Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną"

Transkrypt

1 Zadanie 1 Zbadano czas poświęcany przez 16 pasażerów kolejki podmiejskiej, w wybranym mieście wojewódzkim, na dotarcie z domu do pracy, otrzymując wyniki [min.]: 30; 30; 35; 40; 41; 60; 60; 60; 72; 72; 78; 78; 80; 90; 90; 90. Wyznaczyć i zinterpretować średnią arytmetyczną. Zadanie 2 W klasie znajduje się 11 dziewcząt i 28 chłopców. Średnia wzrostu dziewcząt wynosi 154 cm, a chłopców: 160 cm. Wyznacz średni wzrost ucznia w klasie. Zadanie 3 W pewnym zakładzie 8% pracowników pracuje w dyrekcji, 68% w dziale produkcji. Pozostali pracują w dziale transportu. Średnia płaca osoby z dyrekcji to 2,8 tys. zł. W dziale produkcji wartość ta wynosi 1 tys. zł, a transportu 1,3 tys. zł. Wyznacz średni zarobek pracownika tej firmy. Zadanie 4 W pewnym zakładzie w ciągu tygodnia 10% pracowników pracowało przez 40 godzin, 32% przez 45 godzin, 27% przez 41 godzin. Reszta pracowała przez 42 godziny. Wyznaczyć średnią liczbę przepracowanych godzin. Zadanie 5 Przeanalizowano pracę 3 pracowników pod kątem wydajności. Stwierdzono, że pierwszy z nich pracuje w tempie 200 szt./h, drugi: 250 szt./h, a trzeci 400 szt./h. Wyznaczyć średnie tempo pracy robotnika. Zadanie 6 Jeżeli wiadomo, że w 2 miastach pewnego regionu mieszka średnio 1500 osób z wykształceniem wyższym, w 2 kolejnych średnio jest ich 1300 a w 3 innych 1400 wyznacz średnią liczbę osób z wyższym wykształceniem na analizowanym obszarze. Zadanie 7 Określono gęstość zaludnienia w trzech miastach. W pierwszym wynosiła ona 1000 osób/km 2, w drugim 800 osób/km 2, w trzecim 1200 osób/km 2. Ile wynosiła średnia gęstość zaludnienia dla wszystkich miast? Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną wieku czytelników. Wiek [lata] Liczba czytelników Zadanie 9 Wyniki kolokwium ze Statystyki prezentowały się następująco: Ocena Liczba osób Liczba osób w 1 terminie w 2 terminie ndst dst dst db 11 6 db+ 8 1 bdb z 5

2 Wyznacz średnią ocen dla każdego z terminów. Zadanie 10 Hipermarket ma wybrać jednego z dwóch dostawców karmy dla psów pilnujących w nocy parkingu. Dla każdego z dostawców dokonano sprawdzenia wagi 100 losowo wybranych opakowań. Ile przeciętnie ważyło jedno opakowanie karmy u danego producenta? Waga opakowania Dostawca A Dostawca B [kg] udział [%] udział [%] 0, , , , Zadanie 11 Zmierzono wzrost dla 17 losowo wybranych uczniów pewnego gimnazjum. Otrzymano wyniki [cm]: 158; 158,5; 158,5; 160,1; 161; 162,5; 162,5; 162,5; 166; 166,5; 167; 170; 171; 172; 172,5; 174; 175,5. Ile wynosi mediana w tym szeregu? Jak zinterpretujesz jej wartość? Zadanie 12 Dziennikarze, podczas przeprowadzonej naprędce ankiety, pytali przechodniów o ilość gotówki posiadanej w portfelu. 3 osoby miały przy sobie po 100 zł, 4 po 150 zł, a 3 inne po 180 zł. Jaka kwota znajduje się w portfelach połowy przechodniów? Zadanie 13 W losowym badaniu liczby kaw zamawianych przez 15 klientów w pewnym bufecie podczas jednego dnia otrzymano wyniki: 1; 1; 1; 1; 2; 2; 2; 3; 3; 3; 3; 3; 4; 4. Ile wynosi dominanta w tym szeregu? Jak zinterpretujesz jej wartość? Zadanie 14 Postanowiono zbadać wiek pracowników pewnej firmy i porównać go z danymi lidera rynkowego, dla którego stwierdzono, że 50% pracowników ma 35 lat lub mniej. Zakładając, że niższa wartość tej wielkości oznacza wyższy potencjał konkurencyjny, odpowiedz na pytanie czy badana firma ma szansę zagrozić liderowi. Wiek [lata] Liczba pracowników Zadanie 15 Zebrano odpowiedzi na liczący 10 pytań test przeprowadzony w pewnej grupie studentów. Poniżej zestawiono liczbę prawidłowych odpowiedzi wraz z odpowiadającą im ilością osób. Czy na tej podstawie można powiedzieć, że 75% studentów uzyskało 8 punktów lub mniej? (Odpowiedź uzasadnij stosownymi obliczeniami). 2 z 5

3 Poprawne odpowiedzi Liczba osób Zadanie 16 Na podstawie danych dotyczących płacy w dwóch przedsiębiorstwach określić dominującą wysokość wynagrodzenia. Następnie wskazać, która z firm jest bardziej atrakcyjna pod względem wynagrodzenia (wybór uzasadnić). Płaca Liczba pracowników Liczba pracowników (złote) firmy A firmy B Zadanie 17 Zbadano temperaturę w ciągu stycznia otrzymując rezultaty: Temperatura [ o C] Liczba dni Wyznacz i zinterpretuj medianę i dominantę dla tego szeregu. Zadanie 18 Na pewnym odcinku drogi zbadano prędkości osiągane przez samochody osobowe. Dla zebranych danych obliczyć i zinterpretować medianę. Wyznacz średnią prędkość, z jaką poruszają się kierowcy. Która z tych dwóch miar lepiej charakteryzuje badane zjawisko? Dlaczego? Prędkość [km/h] Liczba aut Zadanie 19 Podczas dożynek na jednym ze stoisk oferowany jest miód pochodzący z pasieki należącej do jednej ze 3 z 5

4 spółdzielni pszczelarskich. Sprzedaje się go w słoikach o różnej wielkości. Dla danych dotyczących wielkości sprzedaży wyznaczyć i zinterpretować średnią arytmetyczną, medianę oraz dominantę masy słoika. Masa słoika miodu [g] Liczba sprzedanych słoików Zadanie 20 Cztery rodzaje hamburgerów sprzedawanych w barze szybkiej obsługi charakteryzują się następującą średnią kalorycznością: 405 kcal, 420 kcal, 440 kcal, 450 kcal. Wiedząc, że do badania wybrano po 15 hamburgerów pierwszego i drugiego rodzaju oraz po 20 trzeciego i czwartego wyznacz średnią zawartość kalorii dla hamburgera bez rozróżniania jego rodzaju. Dla sześciu losowo wybranych hamburgerów pierwszego rodzaju otrzymano następujące ilości kalorii: 401, 410, 415, 401, 403, 407. Czy na tej podstawie można powiedzieć, że połowa z nich zawiera nie więcej niż 405 kcal? Zadanie 21 Przeanalizowano liczbę trafnych odpowiedzi otrzymanych podczas testu ze statystyki. Na tej podstawie wyznaczyć i zinterpretować kwartyle oraz dominantę przedstawionego poniżej rozkładu. Liczba poprawnych odpowiedzi Liczba studentów Zadanie 22 Mediana wzrostu 150 dzieci zawiera się w przedziale (155, 160) cm, do którego należało 40 dzieci i wynosi 158 cm. Ile dzieci miało wzrost poniżej 155 cm? Zadanie 23 Jaka jest górna granica przedziału mediany w pewnym szeregu rozdzielczym jeżeli wiadomo, że: rozpiętość tego przedziału wynosi 10, jego liczebność równa się 50, skumulowana liczebność przedziału poprzedzającego wynosi 30. Mediana jest równa 15 zaś do badania wybrano 80 obiektów. Zadanie 24 Jaka jest górna granica przedziału dominanty w pewnym szeregu rozdzielczym jeżeli wiadomo, że: rozpiętość tego przedziału wynosi 10, jego liczebność równa się 50, liczebność przedziału poprzedzającego wynosi 30 a następnego 20. Dominanta jest równa z 5

5 Odpowiedzi do zadań Zadanie 1 x = 62,875 min. Zadanie 2 x = 158,31 cm Zadanie 3 x = 1216 zł Zadanie 4 x = 42,49 godz. Zadanie 5 x = 260,87 szt/h Zadanie 6 x = 1400 osób Zadanie 7 x = 972,97 os/km 2 Zadanie 8 x = 50 lat Zadanie 9 x 1 = 2,94, x 2 = 2,68 Zadanie 10 x A = 0,949 kg, x B = 0,91 kg Zadanie 11 Me=166 cm Zadanie 12 Me=150 zł Zadanie 13 D=3 kawy Zadanie 14 Me=41 lat Zadanie 15 Q 3 = 7 punktów Zadanie 16 D A = 1244,44 zł, D B = 1346,15 zł Zadanie 17 Me = 2 stopnie, D = 5 stopni Zadanie 18 x = 63,94 km/h, Me = 64,02 km/h Zadanie 19 x = 240,28 g, Me = 150 g, D = 250 g Zadanie 20 x = 431,07 kcal, Me = 405 kcal Zadanie 21 Q 1 = 3,29 odp., Me = 7,35 odp., Q 3 = 11,93 odp., dominanta nie istnieje Zadanie 22 n sk 1 = 51 osób Zadanie 23 x 0 + h 0 = = 23 Zadanie 24 x 0 + h 0 = = 21 5 z 5

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1 Statystyka opisowa Zad 1 Obliczyć średnią wydajność robotnika, jeżeli wiadomo że: a) pracował 40 minut z wydajnością 90 szt/h oraz 20 minut z wydajnością 120 szt/h, b) wyprodukował 30 detali z wydajnością

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ ZDUŃSKA WOLA 16.04.2014R. Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ Kod ucznia Instrukcja dla uczestnika konkursu 1. Proszę wpisać odpowiednie litery (wielkie) do poniższej tabeli

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2012 roku. Warszawa 2012 I. Badana populacja

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

STATYSTYKA. Poziom podstawowy

STATYSTYKA. Poziom podstawowy STATYSTYKA Poziom podstawowy Zadanie (8 pkt.) Histogram obrazuje utarg stacji benzynowej w ciągu tygodnia. a) Którego dnia stacja była zamknięta? b) Którego dnia sprzedano więcej benzyny niż w czwartek?

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2016 roku. Warszawa 2016 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często

Bardziej szczegółowo

DANE STATYSTYCZNE

DANE STATYSTYCZNE DANE STATYSTYCZNE Sposoby przedstawiania danych: - tabelka - wykres - diagram słupkowy / kolumnowy jest czytelny i łatwo na jego podstawie porównywad dane - diagram kołowy pozwala na przedstawienie ułamków

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW

XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWO WIELKOPOLSKIE Etap rejonowy rok szkolny 011/01 wylosowany numer uczestnika konkursu Dane dotyczące ucznia: (wypełnia Komisja Konkursowa

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Statystyka. Zadanie 1.

Statystyka. Zadanie 1. Statystyka Zadanie 1. W przedsiębiorstwie Statexport pracuje 100 pracowników fizycznych i 25 umysłowych. Typowy wiek pracownika fizycznego kształtuje się w przedziale od 30 do 40 lat. Średnia wieku pracowników

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

STATYSTYKA POWTÓRZENIE WIADOMOŚCI

STATYSTYKA POWTÓRZENIE WIADOMOŚCI STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram

Bardziej szczegółowo

Wynagrodzenia absolwentów studiów MBA w 2013 roku

Wynagrodzenia absolwentów studiów MBA w 2013 roku WYŻSZE SZKOŁY BANKOWE Lider programów MBA w Polsce Wynagrodzenia absolwentów studiów MBA w 2013 roku Human Resources Publikacje / Sylwia Rębisz, Sedlak&Sedlak W XI Ogólnopolskim Badaniu Wynagrodzeń wzięło

Bardziej szczegółowo

Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Matematyka podstawowa I. Liczby rzeczywiste, zbiory Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz

Bardziej szczegółowo

Trening czyni mistrza zdaj maturę na piątkę

Trening czyni mistrza zdaj maturę na piątkę Trening czyni mistrza zdaj maturę na piątkę ZESTAW I Liczby rzeczywiste Zdający demonstruje poziom opanowania powyższych umiejętności, rozwiązując zadania, w których: a) planuje i wykonuje obliczenia na

Bardziej szczegółowo

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej 1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2 L.Kowalski zadania ze statystyki matematycznej-zestaw ZADANIA - ZESTAW Zadanie.1 Badano maksymalną prędkość pewnego typ samochodów osobowych (cecha X poplacji. W 5 pomiarach tej prędkości otrzymano x 195,8

Bardziej szczegółowo

Estymatory i testy statystyczne - zadania na kolokwium

Estymatory i testy statystyczne - zadania na kolokwium Estymatory i testy statystyczne - zadania na kolokwium Zad. 1. Cecha X populacji ma rozkład N(µ, σ), gdzie µ jest znane, a σ nieznane. Niech X 1,...,X n będzie n-elementową próbą prostą pobraną z tej populacji.

Bardziej szczegółowo

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna

Bardziej szczegółowo

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy)

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy) 1. Dana jest niekompletna macierz danych surowych zawierająca informację o zmiennych X i Y oraz rozkłady zmiennych X i Y. Uzupełnij macierz tak, aby zmienne X i Y miały w tej populacji taki rozkład, jak

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

Zmienne losowe zadania na sprawdzian

Zmienne losowe zadania na sprawdzian Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i Test z procentów 1. Liczba po zamianie na procent wyniesie: 2. Liczba po zamianie na procent wyniesie:

Bardziej szczegółowo

2. W tabeli podano wagę i wzrost grupy uczniów z klasy VI: Piotr Tomasz Anna Marta Wojtek Michał Adam Kasia Iga

2. W tabeli podano wagę i wzrost grupy uczniów z klasy VI: Piotr Tomasz Anna Marta Wojtek Michał Adam Kasia Iga STATYSTYKA Poziom (K) lub (P) Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: oblicza średnią arytmetyczną, wyznacza medianę i dominantę oblicza średnią arytmetyczną, wyznacza medianę i dominantę

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Struktura społeczno-ekonomiczna gospodarstw domowych uczniów klasy III Technikum 1

Struktura społeczno-ekonomiczna gospodarstw domowych uczniów klasy III Technikum 1 Prace Studenckich Kół Naukowych Nr 14/2011 Struktura społeczno-ekonomiczna gospodarstw domowych uczniów klasy III Technikum 1 Renata Gromadzka, Krzysztof Dobek, Daniel Soboń Zespół Szkół Ponadgimnazjalnych

Bardziej szczegółowo

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16) Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz

Bardziej szczegółowo

Instrukcja dla ucznia

Instrukcja dla ucznia Imię i nazwisko ucznia Klasa Nr w dzienniku 2016 MTEMTYK zestaw M1 Instrukcja dla ucznia Zestaw zawiera 13 zadań. Sprawdź, czy jest kompletny i czytelny. Czytaj uważnie teksty i zadania. Nie używaj korektora,

Bardziej szczegółowo

Wartość danej Liczebność

Wartość danej Liczebność ZADANIE 1 (5 PKT) Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE Zadanie 1 Biuro Turystyczne Raj w przypadku rezygnacji z wycieczki nie zwraca pełnej kwoty. a) Jeśli rezygnacja z wyjazdu następuje miesiąc przed terminem wyjazdu,

Bardziej szczegółowo

I Krajowy Zjazd Szkoleniowy PTORLChGiSz

I Krajowy Zjazd Szkoleniowy PTORLChGiSz ul. Bytkowska 1B,40-955 Katowice, POLSKA tel.: +48 / 32 / 25 98 399, fax: +48 / 32 / 25 98 398 email: altasoft@altasoft.pl www.altasoft.pl I Krajowy Zjazd Szkoleniowy PTORLChGiSz 17-19.11.2011 Podsumowanie

Bardziej szczegółowo

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość Grupowanie i klasyfikowanie danych statystycznych Klasyfikacja danych statystycznych to procedura uporządkowania danych, polegająca na podziale zbioru wartości danych na przedziały (grupy), zwane klasami.

Bardziej szczegółowo

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

STATYSTYKA OPISOWA. Znaczenie podstawowych miar

STATYSTYKA OPISOWA. Znaczenie podstawowych miar STATYSTYKA OPISOWA Znaczenie podstawowych miar Pytanie wieczoru 1: Ile zarabiają dyrektorzy w działach ach sprzedaŝy? Średnia zarobków w dyrektorów w sprzedaŝy wynosi 12 161 PLN. PYTANIA: Jak obliczono

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu.

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu. Temat 8: Statystyka i prawdopodobieństwo w naszym życiu. Jakie są miary statystyczne? Średnia arytmetyczna. Średnia arytmetyczna dwóch liczb a i b to połowa ich sumy Średnia arytmetyczna trzech liczb a,

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25%

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25% STATYSTYKA OPISOWA Zadanie. Wzrost [cm] pewnej grupy dziewcząt przedstawia się następująco: 50, 5, 5, 5, 52, 52, 52, 52, 53, 53, 53, 53,, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 57, 57, 57, 57, 58,

Bardziej szczegółowo

Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39

Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39 Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2009/2010

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2009/2010 Konkursy w województwie podkarpackim w roku szkolnym 009/010... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 009/010 ETAP SZKOLNY

Bardziej szczegółowo

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N. Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3 Zestaw 3 Zadanie. 1. Dla zmiennej losowej o rozkładzie normalnym N (100; 10) obliczyć: a) P(X

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6 - 2 - I Cele i zadania Zadaniem systemu sprawdzania i oceniania osiągnięć edukacyjnych ucznia jest rozpoznanie przez nauczyciela poziomu

Bardziej szczegółowo

KRYTERIA OCENIANIA Z GEOGRAFII DLA KLASY VII OBOWIĄZUJĄCE W SZKOLE PODSTAWOWEJ IM. KORNELA MAKUSZYŃSKIEGO W BYCHLEWIE

KRYTERIA OCENIANIA Z GEOGRAFII DLA KLASY VII OBOWIĄZUJĄCE W SZKOLE PODSTAWOWEJ IM. KORNELA MAKUSZYŃSKIEGO W BYCHLEWIE KRYTERIA OCENIANIA Z GEOGRAFII DLA KLASY VII OBOWIĄZUJĄCE W SZKOLE PODSTAWOWEJ IM. KORNELA MAKUSZYŃSKIEGO W BYCHLEWIE FORMY OCENIANIA OSIĄGNIĘĆ UCZNIÓW praca klasowa sprawdzian półroczny kartkówka odpowiedź

Bardziej szczegółowo

PRĘDKOŚĆ, DROGA, CZAS

PRĘDKOŚĆ, DROGA, CZAS Imię i nazwisko... Klasa... PRĘDKOŚĆ, DROGA, CZAS GRUPA A 1. Rowerzysta jedzie z prędkością 20 km h. W ciągu godziny pokona: A. 1 3 km B. 60 km C. 20 km D. 10 km 2. Jaką trasę pokona w ciągu pół godziny

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to 3.1 Wprowadzenie do estymacji Ile mamy czerwonych krwinek w krwi? Ile karpi żyje w odrze? Ile ton trzody chlewnej będzie wyprodukowane w przyszłym roku? Ile białych samochodów jeździ ulicami Warszawy?

Bardziej szczegółowo

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy Klasówka po szkole podstawowej Historia Edycja 2006/2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela 1. Podział liczby

Bardziej szczegółowo

Temat: Statystyka i prawdopodobieństwo w naszym życiu.

Temat: Statystyka i prawdopodobieństwo w naszym życiu. Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Sprawdzian z matematyki na rozpoczęcie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na rozpoczęcie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na rozpoczęcie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Upewnij się, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Raport z cen korepetycji w Polsce 2016/2017. Na podstawie cen z serwisu e-korepetycje.net

Raport z cen korepetycji w Polsce 2016/2017. Na podstawie cen z serwisu e-korepetycje.net Raport z cen korepetycji w Polsce 2016/2017 Na podstawie cen z serwisu e-korepetycje.net Spis treści WSTĘP... 3 ZAŁOŻENIA DO RAPORTU... 3 ANALIZA WOJEWÓDZTW... 3 Województwo dolnośląskie... 5 Województwo

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania. 4. Wymagania edukacyjne na poszczególne śródroczne/ roczne oceny klasyfikacyjne:

Przedmiotowe Zasady Oceniania. 4. Wymagania edukacyjne na poszczególne śródroczne/ roczne oceny klasyfikacyjne: Przedmiotowe Zasady Oceniania 1. Przedmiot: Język niemiecki 2. Etap edukacyjny: Gimnazjum 3. Imię i nazwisko nauczyciela: Iwona Wójcik, Julita Góralska-Godek 4. Wymagania edukacyjne na poszczególne śródroczne/

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014

SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014 SZKOŁA PODSTAWOWA W BAŁUCZU SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014 Opracował zespół ds. sprawdzianu: mgr G.Grabia mgr R. Komuńska mgr R. Klimczak mgr A. Magacz W kwietniu 2014 roku do sprawdzianu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji i podwyższeniu świadczeń najniższych w marcu 2017

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

I POTĘGI zadania na ocenę celującą

I POTĘGI zadania na ocenę celującą Rozwiązania należy oddać na oddzielnej kartce lub w specjalnym zeszycie, podając kod zestawu (znajduje się on w prawym górnym rogu). Rozwiązania muszą zawierać obliczenia a nie tylko odpowiedź. W przypadku,

Bardziej szczegółowo

Poniżej zostały przedstawione 3 grupy wyników uczniów w kilku dyscyplinach sportowych, które w poszczególnych typach szkół są mierzone.

Poniżej zostały przedstawione 3 grupy wyników uczniów w kilku dyscyplinach sportowych, które w poszczególnych typach szkół są mierzone. Ćwiczenie - wyniki sportowe Poniżej zostały przedstawione 3 grupy wyników uczniów w kilku dyscyplinach sportowych, które w poszczególnych typach szkół są mierzone. Twoim zadaniem jest: 1. W każdej z poniższych

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Raport z cen korepetycji w Polsce Na podstawie cen z serwisu e-korepetycje.net

Raport z cen korepetycji w Polsce Na podstawie cen z serwisu e-korepetycje.net Raport z cen korepetycji w Polsce 2016 Na podstawie cen z serwisu e-korepetycje.net Spis treści WSTĘP... 3 ZAŁOŻENIA DO RAPORTU... 3 ANALIZA WOJEWÓDZTW... 3 Województwo dolnośląskie... 6 Województwo kujawsko-pomorskie...

Bardziej szczegółowo

Temat: Funkcja i jej własności

Temat: Funkcja i jej własności SCENARIUSZ LEKCJI przedmiot i poziom: podręcznik: matematyka, gimnazjum Egzamin gimnazjalny. Standardy wymagań w pytaniach i odpowiedziach (Część matematyczno przyrodnicza.) - Oficyna Edukacyjna * Krzysztof

Bardziej szczegółowo