Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas"

Transkrypt

1 Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t y t Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj prognozę ex post oraz ex ante (3 okresy) przy pomocy metody naiwnej z poprawką liniową. Zadanie 2 Liczba wyrobów zawierających usterki, a pochodzących z pewnej linii produkcyjnej, prezentuje się następująco: Dzień: Liczba wyrobów Wykonaj prognozę liczby wadliwych wyrobów w kolejnych trzech dniach metodą naiwną prostą. Zadanie 3 Dane dotyczące pewnego szeregu czasowego są następujące: t y t 3 4,1 5,4 8 10, , Dokonaj jego dekompozycji a następnie wykonaj prognozy ex post i ex ante (2 okresy) przy pomocy metody naiwnej z przyrostem względnym. Zadanie 4 Dla poniższego szeregu wykonaj prognozę ex post i ex ante na 4 następne okresy przy pomocy metody naiwnej z sezonowością. Skomentuj otrzymane wyniki. t y t Zadanie 5 Firma handlująca lodami zebrała dane na temat popytu na to dobro (średnie kwartalne wydatki na osobę w gospodarstwie domowym) dla interesującego ją regionu. Poniższy rysunek przedstawia zebrane dane oraz ich reprezentację graficzną Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas 1

2 Dokonaj dekompozycji szeregu na poszczególne składowe. Wykonaj prognozę ex post oraz ex ante (dwa kwartały do przodu) metodą naiwną odpowiednią dla tego typu szeregu. Zadanie 6 Dla zamieszczonego poniżej szeregu danych miesięcznych należy dokonać dekompozycji na poszczególne składowe. Następnie wykonać prognozę na kolejne dwa miesiące wykorzystując odpowiednią metodę naiwną. Liczba mieszkań oddanych do użytku tys. 5,8 5,2 5,1 5,4 5,3 5,1 4,9 5,1 5 4,5 3,9 3,6 3,5 Zadanie 7 Dane dotyczące sprzedaży marchewki [kg] na jednym z bazarowych straganów są następujące: Okres yt Wykonaj prognozę ex post oraz ex ante (2 okresy) przy pomocy metody średniej ruchomej prostej. Zaproponuj wartość stałej wygładzania. Zadanie 8 Zbadano natężenie ruchu (mierzone ilością aut w kolejnych tygodniach) na pewnym odcinku drogi. Na podstawie przedstawionych poniżej danych wyprognozuj natężenie ruchu w kolejnych tygodniach przy pomocy trójokresowej średniej ruchomej ważonej (samodzielnie przyjmij wagi). t Y t Zadanie 9 Porównaj wyniki otrzymane w zadaniu poprzednim z prognozami otrzymanymi metodą średniej ruchomej prostej o stałej wygładzania k=3. Porównaj otrzymane wyniki. Zadanie 10 Na poniższym wykresie zawarto informacje dotyczące szeregu czasowego opisującego wartość sprzedaży młotów pneumatycznych pewnego producenta [tys. szt.] w kolejnych miesiącach. Dokonaj dekompozycji tego szeregu na poszczególne składowe a następnie odpowiedz na pytanie: czy można w przypadku tego szeregu użyć metody średniej ruchomej 2

3 prostej lub ważonej? W przypadku odpowiedzi twierdzącej, dobierz odpowiednie parametry dla wybranej metody i wykonaj prognozy ex post i ex ante. 10,4 10,2 10 9,8 9,6 9,4 9, yt ,1 10, ,1 10,1 10,3 10,3 10,3 9,5 9, ,2 10,1 Zadanie 11 Liczba pasażerów promu rzecznego w kolejnych miesiącach kształtowała się następująco: Miesiąc Liczba pasażerów Dokonaj prognozy ex post i ex ante na kolejne 2 miesiące wykorzystując metodę Browna z parametrem wygładzania =0,2. Zadanie 12 Dla danych z zadania poprzedniego wykonaj analogiczne prognozy, tym razem z parametrem =0,45. Porównaj otrzymane wyniki. Zadanie 13 Zebrano dane dotyczące miesięcznych nakładów na promocję [tys. zł] w pewnym przedsiębiorstwie. Na tej podstawie wyprognozować wartość nakładów od marca do maja 2005 przy pomocy metody wygładzania wykładniczego Browna. Zaproponować wartość parametru wygładzania Okres I II III IV V VI VII VIII IX X XI XII I II Nakłady 3 4 4, ,5 4 4,5 4, ,1 5,6 5,6 Zadanie 14 Na podstawie danych dotyczących średniej miesięcznej ceny butelki piwa wybranego browaru dokonać prognozy na 3 kolejne miesiące metodą średniej ruchomej prostej (o k=4) i metody Browna (α=0,2). Porównaj otrzymane wyniki. t y t 1,5 1,5 1,65 1,5 1,4 1,5 1,7 1,7 1,65 1,65 1,5 3

