Kinetyczna teoria gazów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kinetyczna teoria gazów"

Transkrypt

1 Kinetyczna teoria gazów Gaz doskonaªy 1. Cz steczki gazu wzajemnie na siebie nie dziaªaj, a» do momentu zderzenia 2. Rozmiary cz steczek mo»na pomin, traktuj c je jako punkty Ka»da cz steczka gazu porusza si swobodnie, a» do momentu zde»enia z inn cz stk albo ze ±ciank naczynia. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

2 Kinetyczna teoria gazów Gaz doskonaªy 1. Cz steczki gazu wzajemnie na siebie nie dziaªaj, a» do momentu zderzenia 2. Rozmiary cz steczek mo»na pomin, traktuj c je jako punkty Ka»da cz steczka gazu porusza si swobodnie, a» do momentu zde»enia z inn cz stk albo ze ±ciank naczynia. Prawo rozkªadu pr dko±ci Maxwella 1. Zderzenia cz steczek maj charakter doskonale spr»ysty 2. Liczba cz steczek dn, maj cych pr dko±ci zawarte w dowolnie maªym przedziale pr dko±ci od v do v + dv jest staªa. dn wzór Maxwella: N = 4 v 2 π ˆv 3 e v2 ˆv 2 dv N - ogólna liczba cz stek, ˆv - pr dko± najbardziej prawdopodobna Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

3 Rozkªad Maxwella Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

4 Ci±nienie gazu z punktu widzenia teorii kinetycznej Zaªo»enia upraszczaj ce w celu wyprowadzenia wzoru: 1. Gaz zawarty jest w kulistym naczyniu o promieniu r. 2. Zaniedbujemy zderzenia mi dzycz steczkowe. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

5 Ci±nienie gazu z punktu widzenia teorii kinetycznej Zaªo»enia upraszczaj ce w celu wyprowadzenia wzoru: 1. Gaz zawarty jest w kulistym naczyniu o promieniu r. 2. Zaniedbujemy zderzenia mi dzycz steczkowe. Wyprowadzenie wzoru Odlegªo± pomi dzy kolejnymi zderzeniami cz stki z naczyniem jest staªa i wynosi d. Kosinus k ta pomi dzy torem cz stki i normaln do powierzchni kuli: cos α = d 2r Liczba zderze«i droga, któr przebiega cz stka w czasie t: n i v t = nd Zmiana p du cz stki podczas odbicia: p = 2mv cos α Siªa zwi zana ze zmian p du: F = p 2mv cos αnv t = nd = mv 2 r Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

6 Ci±nienie gazu z punktu widzenia teorii kinetycznej Zaªo»enia upraszczaj ce w celu wyprowadzenia wzoru: 1. Gaz zawarty jest w kulistym naczyniu o promieniu r. 2. Zaniedbujemy zderzenia mi dzycz steczkowe. Wyprowadzenie wzoru Odlegªo± pomi dzy kolejnymi zderzeniami cz stki z naczyniem jest staªa i wynosi d. Kosinus k ta pomi dzy torem cz stki i normaln do powierzchni kuli: cos α = d 2r Liczba zderze«i droga, któr przebiega cz stka w czasie t: n i v t = nd Zmiana p du cz stki podczas odbicia: p = 2mv cos α Siªa zwi zana ze zmian p du: F = p 2mv cos αnv t = nd = mv 2 r Dla N cz stek o jednakowych masach ci±nienie p = N mv 2 i i=1 r 4πr 2 = N m v 2 3V = 2E K 3V Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

7 Równanie Clapeyrona pv = nrt J n - liczba moli gazu, R = 8, mol K - staªa gazowa, T - temperatura bezwzgl dna w skali Kelvina Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

8 Równanie Clapeyrona pv = nrt J n - liczba moli gazu, R = 8, mol K - staªa gazowa, T - temperatura bezwzgl dna w skali Kelvina rednia energia kinetyczna ruchu post powego cz steczek jest funkcj temperatury bezwzgl dnej. pv = 2 E 3 K = nrt E K N = 3 R 2 N T A = 3 kt 2 N A - liczba Avogadro, k = R N A = 1, J K - staªa Boltzmanna Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

