Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra
|
|
- Szczepan Muszyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra
2 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub układów nieskończenie blisko stanów równowagi (procesy kwazistatyczne). Czy umiemy coś powiedzieć o układach blisko (ale nie nieskończenie blisko) równowagi? Będziemy zakładać, że w układzie istnieje równowaga lokalna, to znaczy dla całego układu lub do jego poszczególnych części można w przybliżeniu zdefiniować własności równowagowe. Copyright c 2015 P. F. Góra 15 2
3 Newtonowskie prawo chłodzenia (Empiryczne) prawo Fouriera przewodnictwa cieplnego głosi, że strumień ciepła jest proporcjonalny do powierzchni, przez która przenika i do różnicy temperatur: dq = λa T (1) dt Podobne prawo obowiazuje przy przekazie ciepła za pomoca konwekcji. Jeśli przyjać, że całkowite ciepło zawarte w ciele Q = C T, możemy powyższe przepisać jako dt dt = k(t T o) (2) gdzie T o < T jest temperatura otoczenia. Rozwiazaniem równania (2) jest T = T o + (T (0) T o )e kt (3) Copyright c 2015 P. F. Góra 15 3
4 gdzie T (0) jest poczatkow a temperatura ciała. prawo chłodzenia. Jest to Newtonowskie Podkreślamy, że choć cały układ (stygnace ciało i otoczenie, o którym zakładamy, że jego temperatura jest stała) nie jest w równowadze, do stygna- cego ciała można w przybliżeniu stosować opis równowagowy. Copyright c 2015 P. F. Góra 15 4
5 Przykład W pokoju hotelowym, którego temperatura była przez dłuższy czas utrzymywana w stałej wartości 20 C, znaleziono ciało. Wezwany lekarz sa- dowy o godzinie stwierdził, że temperatura ciała zmarłego wynosi 26,7 C. Po następnej godzinie temperatura ciała zmarłego, którego nie przenoszono, wyniosła 25,8 C. O której godzinie denat zmarł? Copyright c 2015 P. F. Góra 15 5
6 Odstępstwa od prawa Newtona Ciała daleko od równowagi, którym nie można przypisać żadnej określonej temperatury, nie podlegaja prawu Newtona. Podobnie newtonowskie prawo chłodzenia nie stosuje się, gdy stygnace ciało nie ma temperatury jednolitej, tylko wykazuje znaczne gradienty temperatur; taka sytuacja ma miejsce na przykład w odlewnictwie (w hutnictwie). Z innych powodów newtonowskiemu prawu chłodzenia moga nie podlegać pewne układy nanoskopowe. Copyright c 2015 P. F. Góra 15 6
7 Odpowiedź liniowa Przypuśćmy, że pewien układ opisywany jest przez zmienne makroskopowe {x 1, x 2,..., x N }. Załóżmy, że ich wartości równowagowe wynosza zero (jest to tylko kwestia przyjęcia odpowiedniego punktu odniesienia). Niezerowe wartości x i odpowiadaja odchyleniu od równowagi. Zakładamy, że odchylenia od wartości równowagowych sa niewielkie. Spodziewamy się (na podstawie doświadczenia!), że układ będzie dażył do równowagi. Postulujemy, że, pomijajac fluktuacje (szumy), dażenie do równowagi opisywane jest przez równania liniowe ẋ i = j λ ij x j (4) Wyrazy diagonalne równań (4) przewiduja efekty w rodzaju odchylenie ciśnienia od wartości równowagowej powoduje zmianę ciśnienia w czasie. Ciekawsze sa efekty krzyżowe, do których należa, na przykład, zjawiska termoelektryczne. Copyright c 2015 P. F. Góra 15 7
8 Zjawiska termoelektryczne efekt Peltiera Efekt Petiera zachodzi na granicy dwu różnych przewodników lub półprzewodników, połaczonych dwoma złaczami. Podczas przepływu pradu jedo ze złacz ogrzewa się, a drugie ochładza. Ciepło pobierane przez zimne złacze i wydzielane na złaczu goracym jest opisane równaniem dq dt = Π ABI (5) W efekcie Peltiera ochładza się złacze, w którym elektrony przechodza z układu o niższym poziomie Fermiego do układu o wyższym poziomie Fermiego: Aby elektrony mogły wskoczyć na wyższy poziom Fermiego, musza skadś wziać dodatkowa energię. Biora ja z energii cieplnej układu. Na złaczu goracym zachodzi zjawisko odwrotne. Copyright c 2015 P. F. Góra 15 8
9 Zjawiska termoelektryczne efekt Seebecka Efekt Seebecka polega na powstawaniu siły elektromotorycznej w układzie złożonym z dwu różnych metali lub półprzewodników, gdy ich złacza sa utrzymywane w różnych temperaturach. Jest to zjawisko odwrotne do efektu Peltiera. V = (S B S A )(T 2 T 1 ) (6) Copyright c 2015 P. F. Góra 15 9
