ESTYMACJA. Przedział ufności dla średniej

Wielkość: px
Rozpocząć pokaz od strony:

Download "ESTYMACJA. Przedział ufności dla średniej"

Transkrypt

1 ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik ufności na poziomie 0,9 oszacować średnią absencję w pracy wśród ogółu pracowników. b) Jak zmieni się przedział ufności, jeżeli przyjmiemy współczynnik ufności na poziomie 0,95. Na podstawie wielokrotnych obserwacji ustalono, że rozkład czasu dojazdu do pracy osób zatrudnionych w sklepach stołecznych jest rozkładem normalnym. W celu oszacowania nieznanej średniej w tym rozkładzie wylosowano niezależnie 17 elementową próbę pracowników. Średni czas dojazdu w tej próbie wynosił 40 minut a odchylenie standardowe stanowiło połowę czasu średniego. Przyjmując współczynnik ufności 0,95, oszacować metodą przedziałową średni czas dojazdu do pracy ogółu pracowników. Przedział ufności dla wskaźnika struktury (procentu) Oszacować przedziałowo jaka część młodzieży szkół licealnych pali papierosy, jeżeli w próbie wybranej w losowaniu niezależnym, liczącej 1000 uczniów, 220 osób paliło papierosy. Przyjąć współczynnik ufności 0,9. Przedział ufności dla wariancji i odchylenia standardowego Wymiary 6 losowo wybranych detali, wyrażone w mm, kształtowały się następująco: 6,3; 5,9; 6,2; 5,8; 5,7; 6,1. Przyjmując założenie, że rozkład wymiarów ogółu produkowanych detali jest normalny, przy współczynniku ufności równym 0,9 oszacować nieznane odchylenie standardowe wymiarów ogółu produkowanych detali. Zadanie 5 Przy badaniu wysokości wynagrodzeń w przemyśle odzieżowym w 1993 r. wylosowano 200 pracowników. Na podstawie wyników próby otrzymano średnią płacę na poziomie 77,8 oraz odchylenie standardowe równe 15,5. Przyjmując współczynnik ufności na poziomie 0,95 oszacować nieznane odchylenie standardowe w rozkładzie wynagrodzeń ogółu pracowników przemysłu odzieżowego. Wyznaczanie niezbędnej liczby pomiarów do próby Zadanie 6 Jak liczną próbę należy wylosować z partii liczącej 2000 sztuk rur stalowych, aby oszacować przeciętną średnicę rur z błędem maksymalnym nie przekraczającym 1,2 mm, jeżeli z poprzednich ustaleń wynika, że wariancja średnicy rur wynosiła 2,8 2 mm? Przyjąć współczynnik ufności na poziomie 0,9. 1

2 Zadanie 7 W losowo wybranej próbie 100 studentów UMK 40 osób mieszkało na stałe w Toruniu. Przyjmując współczynnik ufności na poziomie 0,95: a) Oszacować przedziałowo udział studentów mieszkających na stałe poza Toruniem wśród ogółu studentów. b) Określić, o ile osób należy zwiększyć powyższą próbę, aby dwukrotnie wzrosła precyzja oszacowania. Estymacja punktowa Zadanie 8 Wylosowano 500 turystów polskich powracających do kraju z pobytów krótkookresowych i zbadano ich ze względu na wartość przewożonych legalnie towarów spożywczych (bez alkoholi). Okazało się, że średnia arytmetyczna wartość towarów wynosi 36,74 zł na jednego turystę, przy odchyleniu standardowym równym 5,26 zł. Oszacować metodą punktową wartość oczekiwaną. WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Test dla wartości średniej populacji Zbadano w 81 wylosowanych zakładach pewnej gałęzi przemysłowej koszty materiałowe przy produkcji pewnego wyrobu i otrzymano średnią 540 zł oraz odchylenie standardowe 150 zł. Na poziomie istotności równym 0,05 zweryfikować hipotezę, że średnie koszty materiałowe przy produkcji tego wyrobu wynoszą 600 zł. Na losowo dobranej próbie 10 samochodów marki Skoda przeprowadzono badanie zużycia benzyny po przejechaniu trasy 100 km. Okazało się, że średnie zużycie benzyny dla tej próby samochodów wynosiło 7,1l przy odchyleniu standardowym 0,9l. Jednocześnie wiadomo, że norma fabryczna zużycia benzyny po przebyciu trasy 100 km wynosi 7,7l. Czy można twierdzić, że rzeczywiste zużycie benzyny jest mniejsze niż wynosi norma fabryczna. Weryfikację przeprowadzić dla poziomu istotności α = 0, 05 oraz α = 0, 01. Czas montowania elementu w automatycznej pralce bębnowej jest zmienną losową o rozkładzie normalnym. Norma techniczna przewiduje na tę czynność 6 min, natomiast wśród jej wykonawców istnieje pogląd, że ten normatywny czas jest zbyt krótki. Należy sprawdzić to przypuszczenie przy założeniu, że odchylenie standardowe czasu montowania wynosi 1min 30s. Obliczono, że w grupie 25 robotników średni czas montowania wynosi 6 min 20s. Przyjąć poziom istotności 0,05. Test dla dwóch średnich Wylosowana do badań budżetów rodzinnych próba 120 rodzin zamieszkałych w Toruniu dała średnią 450zł miesięcznych wydatków na mieszkanie oraz odchylenie standardowe 120zł. 2