9 Równanie Clapeyrona pv = nrt J n - liczba moli gazu, R = 8, mol K - staªa gazowa, T - temperatura bezwzgl dna w skali Kelvina rednia energia kinetyczna ruchu post powego cz steczek jest funkcj temperatury bezwzgl dnej. pv = 2 E 3 K = nrt E K N = 3 R 2 N T A = 3 kt 2 N A - liczba Avogadro, k = R N A = 1, J K - staªa Boltzmanna Zasada ekwipatrycji energii rednia energia kinetyczna jest równomiernie podzielona na poszczególne stopnie swobody. Na ka»dy stopie«przypada 1 2 kt. W przypadku gazu doskonaªego (zaniedbujemy oddziaªywania mi dzycz steczkowe) energia kinetyczna E K jest równocze±nie caªkowit energi wewn trzn U. Liczba stopni swobody dla cz steczek jednoatomowych wynosi 3, dwuatomowych 5 a trój- i wieloatomowych 6. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

10 Przewodnictwo cieplne Strumie«energii d φ, czyli ilo± energii dq przechodz cej w jednostce czasu dt przez powierzchni ds, ustawion prostopadle do kierunku przepªywu energii, jest proporcjonalny do tego pola powierzchni i do gradientu temperatury: dφ = dq dt = λ dt dx ds λ - wspóªczynnik przewodzenia ciepªa Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

11 Energia wewn trzna Na energi wewn trzn ukªadu skªada si energia potencjalna, cieplna, chemiczna, magnetyczna, j drowa itp. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

12 Energia wewn trzna Na energi wewn trzn ukªadu skªada si energia potencjalna, cieplna, chemiczna, magnetyczna, j drowa itp. Pierwsza zasada termodynamiki Kosztem ciepªa Q doprowadzonego do ukªadu uzyskujemy wzrost jego energii wewn trznej U oraz prac przez niego wykonan W : Q = U + W Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

13 Energia wewn trzna Na energi wewn trzn ukªadu skªada si energia potencjalna, cieplna, chemiczna, magnetyczna, j drowa itp. Pierwsza zasada termodynamiki Kosztem ciepªa Q doprowadzonego do ukªadu uzyskujemy wzrost jego energii wewn trznej U oraz prac przez niego wykonan W : Q = U + W Elementarna praca zwi zana ze zmian obj to±ci ciaªa pod wpªywem ci±nienia p: dw = p dv Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

14 I zasada termodynamiki w izoprzemianach gazu doskonaªego Przemiana izochoryczna, dv = 0 dw = 0 dq = mc V dt, c V - ciepªo wªa±ciwe przy staªej obj to±ci Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

15 I zasada termodynamiki w izoprzemianach gazu doskonaªego Przemiana izochoryczna, dv = 0 dw = 0 dq = mc V dt, c V - ciepªo wªa±ciwe przy staªej obj to±ci Przemiana izobaryczna, p = const dq = du + p dv dq = mc p dt, c p - ciepªo wªa±ciwe przy staªym ci±nieniu mc p dt = mc V dt + p dv p dv = nr dt c p = c V + n m R = c V + R M, M = m n - masa cz steczkowa (masa jednego mola gazu) Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

16 I zasada termodynamiki w izoprzemianach gazu doskonaªego Przemiana izochoryczna, dv = 0 dw = 0 dq = mc V dt, c V - ciepªo wªa±ciwe przy staªej obj to±ci Przemiana izobaryczna, p = const dq = du + p dv dq = mc p dt, c p - ciepªo wªa±ciwe przy staªym ci±nieniu mc p dt = mc V dt + p dv p dv = nr dt c p = c V + n m R = c V + R M, M = m n - masa cz steczkowa (masa jednego mola gazu) Przemiana adiabatyczna, dq = 0 du = dw Podczas przemiany adiabatycznej nie ma wymiany ciepªa z otoczeniem. mc V dt = p dv = nrt dv V dt T = R dv Mc V V R Mc V cp c V c V ln T = R Mc ln V V + const ln TV = const TV TV κ 1 = const pvtv κ 1 = constnrt pv κ = const = const Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