4 Zadanie 15 Dla poniższego szeregu danych miesięcznych wykonać prognozy ex post i ex ante (2 okresy w przód) metodą średniej ruchomej ważonej (w 1 =0,1, w 2 =0,2, w 3 =0,7), metodą Browna (α=0,2). Porównać otrzymane wyniki. t yt 1 1 1,1 1 0,9 1 1,1 1,1 1 0,9 Zadanie 16 W poniższej tabeli znalazły się średnie miesięczne ceny pewnego towaru. Przy pomocy średniej ruchomej prostej o k=2 wykonaj prognozę na 2 okresy ex ante. Oceń jakość prognoz ex post przy pomocy błędów ME oraz MAE. t y t Zadanie 17 Dla danych z zadania poprzedniego wykonaj prognozę ex post i ex ante (3 okresy) przy pomocy metody Browna ( =0,3). Oceń jej jakość na podstawie błędów MPE i MAPE. Zadanie 18 Wyznaczono średni kwartalny kurs złotego do euro. Na podstawie zebranych poniżej danych dokonać prognozy na drugi kwartał 2004 przy pomocy metody naiwnej prostej, średniej ruchomej o k=2 oraz metody Browna ( =0,5). Wskazać, opierając się na błędzie MAE, najlepszą z metod. Wybór uzasadnić. t 2002:4 2003:1 2003:2 2003:3 2003:4 2004:1 Kurs 4,02 4,21 3,99 4,03 4,05 3,97 Zadanie 19 Dla zawartego poniżej szeregu wykonać prognozę na 2 okresy ex ante metodami: średniej ruchomej ważonej (w 1 =0,05, w 2 =0,2, w 3 =0,25, w 4 =0,5), naiwną prostą, Browna o parametrze wygładzania 0,5. Następnie porównać jakość otrzymanych prognoz za pomocą błędów: MAPE i RMSPE. t yt 1,5 1,5 1,65 1,5 1,4 1,5 1,7 1,7 1,65 1,65 Zadanie 20 Dla pewnego szeregu danych kwartalnych stwierdzono występowanie sezonowości. Wykonano prognozę metodą Wintersa. Dokonać prognozy na dwa następne kwartały odpowiednią metodą naiwną, po czym ocenić jakość prognoz obiema metodami stosując błędy ME i MAE. Kwartał Y t Winters Kwartał Y t Winters , , , , , , , ,5 9, ,5 18, , , ,58 4

5 Zadanie 21 Dla szeregu zaprezentowanego poniżej wykonano prognozę metodą Holta. Wybrać jedną spośród metod naiwnych a następnie wyznaczyć prognozy z jej pomocą. Porównać obie metody stosując błędy MPE i MAPE. t Y t Holt t Holt , , , , , , , , , Zadanie 22 Dokonaj dekompozycji poniższego szeregu czasowego. Których metod, spośród tobie znanych, można użyć do prognozowania tego szeregu? Odpowiedź uzasadnij

6 Liczba reklamacji [szt.] Zestaw zadań z Zastosowania metod progn. Zadanie 23 Wykres przedstawia pewien szereg danych miesięcznych. Dokonaj jego dekompozycji i zaproponuj metody, które umożliwiłyby wykonanie prognozy na 3 kolejne okresy Zadanie 24 Zebrano dane odnośnie liczby zgłaszanych reklamacji produktów pewnej firmy w kolejnych kwartałach. Dokonać dekompozycji szeregu i zaproponować metody otrzymania prognoz na kolejne 3 kwartały Czas Zadanie 25 Dla szeregu tygodniowych danych liczby nieobecnych pracowników pewnego zakładu (y t ), wykonać prognozy ex post i ex ante (na 2 okresy) przy pomocy średniej ruchomej prostej o k=3 i metody Browna o =0,6. Ocenić jakość prognoz przy pomocy miar ME oraz MAE i wskazać lepszą z metod. Wybór uzasadnić. t y t

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5 Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała

Bardziej szczegółowo

Zbiór zadań z Prognozowania i symulacji

Zbiór zadań z Prognozowania i symulacji Adam Kucharski Zbiór zadań z Prognozowania i symulacji Wydanie 1 Łódź 2016 Spis treści 1. Prognozowanie na podstawie szeregów czasowych...................... 3 2. Prognozowanie na podstawie modeli jednorównaniowych.................

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Zastosowanie metod prognostycznych w planowaniu strategii przedsiębiorstwa

Zastosowanie metod prognostycznych w planowaniu strategii przedsiębiorstwa Zastosowanie metod prognostycznych w planowaniu strategii przedsiębiorstwa Dr Adam Kucharski Spis treści 1 Czym jest prognozowanie i jakie pełni funkcje 2 2 Prognozowanie heurystyczne 4 2.1 Burza mózgów.....................................

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA 1 ANALIZA, PROGNOZOWANIE I SYMULACJA AUTOR: mgr inż. MARTYNA KUPCZYK DANE KONTAKTOWE 2 mgr inż. Martyna Kupczyk Katedra Systemów Logistycznych Pokój nr 115A (I piętro) e-mail: martyna.kupczyk@wsl.com.pl

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Mariusz Doszyń* Uniwersytet Szczeciński

Mariusz Doszyń* Uniwersytet Szczeciński Studia i Prace WNEiZ US nr 45/2 2016 DOI:10.18276/sip.2016.45/2-16 Mariusz Doszyń* Uniwersytet Szczeciński Monitorowanie trafności systemu prognoz sprzedaży w przedsiębiorstwie Streszczenie W artykule

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska - 2011 aktualizacja dla edycji 2013/14. Cel studium

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty piąty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (IV kwartał 2014 r.) oraz prognozy na lata 2015 2016 KWARTALNE

Bardziej szczegółowo

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty dziewiąty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (IV kwartał 2015 r.) oraz prognozy na lata 2016 2017

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego

Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego 61 Barometr Regionalny Nr 2(24) 2011 Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego Jarosław Bielak Wyższa Szkoła Zarządzania i Administracji w Zamościu Streszczenie:

Bardziej szczegółowo

RACHUNKOWOŚĆ ZARZĄDCZA

RACHUNKOWOŚĆ ZARZĄDCZA RACHUNKOWOŚĆ ZARZĄDCZA Metody wyznaczania kosztów stałych i zmiennych metoda księgowa metoda graficzna metoda odchyleń krańcowych (dwóch punktów) metoda najmniejszych kwadratów 1 Metoda graficzna 50 000

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R. Warszawa, marzec 2013 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty szósty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (I kwartał 2015 r.) oraz prognozy na lata 2015 2016 KWARTALNE

Bardziej szczegółowo

23 Zagadnienia - Prognozowanie i symulacje

23 Zagadnienia - Prognozowanie i symulacje 1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Prognozowanie i symulacje Forecasting and simulations Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów:

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA

Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1

Bardziej szczegółowo

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK

Bardziej szczegółowo

KOMENTARZ ZARZĄDU NA TEMAT CZYNNIKÓW I ZDARZEŃ, KTÓRE MIAŁY WPŁYW NA OSIĄGNIETE WYNIKI FINANSOWE

KOMENTARZ ZARZĄDU NA TEMAT CZYNNIKÓW I ZDARZEŃ, KTÓRE MIAŁY WPŁYW NA OSIĄGNIETE WYNIKI FINANSOWE KOMENTARZ ZARZĄDU NA TEMAT CZYNNIKÓW I ZDARZEŃ, KTÓRE MIAŁY WPŁYW NA OSIĄGNIETE WYNIKI FINANSOWE 11 Niniejszy raport prezentuje wybrane dane bilansu oraz rachunku zysków i strat, przepływy pieniężne i

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty trzeci kwartalny raport oceniający stan koniunktury gospodarczej w Polsce ( kwartał 2014 r.) oraz prognozy na lata 2014 2015 KWARTALNE

Bardziej szczegółowo

Rozdział 2 Wprowadzenie

Rozdział 2 Wprowadzenie Rozdział 2 Wprowadzenie Analiza szeregów czasowych zyskuje ostatnio coraz bardziej na znaczeniu i jest z niesłabnącym powodzeniem stosowana w wielu obszarach nauki, biznesu czy przemysłu. Podstawowym celem

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU

PROGNOZOWANIE W ZARZĄDZANIU Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność

Bardziej szczegółowo

Na co Polacy wydają pieniądze?

Na co Polacy wydają pieniądze? 047/04 Na co Polacy wydają pieniądze? Warszawa, czerwiec 2004 r. Przeciętne miesięczne wydatki gospodarstwa domowego w Polsce wynoszą 1694 zł, a w przeliczeniu na osobę 568 zł. Najwięcej w gospodarstwach

Bardziej szczegółowo

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza i prognozowanie szeregów czasowych

Analiza i prognozowanie szeregów czasowych Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W III KWARTALE 2012 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W III KWARTALE 2012 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W III KWARTALE 2012 R. Warszawa, grudzień 2012 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych prof. zw. dr hab. inż. Stanisław Osowski dr inż. Krzysztof Siwek Politechnika Warszawska Kontynuacja prac Prace prowadzone w roku

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną

Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną Zadanie 1 Zbadano czas poświęcany przez 16 pasażerów kolejki podmiejskiej, w wybranym mieście wojewódzkim, na dotarcie z domu do pracy, otrzymując wyniki [min.]: 30; 30; 35; 40; 41; 60; 60; 60; 72; 72;

Bardziej szczegółowo

Wykres 1 EBIT i EBITDA w pierwszym kwartale lat 2010, 2011 i 2012

Wykres 1 EBIT i EBITDA w pierwszym kwartale lat 2010, 2011 i 2012 KOMENTARZ ZARZĄDU NA TEMAT CZYNNIKÓW I ZDARZEŃ KTÓRE MIAŁY WPŁYW NA OSIĄGNIETE WYNIKI FINANSOWE Niniejszy raport prezentuje wybrane dane bilansu oraz rachunku zysków i strat, przepływy pieniężne i wskaźniki

Bardziej szczegółowo

PROGNOZOWANIE POPYTU NIEZALEŻNEGO JAKO ELEMENT WSPOMAGAJĄCY PLANOWANIE POTRZEB MATERIAŁOWYCH W ZAKŁADACH PRODUKCYJNYCH

PROGNOZOWANIE POPYTU NIEZALEŻNEGO JAKO ELEMENT WSPOMAGAJĄCY PLANOWANIE POTRZEB MATERIAŁOWYCH W ZAKŁADACH PRODUKCYJNYCH SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Wspomaganie Zarządzania Systemami Produkcyjnymi 2013 8 PROGNOZOWANIE POPYTU NIEZALEŻNEGO JAKO ELEMENT WSPOMAGAJĄCY PLANOWANIE POTRZEB MATERIAŁOWYCH W ZAKŁADACH

Bardziej szczegółowo

kwartał(y) narastająco kwartał(y) narastająco Zysk (strata) z działalności operacyjnej

kwartał(y) narastająco kwartał(y) narastająco Zysk (strata) z działalności operacyjnej S t r o n a 1 POZOSTAŁE INFORMACJE DO RAPORTU OKRESOWEGO ZA III KWARTAŁ 2016 ROKU Megaron S.A. Zgodnie z 87 Rozporządzenia Ministra Finansów z dnia 19 lutego 2009 roku w sprawie informacji bieżących i

Bardziej szczegółowo

LOGISTYKA. Zapas: definicja. Zapasy: podział

LOGISTYKA. Zapas: definicja. Zapasy: podział LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.

Bardziej szczegółowo

RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP. Katarzyna Szady. Sylwia Tłuczkiewicz. Marta Sławińska.

RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP. Katarzyna Szady. Sylwia Tłuczkiewicz. Marta Sławińska. RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP Katarzyna Szady Sylwia Tłuczkiewicz Marta Sławińska Karolina Sugier Badanie koordynował: Dr Marek Angowski Lublin 2012 I. Metodologia

Bardziej szczegółowo

Matematyka Ekonomiczna

Matematyka Ekonomiczna Matematyka Ekonomiczna David Ramsey, Prof. PWr e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Poniedziałek 14-16, Wtorek 16-18

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Arkusz kalkulacyjny Excel Wykresy 1

