Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ"

Transkrypt

1 Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4.. Zjawisko samoindukcji. ndukcyjność własna W cewce o liczbie zwojów z umieszczonej w zmiennym polu magnetycznym na skutek zjawiska indukcji elektromagnetycznej indukuje się napięcie opisane zależnością dφ e = z (4.) gdzie: e - chwilowa wartość napięcia indukowanego, z - liczba zwojów, Φ - strumień magnetyczny. W szczególnym przypadku, gdy zmienny strumień magnetyczny wywołany jest zmiennym prądem występującym w tej cewce, zjawisko indukowania się napięcia nazywamy samoindukcją (rys.4.). e Φ(t) i(t) z Rys.4..Cewka powietrzna. Zjawisko samoindukcji polega na indukowaniu się napięcia w cewce lub w obwodzie elektrycznym pod wpływem zmian natężenia prądu występującego w tej cewce lub w tym obwodzie. Wartość chwilową napięcia indukowanego opisuje wtedy zależność

2 di e = L (4.) gdzie i - prąd cewki. Współczynnik proporcjonalności L nazywa się indukcyjnością własną cewki. ndukcyjność własna jest to parametr cewki charakteryzujący jej zdolność do wytwarzania pola magnetycznego. Porównując wzory (4.) i (4.) otrzymuje się zależność dφ di z = L. (4.3) Jeżeli przyjąć założenie, że w polu magnetycznym cewki nie ma materiałów ferromagnetycznych (strumień jest proporcjonalny do prądu), to wtedy wzór (4.3) można zapisać z Φ = Li (4.4) Na podstawie powyższej relacji indukcyjność własna cewki L wynosi Jednostką indukcyjności jest henr zφ L =. (4.5) i Wb s H = = = Ω s 4.. Zjawisko indukcji wzajemnej. ndukcyjność wzajemna Dwie cewki są magnetycznie sprzężone, jeśli strumień magnetyczny wytwarzany przez jedną z cewek przenika drugą cewkę (rys 4.). Jak wynika z rys.4. prąd zmienny i w pierwszej cewce wytworzy strumień Φ, którego część Φ będzie skojarzona z cewką drugą, a pozostała jego część ulegnie rozproszeniu.

3 M e Φ Φ (t) i z z Rys.4. Dwie cewki powietrzne magnetycznie sprzężone. Ponieważ każdej zmianie strumienia towarzyszy indukowanie się napięcia, to napięcie e indukowane w cewce drugiej to można przedstawić w postaci zależności e dφ = z (4.6) gdzie: z -liczba zwojów cewki, Φ - strumień magnetyczny sprzężony z cewką wywołany przez prąd i. Ponieważ zmiana strumienia Φ spowodowana jest zmianą prądu i, to napięcie e indukowane w drugiej cewce można opisać zależnością e di = M (4.7) gdzie: M - wartość indukcyjności wzajemnej cewek i, i - prąd cewki. Zjawisko indukcji wzajemnej polega na tym, że każdej zmianie natężenia prądu w jednej z cewek sprzężonych magnetycznie towarzyszy indukowanie się napięcia również w cewce drugiej. Z porównania równań (4.6) i (4.7) można wyznaczyć indukcyjność wzajemną M cewek magnetycznie sprzężonych z zależności M zφ =. (4.8) i 3

4 W przypadku, gdy droga strumienia magnetycznego przebiega w obu cewkach w tym samym środowisku, to wartość indukcyjności wzajemnej cewek i jest równa wartości indukcyjności wzajemnej cewek i, co można zapisać M = M = M. ndukcyjność wzajemna dwóch cewek powiązana jest z ich indukcyjnościami własnymi zależnością M = k L L. (4.9) Współczynnik k nazywa się współczynnikiem sprzężenia magnetycznego cewek, a jego wartość zależy od ich wzajemnego położenia w przestrzeni. Współczynnik ten zmienia się w zakresie 0. Wartość k = oznacza sprzężenie idealne, natomiast k = 0 oznacza brak sprzężenia magnetycznego. α cewka ruchoma cewka nieruchoma k= cos α Rys Układ cewek umożliwiający zmianę współczynnika sprzężenia. Rys.4.3 przedstawia przekrój układu dwóch cewek toroidalnych, w którym cewka wewnętrzna jest ułożyskowana i może zmieniać swoje położenie względem nieruchomej cewki zewnętrznej. Dla takiego układu dwóch cewek sprzężenie bliskie idealnemu można uzyskać przez ich usytuowanie w jednej płaszczyźnie. Natomiast przy takim położeniu cewek, w którym ich osie są prostopadłe współczynnik k jest bliski zeru Metoda wyznaczania indukcyjności własnej cewki na podstawie pomiarów prądów i napięć Rzeczywista cewka oprócz indukcyjności własnej L ma również rezystancję R L i dlatego cewkę rzeczywistą można przedstawić jako szeregowe połączenie indukcyjności i rezystancji (rys.4.4). 4