17 Izotermy dla 1 mola gazu doskonaªego Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

18 Druga zasada termodynamiki Zamiana ciepªa na prac w silniku termodynamicznym jest mo»liwa tylko wtedy, gdy ¹ródªo dostarczaj ce ciepªo ma temperatur wy»sz od najchªodniejszego ciaªa w jego otoczeniu. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

19 Druga zasada termodynamiki Zamiana ciepªa na prac w silniku termodynamicznym jest mo»liwa tylko wtedy, gdy ¹ródªo dostarczaj ce ciepªo ma temperatur wy»sz od najchªodniejszego ciaªa w jego otoczeniu. Sprawno± silników termodynamicznych Sprawno± η silnika termodynamicznego to stosunek efektywnej pracy W wykonanej przez silnik w pojedynczym cyklu do ciepªa Q dostarczonego silnikowi: η = W Q. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

20 Cykl Carnota Mo»na przedstawi w ukªadzie wsóªrz dnych V, p. 1 izotermiczne rozpr»anie gazu doskonaªego w temperaturze T 1 (temperatura grzejnika) z dostarczanym ciepªem Q 1 2 adiabatyczne rozpr»anie do ni»szej temperatury T 2 3 izotermiczne spr»anie si gazu w temperaturze T 2 (temperatura chªodnicy) z oddawanym ciepªem Q 2 4 adiabatyczne spr»anie gazu do stanu wyj±ciowego Sprawno± silnika η = Q 1 Q 2 Q 1 = T 1 T 2 T 1 Silniki termodnamiczne odwrone mog dziaªa jako chªodziarki lub pompy cieplne. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

21 Cykl Carnota Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

22 Nierówno± Clausiusa Gdy ilo±ci ciepªa odpowiadaj ce poszczególnym cz ±ciom cyklu Q i s pobierane lub oddawane odpowiednio w temperaturach T i wtedy: n i=1 Q i T i 0, Q T - ciepªo zredukowane Znak równo±ci obowi zuje przy przemianach odwracalnych, znak mniejszo±ci przy przemianach nieodwracalnych. Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

23 Nierówno± Clausiusa Gdy ilo±ci ciepªa odpowiadaj ce poszczególnym cz ±ciom cyklu Q i s pobierane lub oddawane odpowiednio w temperaturach T i wtedy: n i=1 Q i T i 0, Q T - ciepªo zredukowane Znak równo±ci obowi zuje przy przemianach odwracalnych, znak mniejszo±ci przy przemianach nieodwracalnych. Entropia Entropia stanu badanego wyra»a si sum entropii stanu zerowego i ª cznego ciepªa zredukowanego, odpowiadaj cego przej±ciu odwracalnemu od stanu zerowego do stanu badanego. Dla elementarnej przemiany odwracalnej: ds = dq T Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

24 Nierówno± Clausiusa Gdy ilo±ci ciepªa odpowiadaj ce poszczególnym cz ±ciom cyklu Q i s pobierane lub oddawane odpowiednio w temperaturach T i wtedy: n i=1 Q i T i 0, Q T - ciepªo zredukowane Znak równo±ci obowi zuje przy przemianach odwracalnych, znak mniejszo±ci przy przemianach nieodwracalnych. Entropia Entropia stanu badanego wyra»a si sum entropii stanu zerowego i ª cznego ciepªa zredukowanego, odpowiadaj cego przej±ciu odwracalnemu od stanu zerowego do stanu badanego. Dla elementarnej przemiany odwracalnej: ds = dq T Trzecia zasada termodynamiki W temperaturze zera bezwzgl dnego entropia ciaª staªych i ciekªych staje si równa zeru: lim S = 0 T 0 Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