Arkusz kalkulacyjny Excel Wykresy 1 Arkusz kalkulacyjny Excel Wykresy 1 Ćw. 1. Tworzenie wykresu na podstawie tabeli Utworzyć arkusz wykres zawierający tabelę: Miesiąc Przychody styczeń 14, 1 luty 2 2 marzec 19 17, Po zaznaczeniu tabeli

Bardziej szczegółowo

Wykład 5: Analiza dynamiki szeregów czasowych

Wykład 5: Analiza dynamiki szeregów czasowych Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Wykorzystanie metod wygładzania wykładniczego do prognozowania kursu sprzedaży EUR

Wykorzystanie metod wygładzania wykładniczego do prognozowania kursu sprzedaży EUR Wykorzystanie metod wygładzania wykładniczego do prognozowania kursu sprzedaży EUR Katarzyna Halicka Politechnika Białostocka, Wydział Zarządzania, Katedra Informatyki Gospodarczej i Logistyki, e-mail:

Bardziej szczegółowo

RAPORT MIESIĘCZNY. Luty Towarowa Giełda Energii S.A. Rynek Dnia Następnego. Średni Kurs Ważony Obrotem [PLN/MWh]

RAPORT MIESIĘCZNY. Luty Towarowa Giełda Energii S.A. Rynek Dnia Następnego. Średni Kurs Ważony Obrotem [PLN/MWh] RAPORT MIESIĘCZNY 2004 150,00 Towarowa Giełda Energii S.A. Rynek Dnia Następnego Średni Kurs Ważony Obrotem [PLN/MWh] 140,00 130,00 120,00 110,00 100,00 90,00 80,00 70,00 60,00 50,00 średni kurs ważony

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

egzamin oraz kolokwium

egzamin oraz kolokwium KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

SCORECARD Ocena Dostawcy

SCORECARD Ocena Dostawcy SCORECARD Ocena Dostawcy KLASYFIKACJA KONTROLI EKSPORTU Oznacz gdy prezentacja nie zawiera żadnych danych technicznych lub wypełnij poniższą klasyfikację kontroli eksportu. Klasyfikacja 1. Kanadyjska ECL(s):

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty drugi kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (I kwartał 2014 r.) oraz prognozy na lata 2014 2015 KWARTALNE

Bardziej szczegółowo

Analiza Szeregów Czasowych

Analiza Szeregów Czasowych Analiza Szeregów Czasowych Plan 1. Uwagi wstępne (szeregi, przykłady, prognozowanie, ) 2. Cel analizy szeregów czasowych 3. Struktura szeregów czasowych (trend/składowa stała, wahania sezonowe, wahania

Bardziej szczegółowo

MINISTERSTWO GOSPODARKI Warszawa, 16 lipca 2008 r. Departament Analiz i Prognoz DAP-II-079/RS/inf_NBP_05/2008

MINISTERSTWO GOSPODARKI Warszawa, 16 lipca 2008 r. Departament Analiz i Prognoz DAP-II-079/RS/inf_NBP_05/2008 MINISTERSTWO GOSPODARKI Warszawa, 16 lipca 2008 r. Departament Analiz i Prognoz DAP-II-079/RS/inf_NBP_05/2008 INFORMACJA o sytuacji w handlu zagranicznym w maju 2008 roku i po 5 miesiącach b.r. (na podstawie

Bardziej szczegółowo

Spis treści. Statystyka...2. Liczby...8. Figury płaskie Prostokątny układ współrzędnych Wielkości proporcjonalne Procenty...

Spis treści. Statystyka...2. Liczby...8. Figury płaskie Prostokątny układ współrzędnych Wielkości proporcjonalne Procenty... Spis treści Statystyka...2 Liczby...8 Figury płaskie... 27 Prostokątny układ współrzędnych... 2 Wielkości proporcjonalne... 5 Procenty... 56 Potęga o wykładniku naturalnym... 6 Wyrażenia algebraiczne...

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2012 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2012 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2012 R. Warszawa, wrzesień 2012 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2012 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2012 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2012 R. Warszawa, czerwiec 2012 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty pierwszy kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (IV kwartał 2013 r.) oraz prognozy na lata 2014 2015

Bardziej szczegółowo

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych 3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach 1995-2005 3.1. Opis danych statystycznych Badanie zmian w potencjale opieki zdrowotnej można przeprowadzić w oparciu o dane dotyczące

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty czwarty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce ( kwartał 2014 r.) oraz prognozy na lata 2014 2015 KWARTALNE

Bardziej szczegółowo