3 Natomiast losowa próba 100 rodzin zamieszkałych w Bydgoszczy dała średnią 420zł miesięcznych wydatków na mieszkanie oraz odchylenie standardowe 150zł. Przyjmując poziom istotności 0,05 zweryfikować hipotezę o jednakowych średnich wydatkach na mieszkanie w Toruniu i Bydgoszczy. Zadanie 5 W wyniku ewidencji dziennej sprzedaży dwóch rodzajów zegarków na rękę szwajcarskiej firmy w wybranych 20 dniach roboczych ustalono: zegarki tradycyjne x 1 = 37 s 1 ( x) = 7, 5 zegarki z dodatkowymi funkcjami x 2 = 30 s 2 ( x) = 8, 2 Czy na poziomie istotności 0,1 można przyjąć, że średnia dzienna sprzedaż zegarków tradycyjnych jest większa niż zegarków z dodatkowymi funkcjami. Test dla wskaźnika struktury (procentu) Zadanie 6 Sondaż opinii publicznej na temat frekwencji oczekiwanej na wyborach wykazał, że w losowo wybranej grupie 2500 osób 1600 zamierza uczestniczyć w głosowaniu. Czy na poziomie istotności równym 0,05 można przyjąć, że 60% ogółu osób zamierza wziąć udział w wyborach? Test dla dwóch wskaźników struktury Zadanie 7 Do produkcji wprowadzono tańszy surowiec. Pobrano próbę losową 200szt. wyrobów produkowanych z droższego surowca, wśród których było 180 szt. pierwszego gatunku. W wylosowanej próbie 300 szt. produkowanych z tańszego surowca wyrobów takich było 230 szt. Czy zmiana surowca wpłynęła na obniżenie się jakości produkcji? Przyjąć poziom istotności 0,05. Test dla wariancji populacji generalnej Zadanie 8 Średnie odchylenie od normy pracochłonności przy produkcji wyrobu pojedynczego robotnika powinno wynosić 7,9 min/wyrób. Wylosowano 20 robotników, których odchylenie standardowe pracochłonności wynosiło 8,4 min/wyrób. Przyjmując poziom istotności 0,01 zweryfikować hipotezę o równości faktycznego i zakładanego odchylenia standardowego. Test dla dwóch wariancji Zadanie 9 W celu porównania regularności uzyskiwanych wyników sportowych dwu oszczepników, wylosowano 20 wyników rzutu oszczepem zawodnika A i 16 wyników zawodnika B. Otrzymano dla zawodnika A odchylenie standardowe wynoszące 2,65m, a dla zawodnika B wynoszące 4,80m. Na poziomie istotności 0,05 sprawdzić hipotezę o większej regularności wyników zawodnika A. 3

4 Test zgodności NIEPARAMETRYCZNE TESTY ISTOTNOŚCI 2 χ W pewnym mieście wylosowano niezależnie 500 rodzin i zbadano miesięczne zużycie energii elektrycznej u każdej z nich. Otrzymano rozkład: Zużycie energii w kwh Liczba rodzin Na poziomie istotności 0,01 zweryfikować hipotezę, że rozkład zużycia energii elektrycznej przez te rodziny jest normalny. Ewidencja liczby awarii urządzeń technicznych w zakładzie produkcyjnym w ciągu kolejnych 160 dni roboczych dostarczyła następujących informacji: Liczba awarii Liczba dni Czy zakładając prawdopodobieństwo popełnienia błędu pierwszego rodzaju na poziomie 0,1 można uznać powyższy rozkład za zgodny z rozkładem Poissona z λ = 1, 4? Test zgodności λ - Kołmogorowa Poniższe zestawienie zawiera informację o łącznej liczbie punktów uzyskanych przez studentów studiów dziennych z czterech kolejnych prac kontrolnych ze statystyki: Liczba punktów poniżej i więcej Liczba studentów Korzystając z testu λ - Kołmogorowa, należy zweryfikować hipotezę, że powyższy rozkład jest zgodny z rozkładem normalnym o wartości oczekiwanej i odchyleniu standardowym równym odpowiednio 78 oraz 9 punktów. Test zgodności Kołmogorowa Smirnowa W zakładach produkujących wyrób M zostały wprowadzone zmiany w strukturze organizacyjnej. W celu stwierdzenia, czy reorganizacja spowodowała zmianę kosztów jednostkowych wytwarzania produktu M zbadano próbę 200 zakładów przed reorganizacją oraz 100 zakładów po reorganizacji i zbadano w nich koszty jednostkowe, otrzymując poniższe rozkłady empiryczne: Koszty w zł 2,5 3,5 3,5 4,5 4,5 5,5 5,5 6,5 6,5 7,5 7,5 8,5 8,5 9,5 Liczba zakł. przed reorg Liczba zakł. po reorg

5 Przyjmując poziom istotności 0,01 zweryfikować hipotezę, że rozkłady kosztów jednostkowych przed i po reorganizacji są identyczne. WNIOSKOWANIE STATYSTYCZNE W ANALIZIE KORELACJI I REGRESJI Przedział ufności dla współczynnika korelacji liniowej Pearsona (estymacja) Wylosowano 180 gospodarstw indywidualnych i na ich podstawie zbadano zależność między ilością stosowanych nawozów sztucznych a średnim zbiorem zbóż z jednego hektara. Współczynnik korelacji wynosił r = 0,8. Przy współczynniku ufności równym 0,9 wyznaczyć przedział ufności pokrywający nieznany współczynnik korelacji całej populacji generalnej. Testowanie istotności współczynnika korelacji liniowej Pearsona (weryfikacja) Jednostkowy koszt produkcji oraz wielkość produkcji pewnego dobra (w tys. sztuk) w konkurujących ze sobą pięciu firmach przedstawiono w zestawieniu: Wielkość produkcji Jednostkowy koszt produkcji Zbadać istotność współczynnika korelacji liniowej Pearsona Przedział ufności dla współczynnika regresji (estymacja) Jednostkowy koszt produkcji oraz wielkość produkcji pewnego dobra (w tys. sztuk) w konkurujących ze sobą pięciu firmach przedstawiono w zestawieniu: Wielkość produkcji Jednostkowy koszt produkcji Wyznaczyć liniowe funkcje regresji i oszacować metodą przedziałową współczynnik regresji (przyjąć współczynnik ufności 0,95). Testowanie istotności współczynnika regresji (weryfikacja) Jednostkowy koszt produkcji oraz wielkość produkcji pewnego dobra (w tys. sztuk) w konkurujących ze sobą pięciu firmach przedstawiono w zestawieniu: Wielkość produkcji Jednostkowy koszt produkcji Wyznaczyć liniowe funkcje regresji i zbadać istotność wpływu zmiennej X na zmienną Y, weryfikując hipotezę o braku zależności. 5