10 Odpowiedź liniowa i entropia Prawdopodobieństwo, że układ opisywany zmiennymi {x 1, x 2,..., x N } jak wyżej, znajdzie się w takim stanie, jest proporcjonalne do ( ) S(x1, x exp 2,..., x N ) S 0 (7) S 0 jest równowagowa gęstościa entropii. Musi to odpowiadać maksimum entropii, zatem najniższym rzędem rozwinięcia entropii jest k B S S 0 = ij β ij x i x j (8) gdzie β ij = 1 2 S (9) 2 x i x j Copyright c 2015 P. F. Góra 15 10
11 jest macierza symetryczna, a β ij jest dodatnio określona. Zdefiniujmy siły uogólnione (siły termodynamiczne): X i = S x i = j β ij x j (10) W tym języku (4) można przepisać w postaci ẋ i = j γ ij X j (11) Pokażemy, że macierz γ ij jest symetryczna. Copyright c 2015 P. F. Góra 15 11
12 Wartości oczekiwane Możemy teraz policzyć kilka wartości oczekiwanych: Xi x j = d N x e S[x] S x j x i = d N x ( e S[x] ) x j = x i Xi X j = X i ( xi x j = x i β 1 ) jk X k k k d N x e S[x] x j x i = δ ij (12) β jk x k = β ij (13) = ( β 1) ij (14) Copyright c 2015 P. F. Góra 15 12
13 Odwracalność w czasie Na poziomie mikroskopowym równania ruchu msza być odwracalne w czasie i niezmiennicze względem przesunięcia w czasie. Dlatego też fluktuacje musza spełniać xi (t + τ)x j (t) = x i (t τ)x j (t) = x i (t)x j (t + τ) (15) 1 τ ( x i(t + τ)x j (t) x i (t)x j (t) ) = 1 τ ( x i(t)x j (t + τ) x i (t)x j (t) )(16a) ẋ i (t)x j (t) = x i (t)ẋ j (t) (16b) Copyright c 2015 P. F. Góra 15 13
14 Relacje Onsagera Lars Onsager przyjał, że fluktuacje podlegaja temu samemu prawu, co wartości deterministyczne (hipoteza Onsagera), zatem ẋi (t)x j (t) = xi (t)ẋ j (t) = Wobec równości (16b) daje to k γ ik X k (t)x j (t) x i (t) k γ jk X k (t) = γ ij (17a) = γ ji (17b) γ ij = γ ji (18) Równość (18) nosi nazwę relacji wzajemności Onsagera. Copyright c 2015 P. F. Góra 15 14
15 Lars Onsager Nagroda Nobla (z chemii) 1968 Copyright c 2015 P. F. Góra 15 15
16 Znaczenie relacji Onsagera Znaczenie relacji Onsagera polega na tym, że rozszerzaja one opis równowagowy na zjawiska nierównowagowe (z bliskiej nierównowagi), takie, jak prady. Relacje Onsagera podaja zwiazki pomiędzy pradami wywołanymi przez zmienne sprzężone z innymi zmiennymi, jak na przykład w zjawiskach termoelektrycznych. Zasady termodynamiki maja formę zakazów. Taka też formę maja relacje wzajemności Onsagera. Dla przykładu, gdyby macierz γ ij nie była symetryczna, możliwy byłby proces, w którym w zjawisku Peltiera wytwarzamy różnicę temperatur, której używamy do zjawiska Seebecka, uzyskujac większa siłe elektromotoryczna niż ta, której potrzebowaliśmy do zjawiska Peltiera. Relacje Onsagera stanowia, że taki proces jest niemożliwy. Copyright c 2015 P. F. Góra 15 16
17 Przykład: Relacje Onsagera w zjawiskach termoelektrycznych Chcemy znaleźć zwiazek pomiędzy pradem elektrycznym I a pradem ciepła W, wywołanymi przez rónicę temperatur T i różnicę potencjałów φ. Naiwnie możemy sobie wyobrażać, że ma on postać W = l 11 T + l 12 φ (19a) I = l 21 T + l 22 φ (19b) a relacje Onsagera mówia coś o zwiazku l 12 z l 21. Tak jednak nie jest. Siły termodynamiczne (10) sa (minus) pochodnymi entropii, należy więc zaczać od rozważenia zmian entropii. Mamy dwa połaczone zbiornikai ciepła i czasteczek naładowanych. Niech pierwszy zbiornik ma temperaturę T i potencjał φ = 0, drugi temperaturę Copyright c 2015 P. F. Góra 15 17
18 T + T i potencjał φ, przy czym T/T 1. Przypuśćmy, że dn elektronów i energia du przepłynęły z pierwszego zbiornika do drugiego. Zmiany entropii zbiorników wyniosły odpowiednio ds 1 = 1 µ(t ) du + dn (20a) T T 1 µ(t + T ) + e φ ds 2 = du dn (20b) T + T T + T Zmiana całkowitej entropii wyniosła więc ds = ds 1 + ds ( 2 T ) T 2 du + ( T e T ( ) µ T φ ) e dn (21) T Zidentyfikujmy teraz dx 1 = du, dx 2 = e dn. Z (21) mamy zatem siły Copyright c 2015 P. F. Góra 15 18
19 termodynamiczne X 1 = T T 2 X 2 = T e T ( ) µ T + φ T (22a) (22b) Zwiazki pomiędzy pradami W = dx 1 /dt = du/dt oraz I = dx 2 /dt = e dn/dt maja postać ( T T W = γ 11 T 2 + γ 12 ( e T T T I = γ 21 T 2 + γ 22 e T Relacje Onsagera stanowia, że γ 12 = γ 21. ( ) µ T ( ) µ T + φ ) T + φ ) T (23a) (23b) Copyright c 2015 P. F. Góra 15 19
TERMODYNAMIKA PROCESOWA
TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych
Bardziej szczegółowoElementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
Bardziej szczegółowoWykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Bardziej szczegółowoTERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Bardziej szczegółowoElementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Bardziej szczegółowoFizyka statystyczna Zerowa Zasada Termodynamiki. P. F. Góra
Fizyka statystyczna Zerowa Zasada Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Stan układu Fizyka statystyczna (i termodynamika) zajmuje się przede wszystkim układami dużymi, liczacymi
Bardziej szczegółowoZjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
Bardziej szczegółowoPodstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Bardziej szczegółowoTermodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Bardziej szczegółowoTermodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
Bardziej szczegółowoWykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Bardziej szczegółowoRównowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Bardziej szczegółowo3. Równania konstytutywne
3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość
Bardziej szczegółowoWstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Bardziej szczegółowoWykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Bardziej szczegółowoTermodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Bardziej szczegółowo= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Bardziej szczegółowoELEMENTY FIZYKI STATYSTYCZNEJ
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis
Bardziej szczegółowoTermodynamiczny opis układu
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny
Bardziej szczegółowoFizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
Bardziej szczegółowoWykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Bardziej szczegółowoFizyka statystyczna Zasady Termodynamiki. P. F. Góra
Fizyka statystyczna Zasady Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Stan układu Fizyka statystyczna (i termodynamika) zajmuje się przede wszystkim układami dużymi, liczacymi sobie
Bardziej szczegółowoUkład termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Bardziej szczegółowoFizyka statystyczna Potencjały termodynamiczne i warunki równowagi Geometria Drugiej Zasady Termodynamiki
Fizyka statystyczna Potencjały termodynamiczne i warunki równowagi Geometria Drugiej Zasady Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Energia wewnętrzna jako funkcja jednorodna
Bardziej szczegółowoWykład 4. II Zasada Termodynamiki
Wykład 4 II Zasada Termodynamiki Ogólne sformułowanie: istnienie strzałki czasu Pojęcie entropii i temperatury absolutnej Ćwiczenia: Formy różniczkowe Pfaffa 1 I sza Zasada Termodynamiki: I-sza zasada
Bardziej szczegółowoFizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p
Bardziej szczegółowoZJAWISKA TERMOELEKTRYCZNE
Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko
Bardziej szczegółowoS ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowo13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
Bardziej szczegółowoi elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Bardziej szczegółowoQ t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Bardziej szczegółowoKrótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
Bardziej szczegółowoFizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
Bardziej szczegółowowymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Bardziej szczegółowoFizyka statystyczna Równanie Fokkera-Plancka
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)
Bardziej szczegółowoWykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Bardziej szczegółowoTermodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin
Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...