5 Rys.4.4. Sposób przedstawiania cewki rzeczywistej. Dla prądu stałego cewka stanowi rezystancję R L, natomiast dla prądu przemiennego cewkę taką charakteryzuje impedancja Z L, której moduł opisuje zależność Reaktancja cewki L opisana jest wzorem L L L Z = R +. (4.0 ) L = ω L = π f L (4.) gdzie: ω - pulsacja prądu cewki, f - częstotliwość prądu. Na podstawie zależności (4.) można wyznaczyć indukcyjność własną cewki L jako L L =. (4.) πf Po wyznaczeniu reaktancji indukcyjnej L z (4.0) i podstawieniu do (4.) wyrażenie opisujące indukcyjność własną cewki przyjmuje postać L = Z L R L. (4.3) πf Na podstawie powyższej relacji widać, że do wyznaczenia indukcyjności L potrzebna jest znajomość modułu impedancji oraz rezystancji cewki. Ponieważ dla prądu stałego L = 0 dla (f = 0), zatem 5

6 rezystancję cewki R L można wyznaczyć przez pomiar prądu cewki L i napięcia na niej U L przy zasilaniu prądem stałym ze wzoru: UL R L =. (4.4) Zasilając cewkę prądem przemiennym i dokonując pomiaru wartości skutecznych prądu cewki L i napięcia na niej U L wyznaczyć można moduł impedancji Z L z zależności UL Z L =. (4.5) Dokonując pomiarów rezystancji i impedancji cewki metodą techniczną (czyli za pomocą amperomierza i woltomierza ) przy znanej częstotliwości sieci zasilającej f można obliczyć indukcyjność własną cewki ze wzoru (4.3) Wyznaczanie indukcyjności wzajemnej metodą posobnego i przeciwsobnego łączenia cewek L L W metodzie tej stosuje się układ dwóch cewek o indukcyjnościach L i L oraz o rezystancjach odpowiednio R i R. Cewki te są sprzężone magnetycznie i połączone szeregowo w obwód elektryczny, co oznacza, że przez obie cewki płynie ten sam prąd. Możliwe są dwa przypadki: - strumienie magnetyczne cewek są zgodne - tzw. połączenie posobne (rys.4.5), - strumienie magnetyczne cewek są przeciwne - tzw. połączenie przeciwsobne (rys.4.6). e M e Φ +Φ Φ +Φ i z z i Rys.4.5 Posobne połączenie dwóch cewek. 6

7 Na rys.4.4. przedstawione zostały strumienie magnetyczne wywołane przepływem prądu i, a mianowicie: Φ - strumień magnetyczny cewki, Φ - strumień magnetyczny cewki, Φ - strumień magnetyczny sprzężony z cewką wytworzony przez prąd w cewce, Φ - strumień magnetyczny sprzężony z cewką wytworzony przez prąd w cewce. Dla połączenia posobnego napięcia indukowane w cewkach (przy założeniu, że M = M = M) wynoszą odpowiednio e = e = ( L + M) di, di ( L + M), (4.6) natomiast wypadkowe napięcie indukowane e jest sumą napięć e i e i wynosi di = e + e = L + L M. (4.7) ( ) e + W przypadku połączenia posobnego układ cewek można zastąpić cewką równoważną o indukcyjności L PP i rezystancji R S. Parametry te dane są zależnościami: RS = R + R, (4.8) L = L + L + M. PP e M e Φ Φ Φ Φ i z i z Rys 4.6 Połączenie przeciwsobne dwóch cewek. 7