6 Testy nieparametryczne w analizie regresji Zadanie 5 Badając zależność między wielkością produkcji a kosztami całkowitymi produkcji pewnego wyrobu otrzymano w próbie następujące wyniki dla 10 pomiarów (x i - wielkość produkcji w setkach sztuk, y i - koszt całkowity w mln zł). x i 1 1, y i 1 2, , Oszacuj liniowy model regresji i zbadaj losowość reszt (jest to jeden z warunków, aby funkcja regresji II rodzaju była dobrą aproksymantą f. regresji I rodzaju). Zadanie 6 Badając zależność między wielkością produkcji a kosztami całkowitymi produkcji pewnego wyrobu otrzymano w próbie następujące wyniki dla 10 pomiarów (x i - wielkość produkcji w setkach sztuk, y i - koszt całkowity w mln zł). x i 1 1, y i 1 2, , Oszacuj liniowy model regresji i zweryfikuj hipotezę o liniowej postaci funkcji regresji. 6

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I. STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1 Statystyka opisowa Zad 1 Obliczyć średnią wydajność robotnika, jeżeli wiadomo że: a) pracował 40 minut z wydajnością 90 szt/h oraz 20 minut z wydajnością 120 szt/h, b) wyprodukował 30 detali z wydajnością

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część I Program szkolenia część I Wprowadzenie Podstawowe pojęcia statystyczne

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

STATYSTYKA STOSOWANA MAP1079

STATYSTYKA STOSOWANA MAP1079 STATYSTYKA STOSOWANA MAP1079 LISTY ZADAŃ opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1.J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Wytyczne do projektów

Wytyczne do projektów Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13 Wytyczne do projektów Prognozowanie i symulacje

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25%

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25% STATYSTYKA OPISOWA Zadanie. Wzrost [cm] pewnej grupy dziewcząt przedstawia się następująco: 50, 5, 5, 5, 52, 52, 52, 52, 53, 53, 53, 53,, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 57, 57, 57, 57, 58,

Bardziej szczegółowo

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1.

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1. Weryfikacja hipotez Każde badanie naukowe rozpoczyna się od sformułowania problemu badawczego oraz najbardziej prawdopodobnego (na gruncie wiedzy badającego) ogólnego rozwiązania, czyli hipotezy badawczej.

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu Statystyka w analizie i planowaniu eksperymentu Wprowadzenie Prowadzący zajęcia: dr Janusz Piechota Zakład Biofizyki Kierownik zajęć: dr Paweł Błażej Zakład Genomiki Na zajęciach przydają się: dobre chęci,

Bardziej szczegółowo

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015 Praktyczne aspekty doboru próby Dariusz Przybysz Warszawa, 2 czerwca 2015 Określenie populacji Przed przystąpieniem do badania, wybraniem sposobu doboru próby konieczne jest precyzyjne określenie populacji,

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Rachunkowość zarządcza. Zespół Katedry Rachunkowości Menedżerskiej SGH 1. Wykorzystanie rachunku kosztów zmiennych. Dr Marcin Pielaszek

Rachunkowość zarządcza. Zespół Katedry Rachunkowości Menedżerskiej SGH 1. Wykorzystanie rachunku kosztów zmiennych. Dr Marcin Pielaszek Wykorzystanie rachunku kosztów zmiennych 1. Zmienność kosztów w długim i krótkim okresie Rachunek kosztów zmiennych i analiza koszty rozmiary produkcji zysk 2. Podejmowanie decyzji w krótkim okresie 1.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW IV ROKU STUDIÓW

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW IV ROKU STUDIÓW PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW IV ROKU STUDIÓW 1. NAZWA PRZEDMIOTU : BIOSTATYSTYKA 2. NAZWA JEDNOSTKI (jednostek

Bardziej szczegółowo

1. Udział dochodów z działalności rolniczej w dochodach gospodarstw domowych z użytkownikiem gospodarstwa rolnego w 2002 r.

1. Udział dochodów z działalności rolniczej w dochodach gospodarstw domowych z użytkownikiem gospodarstwa rolnego w 2002 r. 1 UWAGI ANALITYCZNE 1. Udział dochodów z działalności rolniczej w dochodach gospodarstw domowych z użytkownikiem gospodarstwa rolnego w 2002 r. W maju 2002 r. w województwie łódzkim było 209,4 tys. gospodarstw

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami Jan Rusinek 50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami UWAGA! Ten tekst jest w trakcie przygotowania i sprawdzania. Może zawierać błędy. Jest sukcesywnie poprawiany

Bardziej szczegółowo

Zasady wykonania walidacji metody analitycznej

Zasady wykonania walidacji metody analitycznej Zasady wykonania walidacji metody analitycznej Walidacja metod badań zasady postępowania w LOTOS Lab 1. Metody badań stosowane w LOTOS Lab należą do następujących grup: 1.1. Metody zgodne z uznanymi normami

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Szkolenie Analiza przeżycia

Szkolenie Analiza przeżycia Analiza przeżycia program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Analiza przeżycia - program i cennik Analiza przeżycia Co obejmuje? Analiza przeżycia (Survival analysis)

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Na co Polacy wydają pieniądze?

Na co Polacy wydają pieniądze? 047/04 Na co Polacy wydają pieniądze? Warszawa, czerwiec 2004 r. Przeciętne miesięczne wydatki gospodarstwa domowego w Polsce wynoszą 1694 zł, a w przeliczeniu na osobę 568 zł. Najwięcej w gospodarstwach

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne IDZ DO PRZYK ADOWY ROZDZIA SPIS TRE CI KATALOG KSI EK KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne Autor: Andrzej Obecny ISBN: 83-7197-711-5 Format:

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych

Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Dorota Pekasiewicz Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Dorota

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

1. Projektowanie badania. 2. Dobór próby. 3. Dobór metody i budowa instrumentu. 4. Pomiar (badanie) 5. Redukcja danych. 6.

1. Projektowanie badania. 2. Dobór próby. 3. Dobór metody i budowa instrumentu. 4. Pomiar (badanie) 5. Redukcja danych. 6. 1. Projektowanie badania 2. Dobór próby 3. Dobór metody i budowa instrumentu badawczego 4. Pomiar (badanie) 5. Redukcja danych 6. Analiza danych 7. Przygotowanie raportu (prezentacja wyników) Określenie

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STTYSTYK MTMTYCZN 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. opulacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test 2 8.

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Badania efektywności systemu zarządzania jakością

Badania efektywności systemu zarządzania jakością Opracowanie to z łagodniejszym podsumowaniem ukazało się w Problemach jakości 8/ 2007 Jacek Mazurkiewicz Izabela Banaszak Magdalena Wierzbicka Badania efektywności systemu zarządzania jakością Aby w pełni

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicac Analiza dokładności ocen wartości średnic cec małyc firm W niniejszej pracy przedstawiono na odpowiednim materiale statystycznym praktyczny

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach. Statystyka procesów transportowych

Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach. Statystyka procesów transportowych Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach Statystyka procesów transportowych Katowice maj 2000 Wstęp 2 SPIS TREŚCI 2 WSTĘP 4 1. Zakres Statystyki Procesów Transportowych 13 1.1

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Systemy rachunku kosztów

Systemy rachunku kosztów Systemy rachunku kosztów Tradycyjny rachunek kalkulacyjny kosztów oparty na rozmiarach produkcji kalkulacja doliczeniowa (zleceniowa), doliczanie kosztów wydziałowych kalkulacja podziałowa (procesowa)

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA METODY PROBABILISTYCZNE I STATYSTYKA SYLLABUS Opracował: prof. nadzw. dr hab. inŝ. Marek Cieciura Rozkład jazdy w zaświaty zawsze jest niedogodny - Jan Czarny, polski poeta, fraszkopisarz, prozaik, satyryk,

Bardziej szczegółowo

Outsourcing - Żywienie

Outsourcing - Żywienie Outsourcing - Żywienie Koszt żywienia 2011 953 054,64 zł 2012 836 345,75 zł I poł. 2013 Razem 437 594,92 zł 2 226 995,31 zł W zakresie żywienia pacjentów, SP ZOZ w Kędzierzynie-Koźlu również korzysta z

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo