Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA"

Transkrypt

1 Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce ( )) Na podstawie danych z lat , dotyczących funkcjonowania transportu w Polsce proszę sporządzić prognozę liczby zarejestrowanych ciągników rolniczych na rok 2017 i Proszę wykorzystać model liniowy i model kwadratowy. W tabeli proszę podać wartość prognoz oraz współczynnik determinacji R 2 dla obu modeli. Prognozę proszę podać w formie prognozy punktowej oraz prognozy przedziałowej przy 99% poziomie ufności. Rok Prognoza liczby zarejestrowanych ciągników rolniczych [tys. sztuk] Model liniowy Model kwadratowy Prognoza Prognoza R 2 Prognoza Prognoza punktowa przedziałowa punktowa przedziałowa R 2 Zadanie 2 (Plik danych: Wypadki w Polsce od 1998 roku (M)) Dane liczby i skutków wypadków drogowych w Polsce w latach w układzie miesięcznym. Proszę dokonać agregacji danych miesięcznych dotyczących liczby wypadków do rocznych (poprzez zsumowanie wartości w poszczególnych miesiącach). Dane te należy umieścić w nowym arkuszu a następnie sporządzić prognozę liczby wypadków na rok 2017 i 2018 za pomocą modelu trendu liniowego. prognoza liczby wypadków na 2017 rok prognoza liczby wypadków na 2018 rok. wartość współczynnika determinacji dopasowania modelu do danych %

2 Zagadnienie 2: Prognozowanie za pomocą metody wyrównywania wykładniczego Zadanie 3 (Plik danych: Krajowe przewozy lotnicze w UE (dane kwartalne)) Dane dotyczą liczby pasażerów w ruchu krajowym w transporcie lotniczym w wybranych krajach Europy. Dane mają układ kwartalny. Stosując wskazane w tabeli metody wyrównywania wykładniczego proszę skonstruować prognozę liczby pasażerów w Hiszpanii na poszczególne kwartały 2017 roku. Proszę podać także bezwzględny błąd procentowy (MAPE) dla obu modeli. Rok 2017 Kwartał I Kwartał II Kwartał III Kwartał IV Prognoza liczby pasażerów w ruchu lotniczym w Hiszpanii za pomocą wyrównywania wykładniczego Model z trendem liniowym i addytywnymi wahaniami sezonowymi Model z trendem wykładniczym i addytywnymi wahaniami sezonowymi MAPE Który model należy uznać za lepszy z punktu widzenia jakości dopasowania do danych Zadanie 4 (Plik danych: Wypadki w Polsce od 1998 roku (M)) Dane dotyczą liczby wypadków drogowych i ich skutków. Dane mają układ miesięczny i obejmują okres od początku 1998 do końca 2016 roku. Stosując wskazane modele wyrównywania wykładniczego proszę skonstruować prognozę liczby osób rannych w wypadkach drogowych na wszystkie miesiące 2017 i 2018 roku. Proszę podać także średni bezwzględny błąd procentowy (MAPE) dla obu modeli. Okres sierpień 2017 październik 2017 sierpień 2018 październik 2018 Model z trendem liniowym i addytywnymi wahaniami sezonowymi Prognoza liczby osób rannych Model z trendem liniowym i multiplikatywnymi wahaniami sezonowymi MAPE Który model należy uznać za lepszy z punktu widzenia jakości dopasowania do danych:......

3 Zagadnienie 3: Prognozowanie za pomocą modelu liniowego lub kwadratowego dla jednoimiennych okresów Zadanie 5 (Plik danych: Wypadki w Polsce od 1998 roku (M)) Wykorzystując metodę trendów liniowych dla jednoimiennych okresów, proszę sporządzić prognozę punktową i przedziałową na 2018 rok liczby osób rannych w wypadkach drogowych w poszczególnych miesiącach. Proszę podać wartość prognozy punktowej oraz przedziałowej na 90% poziomie ufności oraz współczynnik determinacji dla wyszczególnionych w tabeli miesięcy. Prognozowany okres styczeń 2018 lipiec 2018 sierpień 2018 październik 2018 Prognoza liczby rannych w Polsce przedziałowa na 90% punktowa poziomie ufności Współczynnik determinacji modelu liniowego (%) Zadanie 6 (Plik danych: Krajowe przewozy lotnicze w UE (dane kwartalne)) Wykorzystując model kwadratowy dla jednoimiennych okresów, proszę sporządzić prognozę punktową i przedziałową na poszczególne kwartały 2016 roku liczby pasażerów w Hiszpanii. Proszę podać wartość prognozy punktowej oraz przedziałowej na 90% poziomie ufności oraz współczynnik determinacji modeli dla poszczególnych kwartałów. Prognozowany okres I kwartał 2016 II kwartał 2016 III kwartał 2016 IV kwartał 2016 Prognoza liczby pasażerów w Hiszpanii przedziałowa na 90% punktowa poziomie ufności Współczynnik determinacji modelu liniowego (%) Wskazówka: W arkuszu należy dodać dwie zmienne (X i X 2 ). Wartości zmiennej X należy wyliczyć za pomocą formuły =trunc((v0-1)/4)+1. Po wyliczeniu wartości zmiennych sterujących prognozą (X i X 2 ) należy usunąć formuły, bowiem przy wyodrębnianiu danych dla każdego kwartału straciłyby one sens.

4 Zagadnienie 4: Prognozowanie danych wykazujących sezonowość z wykorzystaniem zmiennych wskaźnikowych Zadanie 7 (Plik danych: Krajowe przewozy lotnicze w UE (dane kwartalne)) Wykorzystując model kwadratowy ze zmiennych wskaźnikowymi, proszę sporządzić prognozę punktową i przedziałową na poszczególne kwartały 2016 roku liczby pasażerów w Hiszpanii. Jako bazową zmienną wskaźnikową proszę przyjąć kwartał 1 (zmiennej tej nie uwzględniamy w analizie regresji). Proszę podać wartość prognozy punktowej oraz przedziałowej na 90% poziomie ufności oraz współczynnik determinacji modelu. Prognozowany okres I kwartał 2016 II kwartał 2016 III kwartał 2016 IV kwartał 2016 Prognoza liczby pasażerów w Hiszpanii przedziałowa na 90% punktowa poziomie ufności Współczynnik determinacji (%) Zadanie 8 (Plik danych: Krajowe przewozy lotnicze w UE (dane miesięczne)) Wykorzystując model liniowy ze zmiennych wskaźnikowymi, proszę sporządzić prognozę punktową i przedziałową na wskazane miesiące 2016 roku liczby pasażerów we Francji. Jako bazową zmienną wskaźnikową należy przyjąć styczeń (zmiennej tej nie uwzględniamy w analizie regresji). W modelu proszę uwzględnić pozostałe zmienne wskaźnikowe, nawet jeśli są nieistotne statystycznie. Proszę podać wartość prognozy punktowej oraz przedziałowej na 97% poziomie ufności oraz współczynnik determinacji modelu. Prognozowany okres styczeń 2016 luty 2016 lipiec 2016 sierpień 2016 Prognoza liczby pasażerów we Francji przedziałowa na 97% punktowa poziomie ufności Współczynnik determinacji (%)

5 Zagadnienie 5: Prognozowanie zmiennej dychotomicznej z wykorzystaniem modeli regresji logistycznej Zadanie 9 (Plik danych: Efekty rehabilitacji) W bazie danych znajdują się informacje o efektach rehabilitacji pacjentów po udarze mózgu. Efekt rehabilitacji został oceniony na skali punktowej, a następnie sklasyfikowany jako znaczny albo nieznaczny (zmienna 6). Celem analizy jest prognozowanie efektu rehabilitacji na podstawie informacji o wyjściowej sprawności chorych (zmienna 4) i ich wieku. W tym celu proszę wykorzystać model regresji logistycznej. Na podstawie uzyskanego modelu proszę oszacować prawdopodobieństwo uzyskania znacznego efektu rehabilitacji i podać ostateczną prognozę dla następujących hipotetycznych pacjentów: Sprawność przed rehabilitacją Wiek 14 pkt 35 lat 3 pkt 84 lata 3 pkt 31 lat Prawdopodobieństwo znacznego efektu rehabilitacji Decyzja prognosty przewidywany efekt rehabilitacji

6 Zagadnienie 6: Analiza sezonowości danych czasowych Zadanie 10 (Plik danych: Krajowe przewozy lotnicze w UE (dane kwartalne)) Celem analizy jest ocena sezonowości przewozów pasażerów transportem lotniczym we Włoszech. Proszę podać wartości multiplikatywnych i addytywnych wskaźników sezonowości dla poszczególnych kwartałów a następnie udzielić odpowiedzi na dodatkowe pytania. Kwartał I II III IV Addytywne wskaźniki sezonowości Liczba pasażerów we Włoszech Multiplikatywne wskaźniki sezonowości na podstawie wartości wskaźników multiplikatywnych proszę podać, w którym kwartale liczba pasażerów w transporcie lotniczym jest najwyższa i o ile procent przewyższa ona poziom średnioroczny ; na podstawie wartości wskaźników addytywnych proszę podać o ile więcej pasażerów korzysta z linii lotniczych w kwartale III w porównaniu do kwartału IV ;

7 Zagadnienie 7: Wyznaczanie indeksów dynamiki i ich interpretacja Zadanie 11 (Plik danych: Przewozy kolejowe w OECD ( )) Dane dotyczą przewozów pasażerów koleją w wybranych państwach świata w latach Analiza dotyczy jednak tylko danych z lat ) Wykorzystując formuły arkusza Excel proszę wyznaczyć indeksy dynamiki o stałej podstawie (względem 2000 roku) dla poziomu przewozów pasażerów koleją w Polsce, w Czechach, Słowacji i na Węgrzech. Następnie proszę udzielić odpowiedzi na następujące pytania: w którym z czterech analizowanych krajów poziom przewozów koleją najbardziej spadł w roku 2015 w stosunku do roku 2000 i ile procent wynosił ten spadek? jak i o ile procent zmienił się poziom przewozów pasażerów koleją w roku 2010 w stosunku do roku 2000 w Polsce.., a jak i o ile procent w Czechach..? 2) Proszę wyznaczyć indeksy dynamiki o zmiennej podstawie (rok do roku) i odpowiedzieć na następujące pytania: w którym roku w latach przewozy pasażerów koleją w Polsce wzrosły najbardziej i o ile procent? w którym kraju w latach nastąpił największy wzrost liczby pasażerów przewożonych koleją i ile wynosił procent?

8 Zagadnienie 8: Prezentacja danych czasowych w postaci różnych wersji wykresu liniowego Zadanie 12 (Plik danych: Wskaźniki demograficzne w Polsce ) Dane dotyczą sytuacji demograficznej w Polsce w latach Celem analizy jest przedstawienie w formie graficznej dwóch wielkości (na jednym wykresie liniowym wykorzystując ODPOWIEDNI podtyp tego wykresu): liczby mieszkańców w Polsce (2); liczby rozwodów w Polsce (4). Wykres proszę starannie sformatować, zapisać pod nazwą Imię i nazwisko (prawy przycisk myszki, polecenie Zapisz wykres) a następnie wysłać jako załącznik mailem na adres: w tytule maila proszę wpisać Wykres z egzaminu.

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

Wykład 5: Analiza dynamiki szeregów czasowych

Wykład 5: Analiza dynamiki szeregów czasowych Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5 Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek: Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne

Bardziej szczegółowo

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Wykład 1 Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Informacje o przedmiocie prowadzący: strona internetowa: wykład ćwiczenia forma zaliczenia: dr Marek Sobolewski www.msobolew.sd.prz.edu.pl

Bardziej szczegółowo

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca 1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych

Bardziej szczegółowo

Zmiany cen nieruchomości w czasie

Zmiany cen nieruchomości w czasie Inwestycje i ryzyko na rynku nieruchości Ewa Kusideł 1 Zmiany cen nieruchomości w czasie Dr Ewa Kusideł Inwestycje i ryzyko na rynku nieruchości 2 Analiza średnich zmian cen nieruchomości w czasie za pomocą

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ

STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ Opracowała: Milena STATYSTYKA OPISOWA LAB.1. Zadanie 1 Następujące dane są liczbami pasażerów korzystających z

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Zad.2. Korelacja - szukanie zależności.

Zad.2. Korelacja - szukanie zależności. Ćw. III. MSExcel obliczenia zarządcze Spis zagadnień: Funkcje statystyczne Funkcje finansowe Tworzenie prognoz Scenariusze >>>Otwórz plik: excel_02.xls> przejdź do arkusza

Bardziej szczegółowo

MRB TO KOMPENDIUM WIEDZY O AKTUALNEJ SYTUACJI GOSPODARCZEJ POLSKI I BRANŻY BUDOWLANEJ. A PONADTO NAJBARDZIEJ AKTUALNE, WIARYGODNE I RZETELNE PROGNOZY.

MRB TO KOMPENDIUM WIEDZY O AKTUALNEJ SYTUACJI GOSPODARCZEJ POLSKI I BRANŻY BUDOWLANEJ. A PONADTO NAJBARDZIEJ AKTUALNE, WIARYGODNE I RZETELNE PROGNOZY. MRB TO KOMPENDIUM WIEDZY O AKTUALNEJ SYTUACJI GOSPODARCZEJ POLSKI I BRANŻY BUDOWLANEJ. A PONADTO NAJBARDZIEJ AKTUALNE, WIARYGODNE I RZETELNE PROGNOZY. CHCESZ WIEDZIEĆ: JAK KSZTAŁTUJĄ SIĘ PROGNOZY NAJWAŻNIEJSZYCH

Bardziej szczegółowo

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny

Bardziej szczegółowo

II kwartał 2012 r. Nr III

II kwartał 2012 r. Nr III Wielkość bezrobocia w miastach i powiatach znajdujących się na terenie GOM... str. 3 Stopa bezrobocia w miastach i powiatach znajdujących się na terenie GOM... str. 4 Oferty pracy zgłoszone do PUP znajdujących

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

2,3% o tyle wzrosła liczba zarejestrowanych bezrobotnych na terenie Gdańskiego Obszaru Metropolitalnego i Gdyni

2,3% o tyle wzrosła liczba zarejestrowanych bezrobotnych na terenie Gdańskiego Obszaru Metropolitalnego i Gdyni WIELKOŚĆ I STOPA BEZROBOCIA w miastach i powiatach należących do GOM i w Gdyni Ostatni kwartał 2013 roku nie przyniósł większych zmian na metropolitalnym rynku pracy. Liczba zarejestrowanych bezrobotnych

Bardziej szczegółowo

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ

DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA

Bardziej szczegółowo

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty dziewiąty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (IV kwartał 2015 r.) oraz prognozy na lata 2016 2017

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego

Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego 61 Barometr Regionalny Nr 2(24) 2011 Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego Jarosław Bielak Wyższa Szkoła Zarządzania i Administracji w Zamościu Streszczenie:

Bardziej szczegółowo

Rozdział 2 Wprowadzenie

Rozdział 2 Wprowadzenie Rozdział 2 Wprowadzenie Analiza szeregów czasowych zyskuje ostatnio coraz bardziej na znaczeniu i jest z niesłabnącym powodzeniem stosowana w wielu obszarach nauki, biznesu czy przemysłu. Podstawowym celem

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Stan i prognoza koniunktury gospodarczej

Stan i prognoza koniunktury gospodarczej 222 df Instytut Badań nad Gospodarką Rynkową przedstawia osiemdziesiąty piąty kwartalny raport oceniający stan koniunktury gospodarczej w Polsce (IV kwartał 2014 r.) oraz prognozy na lata 2015 2016 KWARTALNE

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Instrukcja użytkownika programu

Instrukcja użytkownika programu Instrukcja użytkownika programu Autorem części wzorów (metody przybliżone dla trendu wykładniczego i potęgowego) jest prof. zw. dr hab. inż. Jan Purczyński z Katedry Metod Ilościowych Uniwersytetu Szczecińskiego.

Bardziej szczegółowo

Wytyczne do projektów

Wytyczne do projektów Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13 Wytyczne do projektów Prognozowanie i symulacje

Bardziej szczegółowo

Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym

Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Jacek Batóg Uniwersytet Szczeciński Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Warunki działania przedsiębiorstw oraz uzyskiwane przez

Bardziej szczegółowo

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2 PAWEŁ OSTASZEWSKI PIŁA, dn. 15.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 2 1. TREŚĆ ZADANIA: Firma produkująca sok jabłkowy przewiduje następujące zapotrzebowanie na ten

Bardziej szczegółowo

Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych

Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych Politechnika Krakowska Instytut Inżynierii i Gospodarki Wodnej Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych XXVI Konferencja Naukowa Metody Komputerowe w Projektowaniu i Analizie

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji

Bardziej szczegółowo

Analiza Szeregów Czasowych

Analiza Szeregów Czasowych Analiza Szeregów Czasowych Plan 1. Uwagi wstępne (szeregi, przykłady, prognozowanie, ) 2. Cel analizy szeregów czasowych 3. Struktura szeregów czasowych (trend/składowa stała, wahania sezonowe, wahania

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Informacja o rynku lokali mieszkalnych w Szczecinie aktualizacja danych za IV kwartał 2014 r.

Informacja o rynku lokali mieszkalnych w Szczecinie aktualizacja danych za IV kwartał 2014 r. Szczecin, 2 lutego 215 r. Marta Lekka Anna Tomska wanow Wydział Statystyczno Dewizowy nformacja o rynku lokali mieszkalnych w Szczecinie aktualizacja danych za kwartał 214 r. W kwartale 214 r. na szczecińskim

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2

Bardziej szczegółowo

Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej

Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej Kod przedmiotu: PLPILA02-IEEKO-L-3p7-2012 Pozycja planu: B7 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu tatystyka opisowa 2 Rodzaj przedmiotu Podstawowy/Obowiązkowy 2 Kierunek studiów

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska - 2011 aktualizacja dla edycji 2013/14. Cel studium

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Analiza wyników egzaminacyjnych 2013

Analiza wyników egzaminacyjnych 2013 Analiza wyników egzaminacyjnych 2013 z wykorzystaniem wskaźników edukacyjnej wartości dodanej (EWD) 1. Zestawienie ogólne wskaźników EWD dla egzaminu 2013 Wskaźniki EWD dla tegorocznego egzaminu gimnazjalnego

Bardziej szczegółowo

Zamek Krzyżacki, to zdecydowanie największa atrakcja Malborka. Budowa tej niesamowitej twierdzy ruszyła jeszcze pod koniec XIII w. Od 1309 r.

Zamek Krzyżacki, to zdecydowanie największa atrakcja Malborka. Budowa tej niesamowitej twierdzy ruszyła jeszcze pod koniec XIII w. Od 1309 r. Zamek Krzyżacki, to zdecydowanie największa atrakcja Malborka. Budowa tej niesamowitej twierdzy ruszyła jeszcze pod koniec XIII w. Od 1309 r. zamek był siedzibą najwyższych władz Zakonu Krzyżackiego WIELKOŚĆ

Bardziej szczegółowo

INFORMACJA O KARTACH PŁATNICZYCH

INFORMACJA O KARTACH PŁATNICZYCH Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O KARTACH PŁATNICZYCH I KWARTAŁ 2007 r. Warszawa, lipiec 2007 r. Informacja o kartach płatniczych - I kwartał 2007 r. SPIS TREŚCI Karty płatnicze..........................................

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA

Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA Arkusz kalkulacyjny MS EXCEL - ĆWICZENIA Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Excel zadania sprawdzające 263

Excel zadania sprawdzające 263 Excel zadania sprawdzające 263 Przykładowe zadania do samodzielnego rozwiązania Zadanie 1 Wpisać dane i wykonać odpowiednie obliczenia. Wykorzystać wbudowane funkcje Excela: SUMA oraz ŚREDNIA. Sformatować

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

OCENA SYTUACJI GOSPODARCZEJ UNII EUROPEJSKIEJ I POLSKI W OKRESIE GLOBALNEGO KRYZYSU EKONOMICZNEGO (rok 2008 oraz I półrocze 2009)

OCENA SYTUACJI GOSPODARCZEJ UNII EUROPEJSKIEJ I POLSKI W OKRESIE GLOBALNEGO KRYZYSU EKONOMICZNEGO (rok 2008 oraz I półrocze 2009) MINISTERSTWO GOSPODARKI OCENA SYTUACJI GOSPODARCZEJ UNII EUROPEJSKIEJ I POLSKI W OKRESIE GLOBALNEGO KRYZYSU EKONOMICZNEGO (rok 8 oraz I półrocze 9) DEPARTAMENT ANALIZ I PROGNOZ Warszawa, październik 9

Bardziej szczegółowo

Raport powstał w ramach projektu Małopolskie Obserwatorium Gospodarki.

Raport powstał w ramach projektu Małopolskie Obserwatorium Gospodarki. Raport powstał w ramach projektu Małopolskie Obserwatorium Gospodarki. Publikację przygotował: PBS Spółka z o.o. Małopolskie Obserwatorium Gospodarki Urząd Marszałkowski Województwa Małopolskiego Departament

Bardziej szczegółowo