STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
|
|
- Iwona Głowacka
- 5 lat temu
- Przeglądów:
Transkrypt
1 STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów
2 WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów Błąd standardowy Przedział ufności
3 WNIOSKOWANIE STATYSTYCZNE TESTOWANIE HIPOTEZ ESTYMACJA PARAMETRÓW
4 WNIOSKOWANIE STATYSTYCZNE Omułek słodkowodny Hyridella menziesi n= mg/g 1. Na oko różnica 2.UWAGA!!! 3.Błąd próbkowania 4.Estymatory różne 5.Parametry różne/równe 6.??? 7.Wnioskowanie statystyczne n= mg/g
5 WNIOSKOWANIE STATYSTYCZNE PRÓBA DANYCH WNIOSKOWANIE STATYSTYCZNE statistical inference POPULACJA
6 TESTOWANIE HIPOTEZ H 0 - hipoteza zerowa H 1 - hipoteza alternatywna H 0 + H 1 = 1 H 1 jest odwrotnością H 0 Testowanie hipotez dotyczy przyjęcia lub odrzucenia H 0
7 TESTOWANIE HIPOTEZ np. 1 PARAMETR H 0 : koncentracja lipidów w gr. doświadczalnej wynosi 25.0 mg/g H 1 : koncentracja lipidów w gr. doświadczalnej jest inna H 1 H 0 H 1 H 0 : k = 25.0 H 1 : k 25.0 H 0 : koncentracja lipidów w gr. doświadczalnej przekracza 25.0 mg/g H 1 : koncentracja lipidów w gr. doś. jest mniejsza lub równa 25.0 mg/g H 1 H 0 H 0 : k > 25.0 H 1 : k 25.0
8 TESTOWANIE HIPOTEZ np. 2 PARAMETRY H 0 : koncentracja lipidów w gr. doświadczalnej jest równa koncentracji w gr. kontrolnej H 1 : koncentracja lipidów w gr. doświadczalnej i kontrolnej są różne H 0 : koncentracja lipidów w gr. doświadczalnej jest wyższa niż w gr. kontrolnej H 1 : koncentracja lipidów w gr. doświadczalnej jest niższa lub równa gr. kontrolnej H 0 : k1 = k2 H 1 : k1 k2 H 0 : k1 > k2 H 1 : k1 k2 H 1 H 1 k2 H 0 k2 H 1 H 0 k1 k1
9 BŁĘDY ZWIĄZANE Z TESTOWANIEM HIPOTEZ BŁĘDY PRAWDZIWA HIPOTEZA H 0 H 1 PRZYJĘTA HIPOTEZA H 0 H 1 - błąd I-go rodzaju (type I error) - błąd II-go rodzaju (type II error)
10 BŁĘDY ZWIĄZANE Z TESTOWANIEM HIPOTEZ BŁĘDY PRAWDZIWA HIPOTEZA H 0 H 1 BŁĄD I-go RODZAJU PRZYJĘTA HIPOTEZA H 0 H 1 prawdopodobieństwo błędnego odrzucenie prawdziwej H 0 poziom istotności testu (significance level) P wartość (P value) np. jeżeli =0.05 to na 100 testów w 5 niepotrzebnie odrzucono H 0 kontrolujemy w czasie testowania
11 BŁĘDY ZWIĄZANE Z TESTOWANIEM HIPOTEZ BŁĘDY PRAWDZIWA HIPOTEZA H 0 H 1 BŁĄD II-go RODZAJU PRZYJĘTA HIPOTEZA H 0 H 1 prawdopodobieństwo odrzucenie prawdziwej H 1 1-β moc testu (power) Copyright 2012 Joanna Szyda
12 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności 3. Wybór i obliczenie wartości testu statystycznego 4. Wyznaczenie obszaru krytycznego 5. Decyzja dotycząca przyjęcia lub odrzucenia H0; sformułowanie wniosków
13 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 H 0 : u = 23 H 1 : u 30 H 1 : u < 30 H 1 : u > 30
14 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności =0.1 lub =0.05 lub =0.01
15 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności 3. Wybór i obliczenie wartości testu statystycznego Rozkład normalny Znany parametr
16 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności 3. Wybór i obliczenie wartości testu statystycznego 4. Wyznaczenie obszaru krytycznego H 1 : u 30 H 2 : u < 30 H 3 : u > 30
17 ETAPY TESTOWANA HIPOTEZ METODA TRADYCYJNA 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności 3. Wybór i obliczenie wartości testu statystycznego 4. Wyznaczenie obszaru krytycznego 5. Decyzja dotycząca przyjęcia lub odrzucenia H0; sformułowanie wniosków Czy wartość statystyki testowej znajduje się w przedziale krytycznym? Tak odrzucamy H 0 Nie nie mamy podstaw do odrzucenia H 0
18 ETAPY TESTOWANA HIPOTEZ - PRZYKŁAD Baterie alkaliczne do samochodu zabawki zostały zaprojektowane tak, aby działały przez 30 godzin, ze znanym odchyleniem standardowym równym 2,95. Klienci narzekali jednak, iż baterie działają krócej niż 30 godzin. Losowo, wybrano próbę 38 baterii. Ich średnia długość działania wynosiła 29,3 godziny. Czy czas działania baterii jest znacząco niższy niż 30 godzin? Rozważ problem dla poziomu istotności =0.05
19 ETAPY TESTOWANA HIPOTEZ 1. Określenie hipotez H 0 i H 1 H 0 : u = 30 H 1 : u < Ustalenie poziomu istotności = Wybór i obliczenie wartości testu statystycznego Z = 29,3 30 2,95 4. Wyznaczenie obszaru krytycznego C: (-, -1,64] 38 = -1,46 STATYSTYKA Z 5. Decyzja dotycząca przyjęcia lub odrzucenia H0; -1,64 sformułowanie wniosków Wartość statystyki testowej nie mieści się w przedziale krytycznym. Nie mamy podstaw do odrzucenia H 0 WNIOSEK?
20 ETAPY TESTOWANA HIPOTEZ P-value 1. Określenie hipotez H 0 i H 1 2. Ustalenie poziomu istotności 3. Wybór i obliczenie wartości testu statystycznego 4. Wyznaczenie P value ( T ) i porównanie z ustalonym poziomem istotności 5. Decyzja dotycząca przyjęcia lub odrzucenia H0 im niższa wartość P tym większe przesłanki do odrzucenia H0 np. = 0.05 T = P = 0.02 H 0 H 1?? np. = 0.05 T = P = 0.21 H 0 H 1??
21 TESTOWANIE WIELOKROTNE 1 H 0 : k1 k2 / H 1 : k1>k2 MAX =0.05 t T H 0 /H 1 5% 2 3 H 0 : k1 k2 / H 1 : k1>k2 MAX =0.05 t T H 0 /H 1 5% H 0 : k1 k2 / H 1 : k1>k2 MAX =0.05 t T H 0 /H 1 5% 10 H 0 : k1 k2 / H 1 : k1>k2 MAX =0.05 t T H 0 /H 1 5% CAŁKOWITY BŁĄD Igo RODZAJU MAX 0.05*10 = 50%
22 TESTOWANIE WIELOKROTNE Jak temu zaradzić? KOREKTA BONFERRONIEGO testy niezależne od siebie 1 2 MAX* = MAX / N MAX* = 0.05 / 10 MAX* = MAX* = MAX / N MAX* = 0.05 / 10 MAX* = MAX* = MAX / N MAX* = 0.05 / 10 MAX* = CAŁKOWITY BŁĄD Igo RODZAJU MAX 0.005*10 = 5%
23 WNIOSKOWANIE STATYSTYCZNE TESTOWANIE HIPOTEZ ESTYMACJA PARAMETRÓW Estymacja punktowa Estymacja przedziałowa
24 WNIOSKOWANIE STATYSTYCZNE ESTYMACJA PARAMETRÓW n=30 średnia koncentracja lipidów 22.9 ± 0.7 mg/g
25 WNIOSKOWANIE STATYSTYCZNE ESTYMACJA PARAMETRÓW n=100 średnia długość ogona ryjówki 23 ± 15 mm
26 BŁĄD STANDARDOWY JAK DOKŁADNY JEST DANY ESTYMATOR??? Jaka jest średnia długość ogona w populacji ryjówek? Aby uzyskać dokładną wartość średniej badacz musiałby zmierzyć wszystkie ogony ryjówek. Z praktycznego punktu widzenia jest to niemożliwe i nieopłacalne. Badacz chciał estymować prawdziwą wartość średniej długości ogona w tej populacji na podstawie próby 100 ryjówek. Stwierdził, że średnia długość w jego próbie wyniósł 23 mm Czy jest to faktyczna średnia wartość długości ogona w całej populacji?
27 BŁĄD STANDARDOWY JAK DOKŁADNY JEST DANY ESTYMATOR??? Jaka jest średnia długość ogona w populacji ryjówek? Aby uzyskać dokładną wartość średniej badacz musiałby zmierzyć wszystkie ogony ryjówek. Z praktycznego punktu widzenia jest to niemożliwe i nieopłacalne. Badacz chciał estymować prawdziwą wartość średniej długości ogona w tej populacji na podstawie próby 100 ryjówek. Stwierdził, że średnia długość w jego próbie wyniósł 23 mm Czy jest to faktyczna średnia wartość długości ogona w całej populacji? Jest to wartość zbliżona do faktycznej wartości, ale najprawdopodobniej nie jest ona identyczna. Średnia z próby (z jednego badania) stanowi estymator (przybliżenie) wartości prawdziwej w populacji.
28 BŁĄD STANDARDOWY JAK DOKŁADNY JEST DANY ESTYMATOR??? Jaka jest średnia długość ogona w populacji ryjówek? Estymator średniej = 23 mm Jeżeli badacz przeprowadziłby wielokrotnie takie badanie, dla każdej z prób (dla każdego z badania) otrzymałby jakiś średni wynik. Za każdym razem ten wynik byłby "przybliżeniem" prawdziwej średniej wartości długości ogona. Błąd standardowy jest miarą zróżnicowania tych średnich z prób, z kolejnych badań, czyli na ile nasz estymowany (w populacji) średni wynik zmienia się w poszczególnych próbach
29 BŁĄD STANDARDOWY ŚREDNIEJ ARYTMETYCZNEJ Błąd standardowy estymatora średniej: odchylenie standardowe rozkładu estymatora średniej Jaki jest rozkład? Jak obliczyć? s Copyright 2010, Joanna Szyda
30 BŁĄD STANDARDOWY ŚREDNIEJ ARYTMETYCZNEJ Jaki rozkład ma estymator średniej? Dla dużych prób danych (N): rozkład estymatora średniej zbliża się do rozkładu Normalnego estymator średniej zbliża się do prawdziwej wartości parametru próby niezależnie od rozkładu obserwacji w próbie danych
31 BŁĄD STANDARDOWY ŚREDNIEJ ARYTMETYCZNEJ Błąd standardowy estymatora średniej (standard error): odchylenie standardowe rozkładu estymatora średniej Jaki jest rozkład? Jak obliczyć? s Copyright 2010, Joanna Szyda
32 BŁĄD STANDARDOWY ŚREDNIEJ ARYTMETYCZNEJ Jak obliczyć odchylenie standardowe rozkładu średniej (bez konieczności pobierania wielu prób danych)? S S N Odchylenie standardowe w próbie danych: i i1 S Liczebność próby danych N N 1 2 BŁĄD STANDARDOWY ŚREDNIEJ
33 Błąd standardowy estymatora prawdopodobieństwa N p p S p ˆ 1 ˆ ˆ Copyright Joanna Szyda BŁĄD STANDARDOWY INNYCH ESTYMATORÓW Błąd standardowy współczynnika regresji ˆ 1 N y y S i i i b
34 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Na podstawie błędu standardowego estymatora możemy określić przedziały ufności estymatora. Im większy błąd standardowy oraz przedział ufności tym estymator mniej dokładnie określa parametr populacji. Przedział ufności dla estymatora średniej: przedział w jakim z określonym prawdopodobieństwem znajduje się prawdziwa wartość parametru
35 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Przedział ufności dla estymatora średniej: przedział w jakim z określonym prawdopodobieństwem znajduje się prawdziwa wartość parametru min ma granice przedziału ufności
36 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Jak obliczyć granice przedziału ufności? 1. Wariancja próby znana lub próba bardzo liczna S min średnia - (błąd standardowy * wartość kwantyla z danego rozkładu) z z S ma średnia + (błąd standardowy * wartość kwantyla z danego rozkładu) 2. Wariancja próby nieznana = obliczana na podstawie obserwacji w próbie min t,n1 S ma t,n1 S
37 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Jak obliczyć granice przedziału ufności? Przedział ufności dla średniej 10 i odchyleniu standardowym 3, w próbie złożonej z 50 obserwacji - rozkład normalny, z założonym prawdopodobieństwem 95%. S min S N = 0,424 z S = 10 1,96 0,424 z= S9.16 ma S ma z = ,96 0,424 = Jesteśmy na 95% pewni, że średnia wartość wynosi od 9,17 i 10,83
38 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Jak obliczyć granice przedziału ufności? 1. Wariancja próby znana lub próba bardzo liczna min z S ma z S 2. Wariancja próby nieznana = obliczana na podstawie obserwacji w próbie min t,n1 S ma t,n1 S
39 PRZEDZIAŁ UFNOŚCI ŚREDNIEJ ARYTMETYCZNEJ Prawdopodobieństwo wystąpienia prawdziwej średniej w przedziale ufności, a długość przedziału 1. Przedział ufności 95% P Przedział ufności 99% P 0. 99
40 WNIOSKOWANIE STATYSTYCZNE Omułek słodkowodny Hyridella menziesi n= ± 0.9 mg/g [23.2, 26.8] n= ± 0.7 mg/g [ 21.5, 24.3 ]
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoWnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoStatystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Bardziej szczegółowoZad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoStatystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoStatystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Bardziej szczegółowoBłędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Bardziej szczegółowoWYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Bardziej szczegółowoKolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Bardziej szczegółowoIdea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Bardziej szczegółowoWnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Bardziej szczegółowoPobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Bardziej szczegółowo1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Bardziej szczegółowoHipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoWykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Bardziej szczegółowoLABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoStatystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Bardziej szczegółowoZadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Bardziej szczegółowo12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez
Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s
Bardziej szczegółowoWykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Bardziej szczegółowoTestowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Bardziej szczegółowoTestowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Bardziej szczegółowoHipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowo166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Bardziej szczegółowoWykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Bardziej szczegółowoSTATYSTYKA INDUKCYJNA. O sondażach i nie tylko
STATYSTYKA INDUKCYJNA O sondażach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed badaniami
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoTestowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoSIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Bardziej szczegółowoBADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Bardziej szczegółowoMatematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.
WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?
Bardziej szczegółowoWeryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Bardziej szczegółowoEstymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Bardziej szczegółowoStatystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
Bardziej szczegółowoTestowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Bardziej szczegółowoTestowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Bardziej szczegółowoTestowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Bardziej szczegółowoLABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
Bardziej szczegółowoZadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Bardziej szczegółowoStatystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Bardziej szczegółowoTestowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
Bardziej szczegółowoTESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Bardziej szczegółowoVII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoWeryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (estymacja punktowa, przedziałowa)
Bardziej szczegółowoW2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T
STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T WSTĘP Test t 1. Zakres stosowalności 2. Dla pojedynczej próby 3. Dla 2 niezależnych prób 4. Dla 2 sparowanych prób ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoVI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoWeryfikacja hipotez statystycznych testy dla dwóch zbiorowości
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoLABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Bardziej szczegółowoOszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoWeryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja
Bardziej szczegółowoZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Bardziej szczegółowoLABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoOBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Bardziej szczegółowoUwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Bardziej szczegółowoEstymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Bardziej szczegółowoRÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Bardziej szczegółowoTESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Bardziej szczegółowoWstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów
Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4
Bardziej szczegółowoLABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Bardziej szczegółowoSTATYSTYKA INDUKCYJNA. O sondaŝach ach i nie tylko
STATYSTYKA INDUKCYJNA O sondaŝach ach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników w z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed
Bardziej szczegółowo