25 Literatura Marta Skorko, Fizyka, PWN (1982). Andrzej Januszajtis, Fizyka dla Politechnik, t. 1 Cz stki, PWN (1977). Andrzej Januszajtis, Fizyka dla Politechnik, t. 2 Pola, PWN (1982). Barbara Ole±, Wykªady z Fizyki, Wydawnictwo PK (2005). Bohdan Kozarzewski, Fizyka zjawisk mikroskopowych, Wydawnictwo PK (1998). Encyklopedia zyki wspóªczesnej, PWN (1983). D. Halliday, R. Resnick, J. Walker, Podstawy zyki t.1, PWN (2006). Adam Szmagli«ski (IF PK) Wykªad z Termodynamiki Kraków, / 13

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

1 Fale. 1.1 Fale mechaniczne. 1.2 Fale elektromagnetyczne. 1.3 Fale grawitacyjne. 1.4 Równanie falowe. 1.5 Wªa±ciwo±ci fali

1 Fale. 1.1 Fale mechaniczne. 1.2 Fale elektromagnetyczne. 1.3 Fale grawitacyjne. 1.4 Równanie falowe. 1.5 Wªa±ciwo±ci fali Spis tre±ci 1 Fale 2 1.1 Fale mechaniczne......................................... 2 1.2 Fale elektromagnetyczne...................................... 2 1.3 Fale grawitacyjne.........................................

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek Termodynamika cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Definicja makroskopowa (termodynamiczna)

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

18 TERMODYNAMIKA. PODSUMOWANIE

18 TERMODYNAMIKA. PODSUMOWANIE Włodzimierz Wolczyński 18 TERMODYNAMIKA. PODSUMOWANIE Zadanie 1 Oto cykl pracy pewnego silnika termodynamicznego w układzie p(v). p [ 10 5 Pa] 5 A 4 3 2 1 0 C B 5 10 15 20 25 30 35 40 V [ dm 3 ] Sprawność

Bardziej szczegółowo

Temperatura. Zerowa zasada termodynamiki

Temperatura. Zerowa zasada termodynamiki Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że

Bardziej szczegółowo

ELEMENTY TERMODYNAMIKI

ELEMENTY TERMODYNAMIKI ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM ODPOWIEDZI, EDUKARIS - kwiecie«2014, opracowaª Mariusz Mroczek 1 Zadanie 1.1 (2 pkt) Zmiana kierunku wektora pr dko±ci odbywa si, zgodnie z II ZD, w kierunku dziaªania siªy. Innymi sªowami: przyrosty pr

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 1 Termodynamika 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Termodynamika Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

ZADANIA Z FIZYKI - TERMODYNAMIKA

ZADANIA Z FIZYKI - TERMODYNAMIKA ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

Stechiometria równań reakcji chemicznych, objętość gazów w warunkach odmiennych od warunków normalnych (0 o C 273K, 273hPa)

Stechiometria równań reakcji chemicznych, objętość gazów w warunkach odmiennych od warunków normalnych (0 o C 273K, 273hPa) Karta pracy I/2a Stechiometria równań reakcji chemicznych, objętość gazów w warunkach odmiennych od warunków normalnych (0 o C 273K, 273hPa) I. Stechiometria równań reakcji chemicznych interpretacja równań

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Rozdział 3 Elementy termodynamiki 3.1 Gaz doskonały 3.1.1 Ciśnienie i temperatura gazu. Równanie stanu gazu doskonałego W tym podrozdziale omówimy w skrócie podstawowe prawa doświadczalne dotyczące gazów.