Bardziej szczegółowoTermodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Bardziej szczegółowoFIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowoTermodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ
Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ Kraków 15.02.2006 Literatura: A.K. Wróblewski, J.A. Zakrzewski: Wstęp do fizyki : tom 2, część 2 oraz tom 1, PWN 1991. F. Reif:
Bardziej szczegółowoRepeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoPomiar przewodności cieplnej i elektrycznej metali
ĆWICZENIE 27 Pomiar przewodności cieplnej i elektrycznej metali Cel ćwiczenia: wyznaczenia współczynnika przewodzenia ciepła pręta metalowego metodą statyczną, wyznaczanie ciepła właściwego badanych materiałów
Bardziej szczegółowoUkłady statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Bardziej szczegółowoElementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowoWykład 3. Zerowa i pierwsza zasada termodynamiki:
Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury
Bardziej szczegółowoZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Bardziej szczegółowoRównanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Bardziej szczegółowoMaszyny cieplne substancja robocza
Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoTemperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Bardziej szczegółowoRównanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Bardziej szczegółowoII Zasada Termodynamiki c.d.
Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje
Bardziej szczegółowoZapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
Bardziej szczegółowoPrzegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Bardziej szczegółowoFizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowoTermodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Bardziej szczegółowoWYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10
WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i
Bardziej szczegółowoCo to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Bardziej szczegółowoZaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Bardziej szczegółowoWykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu
Bardziej szczegółowoFizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra
Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoPółprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Bardziej szczegółowoteoretyczne podstawy działania
Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko
Bardziej szczegółowoZespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Bardziej szczegółowoFizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Bardziej szczegółowoWstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
Bardziej szczegółowoFizyka statystyczna Zasady Termodynamiki
Fizyka statystyczna Zasady Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Wykład oparty o G. Morandi, F. Napoli, E. Ercolesi Statistical Mechanics. An Intermediate Course, chap. 1 Praca
Bardziej szczegółowoRównowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Bardziej szczegółowo- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Bardziej szczegółowoI. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Bardziej szczegółowoWstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne
Bardziej szczegółowoPodstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
Bardziej szczegółowoWstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Bardziej szczegółowoWstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoTermodynamika program wykładu
Termodynamika program wykładu Wiadomości wstępne: fizyka statystyczna a termodynamika masa i rozmiary cząstek stan układu, przemiany energia wewnętrzna pierwsza zasada termodynamiki praca wykonana przez
Bardziej szczegółowoRozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Bardziej szczegółowoWykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Bardziej szczegółowoWstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane
Bardziej szczegółowoWykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Bardziej szczegółowoBogdan Walkowiak. Zakład Biofizyki
Bogdan Walkowiak Zakład Biofizyki Politechnika Łódzka Potencjał termodynamiczny - jest to taka funkcja termodynamiczna, której zmiana w procesie odwracalnym jest równa różnicy całkowitej pracy wykonanej
Bardziej szczegółowoKlasyczna mechanika statystyczna Gibbsa I
Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z
Bardziej szczegółowoPlan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Bardziej szczegółowoWykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
Bardziej szczegółowoSymetrie i prawa zachowania Wykład 6
Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym
Bardziej szczegółowoWykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
Bardziej szczegółowo1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoPodstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Bardziej szczegółowoInformacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Bardziej szczegółowoWystępują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
Bardziej szczegółowoElementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Bardziej szczegółowoWstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra
Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Współczynnik uwarunkowania macierzy symetrycznej Twierdzenie 1. Niech
Bardziej szczegółowo