowy Przemienny (AC) Przemienny (AC) Stały (DC) Stały (DC) Przebieg wyjściowy

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSK 28 PRĄD PRZEMENNY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Od roku 2015 w programie

Bardziej szczegółowo

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych

Bardziej szczegółowo