8 Przy przeciwsobnym połączeniu cewek (rys.4.6) napięcia w nich indukowane wynoszą odpowiednio di e = ( L M), (4.9) di e = ( L M), natomiast wypadkowe napięcie indukowane e można przedstawić jako di = e + e =. (4.0) ( L + L M) e W tym przypadku układ cewek można zastąpić cewką równoważną o indukcyjności L PR i rezystancji R S, gdzie parametry te dane są zależnościami: RS = R + R, (4.) L = L + L M. PR Przez odjęcie stronami równań (4.8) i (4.) można, przy znanych L PP i L PR, wyznaczyć indukcyjność wzajemną M z zależności L LPR M =. (4.) 4 PP Do wyznaczenia indukcyjności wzajemnej konieczna jest znajomość wartości indukcyjności wypadkowych połączenia posobnego L PP i połączenia przeciwsobnego L PR. ndukcyjność wzajemną M wyznacza się według wzoru (4.).Wartości indukcyjności wypadkowych L PP i L PR można wyznaczyć w taki sam sposób jak indukcyjność własną na podstawie pomiarów prądów i napięć (wg metody opisanej w p.4.3) Wyznaczanie indukcyjności wzajemnej metodą pomiaru napięcia indukowanego W tej metodzie wyznaczana jest indukcyjność wzajemna dwóch cewek magnetycznie sprzężonych, które nie tworzą obwodu elektrycznego. Jedna z cewek zasilana jest prądem przemiennym o częstotliwości f i wartości skutecznej. W wyniku zjawiska indukcji wzajemnej w drugiej cewce 8

9 indukuje się napięcie o wartości skutecznej U. Ponieważ droga strumienia magnetycznego przebiega w obu cewkach w tym samym środowisku, można przyjąć M = M = M. Na podstawie zależności (4.7) przyjmując u = e oraz i (t) = m. sin(πft) można zapisać di(t) d(m sin(π f t)) u(t) = M = M = πfmm cos(πft). (4.3) Przechodząc na wartości skuteczne prądu i napięcia zależność powyższa przyjmuje postać U = π f M, (4.4) z której wynika następująca zależność na indukcyjność wzajemną cewek U M =. (4.5) π f Taką samą wartość indukcyjności wzajemnej M otrzyma się w przypadku zasilania cewki drugiej (pomiar prądu ) i pomiaru napięcia U indukowanego w cewce pierwszej. W tym przypadku wyrażenie opisujące indukcyjność wzajemną ma postać U M =. (4.6) π f ndukcyjność wzajemną dwóch cewek można więc wyznaczyć przez pomiar napięcia indukowanego w cewce pierwszej wywołanego prądem w cewce drugiej lub przez pomiar napięcia w cewce drugiej wywołanego przez prąd w cewce pierwszej Pomiar rezystancji elementu obwodu elektrycznego metodą techniczną Rezystancję elementu obwodu elektrycznego można wyznaczyć przez pomiar prądu i napięcia w układach pomiarowych przedstawionych na rys.4.7. Rzeczywistą rezystancję elementu wyznacza się z prawa Ohma 9

10 U R =. (4.7) a) b) U R U R U Rys.4.7. Schematy układów do pomiarów rezystancji: a) małych, b) dużych. W układzie przedstawionym na rys.4.7.a) występuje dokładny pomiar napięcia na rezystancji R (U = U ), natomiast amperomierz mierzy sumę prądów = +. W tym przypadku wyznaczona rezystancja R ' U U = = (4.8) Ι Ι + Ι jest mniejsza od rzeczywistej rezystancji R. Błąd pomiaru jest tym mniejszy, im mniejszy jest stosunek rezystancji R do rezystancji wewnętrznej woltomierza R. Układ ten stosowany jest do pomiaru rezystancji spełniających warunek R << R. (4.9) Z uwagi na to, że rezystancja wewnętrzna woltomierza jest duża, układ ten stosowany jest do pomiaru małych rezystancji. W układzie przedstawionym na rys.4.7.b) występuje dokładny pomiar prądu na rezystancji R ( = ), natomiast woltomierz mierzy sumę napięć U =U +U. W tym przypadku wyznaczona rezystancja 0

11 R ' U U + U = = (4.30) Ι Ι jest większa od rzeczywistej rezystancji R. Błąd pomiaru jest tym mniejszy, im mniejszy jest stosunek rezystancji amperomierza R do rezystancji R. Układ ten stosowany jest do pomiaru rezystancji spełniających warunek R >> R. (4.3) Z uwagi na to, że rezystancja wewnętrzna amperomierza jest mała, układ ten stosowany jest do pomiaru dużych rezystancji Wyznaczanie impedancji elementu obwodu elektrycznego Wyznaczenia impedancji elementu można dokonać w układach pomiarowych przedstawionych na rys.4.8. Rzeczywistą impedancję elementu określa się jako U Z =. (4.3) a) b) ~ ~ f f U Z U Z U Rys.4.8. Schematy układów do pomiarów impedancji: a) małych, b) dużych. Układy do pomiaru impedancji zasilane są napięciem przemiennym. Rozważając błędy powstające w powyższych układach analogicznie jak w p.4.6. można dojść do następujących wniosków: - układ przedstawiony na rys.4.8.a) stosuje się do pomiarów impedancji spełniających warunek Z << Z, gdzie Z jest impedancją wewnętrzną woltomierza,

12 - układ przedstawiony na Rys.4.8.b) stosuje się do pomiarów impedancji spełniających warunek Z >> Z, gdzie Z jest impedancją wewnętrzną amperomierza.

13 4.8. Badania laboratoryjne LBORTORUM ELEKTROTECHNK ELEKTRONK Grup a Podgrupa Numer ćwiczenia 5 Lp. Nazwisko i imię Ocena Data wykonania. ćwiczenia. Podpis prowadzącego 3. zajęcia Temat Wykaz przyrządów Oznaczenia Nazwa i typ elementu Dane techniczne Nr fabr. Uwagi

14 4.8.. Wyznaczanie rezystancji pojedynczej cewki Pomiary przeprowadza się dla jednej (wybranej) cewki w obwodzie połączonym zgodnie ze schematem z rys 4.9. W celu wyznaczenia rezystancji cewki należy dokonać trzech pomiarów prądu i napięcia zmieniając prąd w obwodzie przez zmianę rezystancji R. Uwaga! Nie przekraczać dopuszczalnych prądów cewek + - Ł R L L.p R Rys 4.9. Schemat układu do pomiaru rezystancji cewki. Pomiary Cewka... Obliczenia U R L R Lśr [] [] [Ω] [Ω] Tab. 4. Dla każdego pomiaru należy obliczyć rezystancję cewki a następnie wyznaczyć jej wartość średnią. 4

15 4.8.. Wyznaczanie rezystancji szeregowego połączenia cewek Pomiary przeprowadza się w obwodzie połączonym zgodnie ze schematem z rys Ł R L R L R Rys.4.0. Schemat układu do wyznaczenia rezystancji połączenia szeregowego cewek. W celu wyznaczenia rezystancji połączenia szeregowego cewek należy dokonać pomiarów prądu i napięcia dla trzech wartości prądu ustalonych rezystancją R. Tab. 4. Pomiary Obliczenia Połączenie szeregowe cewek L.p. U R S R Sśr [] [] [Ω] [Ω].. 3. Dla każdego pomiaru należy obliczyć rezystancję szeregowego połączenia cewek a następnie wyznaczyć jej wartość średnią. 5

16 Wyznaczanie indukcyjności własnej cewki W celu wyznaczenia indukcyjności własnej cewki należy wyznaczyć moduł jej impedancji oraz wykorzystać wartość rezystancji wyznaczoną w p Mierzona będzie wartość skuteczna prądu i wartość skuteczna napięcia U. Pomiary przeprowadza się w obwodzie połączonym zgodnie ze schematem z rys 4. dla tej samej cewki, dla której wyznaczona była wartość rezystancji w punkcie W celu wyznaczenia modułu impedancji cewki należy dokonać trzech pomiarów prądu i napięcia zmieniając napięcie zasilające autotransformatorem t. ~ Ł Hz Z L Rys.4.. Schemat układu do wyznaczania impedancji cewki. Tab.4.3 Pomiary Obliczenia L.p. U Z L L L L śr [] [] [Ω] [Ω] [H] [H] Cewka Na podstawie wyników pomiarów dokonać obliczenia impedancji Z, reaktancji indukcyjnej L oraz indukcyjności cewki L i wartości średniej indukcyjności cewki L śr. 6

17 Wyznaczanie indukcyjności wzajemnej metodą posobnego i przeciwsobnego połączenia cewek W celu wyznaczenia indukcyjności wzajemnej należy wyznaczyć impedancję połączenia posobnego i przeciwsobnego cewek oraz wykorzystać wartość ich rezystancji przy połączeniu szeregowym wyznaczoną w p Pomiary przeprowadza się w obwodzie połączonym zgodnie ze schematem z rys 4.. W celu wyznaczenia modułu impedancji należy dokonać trzech pomiarów prądu i napięcia zmieniając napięcie zasilające autotransformatorem t. Następnie dokonać zamiany połączenia posobnego na przeciwsobne przez obrót cewki wewnętrznej o 80 0 (lub przez zamianę przewodów na zaciskach jednej z cewek) i powtórzyć pomiary. ~ Ł Hz ZL ZL Rys.4.. Schemat układu do wyznaczenia impedancji połączenia posobnego i przeciwsobnego. Tab.4.4 Pomiary Obliczenia Posobny Przeciwsobny L.p. U U Z PP PP L PP Z PR PR L PR M.. 3. M śr [] [] [] [] [Ω] [Ω] [H] [Ω] [Ω] [H] [H] [H] Dokonać obliczeń impedancji połączenia posobnego Z PP, impedancji połączenia przeciwsobnego Z PR, reaktancji połączenia posobnego PP, 7

18 reaktancji połączenia przeciwsobnego PR, indukcyjności równoważnej połączenia posobnego L PP, indukcyjności równoważnej połączenia przeciwsobnego L PR oraz indukcyjności wzajemnej M i jej wartości średniej M śr Wyznaczanie indukcyjności wzajemnej metodą pomiaru napięcia indukowanego Pomiarów dokonuje się w układzie przedstawionym na rys.4.3. W celu wyznaczenia indukcyjności wzajemnej należy dokonać trzech pomiarów prądu i napięcia zmieniając napięcie zasilające autotransformatorem t. ~ Ł Hz L L Rys.4.3. Układ do wyznaczenia indukcyjności wzajemnej metodą pomiaru napięcia indukcji wzajemnej. Tab.4.5 Pomiary Obliczenia L.p. U M M śr [] [U] [H] [H].. 3. Na podstawie wyników pomiarów wyznaczyć indukcyjność wzajemną cewek M i obliczyć jej wartość średnią M śr. Wyniki obliczeń umieścić w tabeli 4.4. Porównać otrzymane wartości indukcyjności z wynikami obliczeń z tabeli

19 Wyznaczanie indukcyjności wzajemnej w zależności od położenia cewek względem siebie Przeprowadzić pomiary napięcia indukowanego w cewce zewnętrznej w zależności od położenia kątowego zasilanej cewki wewnętrznej w układzie połączonym zgodnie z rys Pomiary przeprowadzić dla kątów w zakresie Tab.4.6 Pomiary Obliczenia α U M. [ 0 ] [] [] [H] Obliczyć wartości indukcyjności wzajemnej. Wykonać wykres funkcji M = f(α). Literatura [] S. Bolkowski:Elektrotechnika teoretyczna, teoria obwodów elektrycznych, tom. WNT Warszawa 998. [] M. Krakowski: Elektrotechnika teoretyczna, obwody liniowe i nieliniowe, tom. PWN Warszawa 983. [3] Z.Włodarczyk: Elektrotechnika cz., Skrypt WT, Warszawa

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

OBWODY MAGNETYCZNIE SPRZĘŻONE

OBWODY MAGNETYCZNIE SPRZĘŻONE Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych Tytuł ENS1C200 013 ćwiczenia OBWODY MAGNETYCZNIE SPRZĘŻONE Numer ćwiczenia

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

Ć W I C Z E N I E N R E-7

Ć W I C Z E N I E N R E-7 NSTYTT FYK WYDAŁ NŻYNER PRODKCJ TECHNOOG MATERAŁÓW POTECHNKA CĘSTOCHOWSKA PRACOWNA EEKTRYCNOŚC MAGNETYM Ć W C E N E N R E-7 WYNACANE WSPÓŁCYNNKA NDKCJ WŁASNEJ CEWK . agadnienia do przetudiowania 1. jawiko

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

OBWODY MAGNETYCZNE SPRZĘśONE

OBWODY MAGNETYCZNE SPRZĘśONE Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym

Bardziej szczegółowo

Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 36 ZAWADA OBWODÓW RLC. Kraków, 2004/2015/2016

Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 36 ZAWADA OBWODÓW RLC. Kraków, 2004/2015/2016 Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 36 ZAWADA OBWODÓW RLC Kraków, 2004/2015/2016 Marek Kasprowicz na podstawie instrukcji Józefa Zapłotnego i Piotra Janasa ZAKRES WYMAGANYCH

Bardziej szczegółowo

Lekcja 69. Budowa przyrządów pomiarowych.

Lekcja 69. Budowa przyrządów pomiarowych. Lekcja 69. Budowa przyrządów pomiarowych. Metrologia jest jednym z działów nauki zajmująca się problemami naukowo-technicznymi związanymi z pomiarami, niezależnie od rodzaju wielkości mierzonej i od dokładności

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI Dla studentów II roku kierunku MECHANIKI I BUDOWY MASZYN Spis treści. POMIAR PRĄDÓW I NAPIĘĆ W OBWODZIE PRĄDU STAŁEGO....

Bardziej szczegółowo

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan Dynamika układów elektrycznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele elektryczne opisują zjawiska zachodzące podczas przemieszczania się ładunków elektrycznych pomiędzy punktami obwodu o różnych

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH LORTORIUM ELEKTROTEHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Lp. Nazwisko i imię Ocena Data wykonania 1. ćwiczenia. Podpis prowadzącego 3. zajęcia 4. 5. Temat Data oddania sprawozdania DNI ODIORNIKÓ

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego Zakład Napędów Wieloźródłowych nstytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie P1 - protokół Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora POLITECHIKA ŚLĄSKA WYDIAŁ IŻYIERII ŚRODOWISKA I EERGETYKI ISTYTUT MASY I URĄDEŃ EERGETYCYCH LABORATORIUM ELEKTRYCE Badanie transformatora (E 3) Opracował: Dr inż. Włodzimierz OGULEWIC 3. Cel ćwiczenia

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. 1. Silnik komutatorowy jednofazowy szeregowy (silniki uniwersalne). silniki komutatorowe jednofazowe szeregowe maja budowę

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości

Bardziej szczegółowo

NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ

NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 9 NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ 1.WPROWADZENIE. Nagrzewanie indukcyjne jest bezpośrednią metodą grzejną, w której energia

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

Podstawy Elektroenergetyki 2

Podstawy Elektroenergetyki 2 POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO

BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2010 z. V M. Drabik, A. Roman Akademia im. Jana Długosza w Częstochowie BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO

Bardziej szczegółowo

14. PARAMETRY PRZEKŁADNIKÓW PRĄDOWYCH

14. PARAMETRY PRZEKŁADNIKÓW PRĄDOWYCH 14. PARAMETRY PRZEKŁADNKÓW PRĄDOWYCH 14.1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów indukcyjnych przekładników prądowych stosowanych w układach elektroenergetycznych,

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Narzędzia pomiarowe Wzorce Parametrami wzorca są:

Narzędzia pomiarowe Wzorce Parametrami wzorca są: Narzędzia pomiarowe zespół środków technicznych umożliwiających wykonanie pomiaru. Obejmują: wzorce przyrządy pomiarowe przetworniki pomiarowe układy pomiarowe systemy pomiarowe Wzorce są to narzędzia

Bardziej szczegółowo

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO ĆWICZENIE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwiczenia: poznanie budowy, zasady działania i własności transformatora oraz zachodzących w nim zjawisk w stanie jałowym, przy próbie zwarcia i obciążeniu.1.

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10 Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia

Bardziej szczegółowo

PL B1. Urządzenie do badania nieciągłości struktury detali ferromagnetycznych na małej przestrzeni badawczej. POLITECHNIKA LUBELSKA, Lublin, PL

PL B1. Urządzenie do badania nieciągłości struktury detali ferromagnetycznych na małej przestrzeni badawczej. POLITECHNIKA LUBELSKA, Lublin, PL PL 212769 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212769 (13) B1 (21) Numer zgłoszenia: 381653 (51) Int.Cl. G01N 27/82 (2006.01) G01R 33/12 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Badanie trójfazowego silnika indukcyjnego klatkowego

Badanie trójfazowego silnika indukcyjnego klatkowego Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Napędów Elektrycznych Ćwiczenie N - instrukcja Badanie trójfazowego silnika indukcyjnego klatkowego Warszawa 03r. SPIS

Bardziej szczegółowo

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH Cel ćwiczenia: zbadanie wpływu typu układu prostowniczego oraz wartości i charakteru obciążenia na parametry wyjściowe zasilacza. 3.1. Podstawy teoretyczne 3.1.1.

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w

Bardziej szczegółowo

Elementy elektrodynamiki oraz obwody elektryczne prądu stałego i przemiennego

Elementy elektrodynamiki oraz obwody elektryczne prądu stałego i przemiennego Elementy elektrodynamiki oraz obwody elektryczne prądu stałego i przemiennego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 16 stycznia 2016 Plan

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI 1 WYKORZYSTAIE MULTIMETRÓW CYFROWYCH DO POMIARU 1. CEL ĆWICZEIA: SKŁADOWYCH IMPEDACJI Celem ćwiczenia jest zapoznanie się z możliwościami pomiaru składowych impedancji multimetrem cyfrowym. 2. POMIARY

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

na okładkach kondensatora. Pomiar powtórzyć kilkakrotnie przy różnych wartościach napięcia U

na okładkach kondensatora. Pomiar powtórzyć kilkakrotnie przy różnych wartościach napięcia U Ćwiczenie U.9.1 Tytuł ćwiczenia: Pomiar ładunku elektrycznego kuli umieszczonej w jednorodnym polu elektrycznym. Cel ćwiczenia: Praktyczne zapoznanie się z własnościami jednorodnego pola elektrycznego.

Bardziej szczegółowo

Podstawy miernictwa. Mierniki magnetoelektryczne

Podstawy miernictwa. Mierniki magnetoelektryczne Podstawy miernictwa Miernik - przyrząd pozwalający określić wartość mierzonej wielkości (np. napięcia elektrycznego, ciśnienia, wilgotności), zazwyczaj przy pomocy podziałki ze wskazówką lub wyświetlacza

Bardziej szczegółowo

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi:

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e-mail): ok: 201 /201 Grupa: Zespół: Data wykonania: Zaliczenie: LABOATOIUM METOLOGII Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wstęp Celem

Bardziej szczegółowo

Badanie trójfazowego silnika indukcyjnego pierścieniowego

Badanie trójfazowego silnika indukcyjnego pierścieniowego Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Napędów Elektrycznych Ćwiczenie N4 - instrukcja Badanie trójfazowego silnika indukcyjnego pierścieniowego Warszawa 03r.

Bardziej szczegółowo

Stanowisko pomiarowe do wyznaczania ró nicowego pr¹du wy³¹czania wy³¹czników ró nicowo-pr¹dowych typu AC

Stanowisko pomiarowe do wyznaczania ró nicowego pr¹du wy³¹czania wy³¹czników ró nicowo-pr¹dowych typu AC ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH Nr 1(4)/2008, s. 91-95 ISSN-1895-3794 Andrzej Kidawa Wy sza Szko³a Zarz¹dzania Ochron¹ Pracy w Katowicach Jagoda G³az Wy sza Szko³a

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie nr 4 Stany nieustalone opracował: dr inż. Wojciech Kazubski

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E19 BADANIE PRĄDNICY

Bardziej szczegółowo

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia Materiały dydaktyczne Podstawy elektrotechniki i elektroniki Semestr III Ćwiczenia 1 Temat 1 (6 godzin): Obwody prądu stałego Zagadnienie: 1. Obwody pasywne prądu stałego. (3h) Obwodem pasywnym nazywa

Bardziej szczegółowo

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ Przedmiot: SEC NSTALACJE OŚWETLENOWE LAMPY WYŁADOWCZE JAKO NELNOWE ODBORNK W SEC OŚWETLENOWEJ Przemysław Tabaka Wprowadzenie Lampy wyładowcze, do których zaliczane są lampy fluorescencyjne, rtęciowe, sodowe

Bardziej szczegółowo