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Termodynamika poziom podstawowy

Termodynamika poziom podstawowy ermodynamika oziom odstawowy Zadanie 1. (1 kt) Źródło: CKE 2005 (PP), zad. 8. Zadanie 2. (2 kt) Źródło: CKE 2005 (PP), zad. 17. 1 Zadanie 3. (3 kt) Źródło: CKE 2005 (PP), zad. 19. 2 Zadanie 4. (2 kt) Źródło:

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np. gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

1 I zasada termodynamiki

1 I zasada termodynamiki 1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

4 Przekształcenia pochodnych termodynamicznych

4 Przekształcenia pochodnych termodynamicznych 4 Przekształcenia pochodnych termodynamicznych 4.1 Relacje Maxwella Pierwsza zasada termodynamiki może być zapisana w postaci niezależnej od reprezentacji jako warunek znikania formy Pfaffa: Stąd musi

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne

Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne Joanna Sowińska: Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne Temperatura. Skale termometryczne. Przedmioty znajdujące się w naszym otoczeniu mogą być gorące, ciepłe, chłodne

Bardziej szczegółowo

Dotychczasowa teoria: Rzeczywistość:

Dotychczasowa teoria: Rzeczywistość: Dotychczasowa teoria: głównie małe układy (układy mikroskopowe): punkty materialne, proste zbiory punktów (bryła), punkty powiązane szczególnymi siłami (układy sprężyste) TERMODYNAMIKA Rzeczywistość: Wszystkie

Bardziej szczegółowo

5. Ruch harmoniczny i równanie falowe

5. Ruch harmoniczny i równanie falowe 5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,

Bardziej szczegółowo

Z-0099z. Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Fizyki Prof. Dr hab.

Z-0099z. Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Fizyki Prof. Dr hab. KARTA MODUŁU / KARTA PRZEDMIOTU Z-0099z Kod modułu Nazwa modułu Fizyka II Nazwa modułu w języku angielskim Physics II Obowiązuje od roku akademickiego 01/013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

2 Całkowanie form różniczkowych i cykle termodynamiczne

2 Całkowanie form różniczkowych i cykle termodynamiczne 2 Całkowanie form różniczkowych i cykle termodynamiczne 2.1 Definicja całki z formy różniczkowej ymbol ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć Ω taką całkę zależy jakiego stopnia

Bardziej szczegółowo

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały Plan wykładu Termodynamika cz. 2 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 1 Mikroskopowe i makroskopowe własności gazów Zasada ekwipartycji energii

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

Zadanie 1.1 (0-1) Zadanie 1.2 (0-3) Gdy lina rozci gnie si o x 0 ponad dªugo± naturaln, to siªa grawitacji równowa»y siª spr»ysto±ci:

Zadanie 1.1 (0-1) Zadanie 1.2 (0-3) Gdy lina rozci gnie si o x 0 ponad dªugo± naturaln, to siªa grawitacji równowa»y siª spr»ysto±ci: Odpowiedzi do arkusza IV 205, opracowaª Mariusz Mroczek Zadanie. 0-) Zadanie.2 0-3) Gdy lina rozci gnie si o x 0 ponad dªugo± naturaln, to siªa grawitacji równowa»y siª spr»ysto±ci: F g = F s mg = kx 0

Bardziej szczegółowo

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO W3 WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO Ciepło właściwe jest jedną z podstawowych cech termodynamicznych ciał, mającą duże znaczenie praktyczne. Zależność ciepła właściwego różnych ciał od temperatury

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 3 Sposoby podwyższania sprawności elektrowni 2 Zwiększenie sprawności Metody zwiększenia sprawności elektrowni: 1. podnoszenie temperatury i ciśnienia

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały Plan wykładu Termodynamika cz. 2 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 Mikroskopowe i makroskopowe własności gazów Zasada ekwipartycji energii

Bardziej szczegółowo

Spis tres ci 1. Wiadomos ci wste pne

Spis tres ci 1. Wiadomos ci wste pne Spis treści Przedmowa do wydania I... 9 Przedmowa do wydania II... 10 Wykaz ważniejszych oznaczeń... 11 1. Wiadomości wstępne... 15 1.1. Fenomenologiczny opis materii... 15 1.2. Wielkości ekstensywne (WE)...

Bardziej szczegółowo

II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO

II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO II. PROMIENIOWANIE CIAŠA DOSKONALE CZARNEGO 1 1 Promieniowanie powierzchni materialnych Powierzchnia badanego ciaªa o dowolnej temperaturze wysyªa promieniowanie o wszystkich dªugo±ciach fali. Je»eli zmierzymy

Bardziej szczegółowo

Termodynamika Wykazać, Ŝe sprawność silnika Carnota, w którym substancją roboczą jest gaz doskonały, wynosi η = (T 1 -T 2 )/T 1.

Termodynamika Wykazać, Ŝe sprawność silnika Carnota, w którym substancją roboczą jest gaz doskonały, wynosi η = (T 1 -T 2 )/T 1. Termodynamika 1 1. Niech zaleŝność ciepła właściwego od temperatury ma postać: c=a+bt 2, gdzie A i B są stałymi, a T temperaturą w skali Celsjusza. Porównać ciepło właściwe tej substancji w zakresie temperatur

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

TERMODYNAMIKA IM. Semestr letni

TERMODYNAMIKA IM. Semestr letni TERMODYNAMIKA IM Semestr letni Ogólny kierunek przebiegu zjawisk i procesów w przyrodzie Układ i otoczenie Układ odosobniony Przegroda adiabatyczna i diatermiczna Układ zamknięty i układ otwarty Zmienne

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Energetyka odnawialna i nieodnawialna

Energetyka odnawialna i nieodnawialna Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:

Bardziej szczegółowo

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów. PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 3a

Plan wynikowy fizyka rozszerzona klasa 3a Plan wynikowy fizyka rozszerzona klasa 3a 1. Hydrostatyka Temat lekcji dostateczną uczeń Ciśnienie hydrostatyczne. Prawo Pascala zdefiniować ciśnienie, objaśnić pojęcie ciśnienia hydrostatycznego, objaśnić

Bardziej szczegółowo

Zasady Termodynamiki

Zasady Termodynamiki Zasady Termodynamiki I-sza zasada termodynamiki: - bilans energii w procesie przejścia układu ze stanu A do stanu B - identyfikacja kanałów przekazu B A W oparciu o I-szą zasadę wiemy, Ŝe Przekaz moŝe

Bardziej szczegółowo

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał.

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał. Temat : Pierwsza zasada termodynamiki. Wyobraźmy sobie następującą sytuację : Jest zima. Temperatura poniżej zera. W wyniku długotrwałego wystawiania dłoni na działanie lodowatego powietrza, odczuwamy,

Bardziej szczegółowo

CHEMIA FIZYCZNA ZTiM

CHEMIA FIZYCZNA ZTiM CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu Fiz010WMATBUD_pNadGen1D5JT Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska Inżynieria środowiska

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

Właściwości materii - powtórzenie

Właściwości materii - powtórzenie Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czy zjawisko

Bardziej szczegółowo

BADANIA SPRĘŻARKI TŁOKOWEJ

BADANIA SPRĘŻARKI TŁOKOWEJ Opracował: dr inż. Zdzisław Nagórski Materiały pomocnicze do ćwiczenia laboratoryjnego pt.: A. Wiadomości podstawowe i uzupełniające: BADANIA SPRĘŻARKI TŁOKOWEJ Proces sprężania - w zastosowaniach technicznych

Bardziej szczegółowo

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ 1.Wprowadzenie 3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ Sprężarka jest podstawowym przykładem otwartego układu termodynamicznego. Jej zadaniem jest między innymi podwyższenie ciśnienia gazu w celu: uzyskanie

Bardziej szczegółowo

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła.

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła. M. Chorowski, Podstawy Kriogeniki, wykład 0 7. Chłodziarki z regeneracyjnymi wymiennikami ciepła. W chłodziarkach z regeneracyjnymi wymiennikami ciepła wstępne obniżenie temperatury gazu zachodzi w regeneratorze,

Bardziej szczegółowo

Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6

Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6 Spis tre±ci 1 Podstawy termodynamiki - wiczenia 2 2 Termodynamika - wiczenia 4 3 Teoria maszyn cieplnych - wiczenia 6 4 Przenoszenie ciepªa/wymiana ciepªa i wymienniki - wykªad 7 5 Wymiana ciepªa i wymienniki

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo