Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego"

Transkrypt

1 Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy (STM), mikroskop sił atomowych (AFM).

2 Historia mikroskopii mikroskop optyczny (~1700) TEM (1932) SEM (1942) STM (1982) AFM (1986) TEM transmission electron microscope; SEM scanning electron microscope; STM scanning tunneling microscope; AFM atomic force microscope.

3 Ewolucja rozdzielczości mikroskopów CTEM conventional transmission electron microscopy; STEM scanning transmission electron microscopy; SEM scanning electron microscopy.

4 Układ optyczny mikroskopu transmisyjnego i odbiciowego

5 Głębia ostrości A apertura d h α płaszczyzna optymalnej ostrości Głębia ostrości jest to odległość od płaszczyzny optymalnej ostrości w obrębie której rozmycie ostrości jest mniejsze od średnicy plamki elektronowej. Głębia pola określa zakres połoŝeń przedmiotu, w obrębie których nie jesteśmy w stanie stwierdzić zmian w ostrości obrazu.

6 Mikroskopia transmisyjna Maksymalna zdolność rozdzielcza optycznych mikroskopów transmisyjnych nie przekracza 275 nm. W mikroskopii elektronowej osiągamy zdolności rozdzielcze poniŝej 1 nm. Długość fali elektronowej h/mυ moŝe być kontrolowana poprzez zmiany napięcia przyspieszającego. W technice TEM moŝemy uzyskiwać obrazy próbek z atomową rozdzielczością oraz określać ich struktury (dyfrakcja elektronowa).

7 Mikroskopia TEM

8 Działanie mikroskopu SEM Powiększenie mikroskopu = szerokość ekranu CRT/długość skanowania

9 Droga wiązki elektronowej w kolumnie mikroskopu SEM

10 Odległość robocza DuŜa odległość robocza powoduje zmniejszenie kąta rozbieŝności wiązki elektronowej przy jednoczesnym wzroście rozmiarów plamki elektronowej. Ze wzrostem odległości roboczej spada zdolność rozdzielcza mikroskopu, co jest związane przede wszystkim ze wzrostem rozmiarów plamki elektronowej. Z drugiej strony wzrasta równieŝ głębia pola, bowiem zmniejsza się kąt rozbieŝności wiązki.

11 Cewki skanujące Zadaniem cewek skanujących jest sterowanie wiązki elektronowej, tak by ta skanowała badaną powierzchnię. Dlatego stosuje się dwie pary cewek (skanowanie wzdłuŝ osi X oraz Y). Praca cewek jest zsynchronizowana z pracą monitora CRT. wiązka padająca cewki skanujące wzmacniacz detektor monitor powierzchnia preparatu zsynchronizowane skany

12 Oddziaływanie wiązki z preparatem Wiązka padająca Promieniowanie X (informacja o składzie) Elektrony rozpraszane wstecznie (liczba atomowa i informacja topologiczna) Katodoluminescencja (inforamacja elektryczna) Elektrony wtórne (informacja topograficzna) Elektrony Augera (inforamcja o składzie) Próbka Prąd preparatu (inforamcja elektryczna) W skutek bombardowania powierzchni preparatu następuje emisja fotonów i elektronów. Mikroskopy na ogół wyposaŝone są w układy detekcji elektronów wtórnych, elektronów rozproszonych wstecznie oraz promieniowania rentgenowskiego.

13 Emisja sygnału z objętości próbki

14 Podstawowe mody działania SEM Sygnał/mod Informacja Materiały Rozdzielczość Elektrony wtórne morfologia wszystkie 1 nm Elektrony rozpraszane wstecznie Promieniowanie rentgenowskie (EDS, WDS) Katodoluminescencja liczba atomowa wszystkie 0,1 0,5 µm* skład pierwiastkowy wszystkie (płaskie) ~ 1 µm przerwa wzbroniona, domieszki, czasy Ŝycia izolatory i półprzewodniki ~ 1 µm W większości mikroskopów moŝna badać próbki o rozmiarach cm. *rozdzielczość zaleŝy od napięcia przyspieszającego oraz liczy atomowej SE secondary electrons; BSE backscattering electrons.

15 Elektrony wtórne elektrony wtórne wiązka elektronów padających elektrony wtórne jądro Elektrony wtórne są wytwarzane wskutek oddziaływań pomiędzy wysokoenergetycznymi elektronami wiązki padającej oraz słabo związanymi elektronami z pasma przewodnictwa w metalach lub elektronami walencyjnymi w izolatorach i półprzewodnikach. Ze względu na duŝą róŝnicę energii niesionej przez elektrony wiązki padającej oraz energii elektronów w preparacie, tylko niewielka część energii kinetycznej jest przenoszona do elektronów wtórnych.

16 Rozpraszanie nieelastyczne Podczas rozpraszania nieelastycznego energia elektronów wiązki padającej jest przenoszona do elektronów atomów otoczenia. Wskutek tych procesów tylko niewielka część energii kinetycznej wysokoenergetycznych elektronów jest przekazywana elektronom wtórnym. Procesy rozpraszania obejmują wzbudzenia fononowe, wzbudzenia plazmonowe, wzbudzenia elektronów wtórnych, wytwarzanie promieniowania rentgenowskiego jak równieŝ jonizację wewnętrznych powłok atomowych. W kaŝdym procesie rozpraszania nieelastycznego następuje utrata części energii, współczynnik strat energii jest inny dla kaŝdego procesu.

17 Detekcja elektronów wtórnych Elektrony wtórne z preparatu uzyskują energię wskutek nieelastycznych zderzeń z elektronami wiązki. Energia elektronów emitowanych z próbki nie przekracza 50 ev. Powierzchnia przełomu metalu. Obraz powierzchni utworzony został za pomocą elektronów wtórnych.

18 Rozpraszanie elastyczne elektrony rozpraszane wstecznie kierunek wiązki elektronów elektron rozproszony wstecznie jądro Rozpraszanie elastyczne zachodzi pomiędzy ujemnymi elektronami i dodatnim jądrem (rozpraszanie Rutheforda). Jak sama nazwa wskazuje, w rozpraszaniu elastycznym nie następuje wymiana energii lecz pędu. Zatem w procesie tym zmianie ulega przede wszystkim kierunek prędkości padających elektronów. Elektrony są rozpraszane pod kątami od 0 do 180. Elektrony rozpraszane pod duŝymi kątami nazywane są elektronami rozpraszanymi wstecznie. Obraz stopu aluminium i miedzi wytworzony przez elektrony rozpraszane wstecznie. W jaśniejszych obszarach występuje aluminium, w ciemniejszych miedź.

19 Rozkład energii elektronów wtórnych oraz elektronów rozpraszanych wstecznie SE BSE N(E) straty na plazmonach ERE AE 0 50 ev 2 kev eu Energia elektronów

20 Detekcja elektronów wtórnych detektor Everhatta - Thornleya światłowód pole elektryczne siateczka V scyntylator pokryty warstwą Al (10 kv) fotokatoda dynody fotopowielacza Elektrony wtórne są przyspieszane do czoła detektora spolaryzowaną dodatnio napięciem V siateczkę. W kolejnej fazie są przyspieszane w kierunku scyntylatora wysokim napięciem ~ 10 kv. Scyntylator pokryty jest cienką warstwą Al (700 Å), która zapobiega ucieczce promieniowania fluorescencyjnego. Potencjał 10 kv jest wystarczający do tego, by elektrony wtórne przedostały się przez warstwę metalu i wywołały zjawisko scyntylacji. Fotony za pośrednictwem światłowodu są kierowane do fotopowielacza, który sygnałświetlny zamienia na impulsy elektryczne.

21 Detekcja elektronów rozpraszanych wstecznie elektrony rozpraszane wstecznie Si warstwa Au wytwarzanie par elektron-dziura złącze p-n PoniewaŜ elektrony rozpraszane wstecznie mają duŝo wyŝsze energie, nie mogą być zbierane tą samą metodą, co elektrony wtórne. Najczęściej uŝywanym detektorem BSE jest umieszczony nad próbką poniŝej soczewki obiektywowej detektor bariery powierzchniowej. Detektor bariery powierzchniowej jest skonstruowany na bazie półprzewodnika z zapełnionym pasmem walencyjnym i pustym pasmem przewodnictwa. Na skutek bombardowania przez BSE, elektrony w z pasma walencyjnego półprzewodnika są wzbudzane do pasma przewodnictwa. Po przyłoŝeniu napięcia moŝemy rejestrować prąd proporcjonalny do liczby elektronów wtórnych.

22 Detekcja elektronów detektor elektronów wtórnych detektor promieniowania X detektor elektronów rozpraszanych wstecznie Zastosowanie detektora SE pozwala na wytwarzanie obrazu topograficznego próbki o wysokiej rozdzielczości. Detektory BSE wykorzystuje się do określania składu próbki. KaŜdy pierwiastek wchodzący w skład próbki jest obrazowany przez odpowiedni poziom szarości. Detektory EDS (energy dispersive X-ray spectroscopy) pozwalają na wykonywanie map rozkładów pierwiastkowych powierzchni próbki.

23 PróŜnia Zarówno mikroskopy transmisyjne, jak równieŝ skaningowe pracują w próŝni. W przeciwnym razie wiązka elektronów nie byłaby stabilna. Gazy wchodziłyby w reakcję z działem elektronowym prowadząc do szybkiego jego zniszczenia. Nawet gdyby do tego nie doszło, wiązka elektronów powodowałaby jonizację gazów i przypadkowe wylądowania. Zakłócony byłby równieŝ bieg promieni przez soczewki elektronowe.

24 Napylanie próbek By uzyskać obraz SEM z próbek dielektrycznych niezbędne jest napylenie jej powierzchni cienką warstwą metaliczną. W ten sposób unika się gromadzenia na powierzchni próbki ładunków powierzchniowych, które utrudniają bądź uniemoŝliwiają obserwacje. Napylanie (najczęściej warstwą złota, rzadziej węgla) wykonuje się w warunkach wysokiej próŝni (10-3 Pa).

25 Technika ESEM environmental SEM wiązka pierwotna elektronów elektroda detektora - G + - G - G - G G G G G preparat - + G Technika ESEM umoŝliwia obserwacje mikroskopowe w warunkach niskiej próŝni. W technice tej elektrony wtórne są przyciągane przez dodatnio naładowaną elektrodę detektora. Kiedy elektrony przemieszczają się w środowisku gazowym, zderzenia pomiędzy elektronami i cząsteczkami gazu powodują jonizację molekuł gazu i uwalnianie kolejnych elektronów. Dodatnio naładowane jony gazu są przyciągane przez ujemnie spolaryzowany preparat. Wzrost liczby elektronów przyczynia się do wzmocnienia pierwotnego sygnału elektronów wtórnych.

26 Zaburzenia obrazów SEM aberracje chromatyczne; brak ostrości i kontrastu; niestabilność obrazu; zaszumienie obrazu; postrzępione krawędzie przedmiotów; obrazy przekontrastowane; obrazy zdeformowane.

27 Wpływ napięcia przyspieszającego wysoka rozdzielczość wysokie mało przejrzysta struktura powierzchni efekty krawędziowe efekty gromadzenia się ładunku powierzchniowego degradacja próbki Napięcie przyspieszające przejrzysta struktura powierzchni słaby efekt gromadzenia się ładunku powierzchniowego słaby efekt krawędziowy niskie mała rozdzielczość

28 Wpływ napięcia przyspieszającego mikrokryształki złota włókna papieru 5 kv 5 kv 25 kv 25 kv Lepszą ostrość i rozdzielczość obrazu uzyskuje się przy wyŝszych napięciach przyspieszających. Mikrostruktura preparatu jest lepiej uwidoczniona w przypadku płytkiej penetracji wiązki elektronowej (niŝsze napięcia).

29 Wpływ napięcia przyspieszającego toner, powiększenie x 30 kv 5 kv Przy zastosowaniu wysokiego napięcia przyspieszającego trudno jest uzyskać dobry kontrast na powierzchni preparatu. Ponadto mamy do czynienia ze zjawiskiem gromadzenia się ładunku powierzchniowego. Struktura powierzchniowa jest lepiej uwidoczniona przy zastosowaniu niŝszego napięcia przyspieszającego.

30 Prąd wiązki i średnica plamki próbkującej średnica wiązki prąd wiązki Im mniejsza średnica plamki próbkującej, tym większe powiększenia moŝemy osiągać oraz lepszą rozdzielczość obrazu. Z drugiej strony stosunek sygnału do szumu jest tym większy, im większy prąd wiązki próbkującej. Podczas obserwacji mikroskopowych naleŝy kaŝdorazowo dobierać prąd wiązki do warunków obserwacji (napięcia przyspieszającego, nachylenia preparatu i innych okoliczności).

31 Prąd wiązki i średnica plamki próbkującej Ceramika, 10 kv, powiększenie razy Im mniejszy prąd próbkowania, tym bardziej ostry obraz. JednakŜe odbywa sieto kosztem gładkości powierzchni.

32 Przykłady obrazów SEM pokrycie promu kosmicznego

33 Przykłady obrazów SEM owad

34 Skaningowa mikroskopia z rozdzielczością atomową STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy Mikroskopia siły magnetycznej

35 Historia Heinrich Rohner 1982 r. pierwszy stabilny obraz STM rok nagroda Nobla Gerd Binning

36 Bariera potencjału i tunelowanie E d Bariera potencjału E e V 0 0 for x > d/2, V ( x) = V0 for x < d/2. Równanie Schrödingera V 0 e d 2 ψ ( x) dx 2 2m h 2 ( V E) ψ ( x) = 0. 0 Elektron o masie m i energii E moŝe ze skończonym prawdopodobieństwem tunelować przez barierę o wysokości V 0 : P( E) 2kd e k = 2m( V 0 E) / h 2.

37 Bariera potencjału i tunelowanie V E V(x) E V 0 V(x) Istnieje skończone prawdopodobieństwo P(E), Ŝe elektron o energii E napotykając na swej drodze barierę potencjału jest w stanie ją przekroczyć. PoniewaŜ P( E) e 2kd zmieniając szerokość bariery d moŝemy zmieniać prąd tunelowania elektronów., Prąd tunelowania [na] 0 d xx część rzeczywista funkcji falowej ψ 2 duŝa ψ 2 mała Szerokość bariery [nm]

38 Prąd tunelowania metal 1 izolator prąd tunelowania metal 2 Prąd tunelowania zaleŝy od napięcia polaryzacji V, elektrony tunelowe mają wówczas energię ev. Liczba elektronów tunelujących zaleŝy od gęstości obsadzeń po kaŝdej stronie bariery. E F E F ev k x J ( f ( E) f ( E ev )) P( E ) + E z z de z przestrzeń k. k y k z

39 Tunelowanie W mikroskopie tunelowym tunelowanie zachodzi pomiędzy ostrzem a powierzchnią próbki. Prąd tunelowania ma wartość I V d T e A W d, gdzie V T jest napięciem tunelowania (około 0,5 V), d odległością próbki od ostrza (około 1 nm), W pracą wyjścia elektronu (około 5 ev), a stałą o wartości 10,25 ev -1/2 nm -1. Zmiana odległości próbka-ostrze bardo silnie wpływa na prąd tunelowania. Prąd tunelowania [na] Odległość próbka-ostrze [nm]

40 Zasada działania mikroskopu STM ruch ostrza ostrze prąd tunelowy V połoŝenie ostrza igły

41 Tryby pracy mikroskopu STM Tryb stałoprądowy Tryb stałej wysokości prąd tunelowy tor ostrza próbka Prąd tunelowy ma stałą wartość. PołoŜenie ostrza dostosowuje się do topografii próbki odzwierciedlając obraz próbki. W trybie stałoprądowym uzyskuje się lepszą rozdzielczość w kierunku prostopadłym do powierzchni próbki. Mała prędkość skanowania wzdłuŝ osi x-y moŝe spowodować dryft ostrza. Wykorzystuje się przede wszystkim do badania powierzchni, które nie są płaskie w skali atomowej. Zachowuje się stałą wysokość ostrza podczas skanowania, natomiast monitorowany jest prąd tunelowy. W trybie tym skanowanie przebiega bardzo szybko, dzięki czemu unika się zniekształceń obrazu. Jego wadą jest mniejsza rozdzielczość wzdłuŝ osi z. Metoda ta pozawala na badanie procesów dynamicznych.

42 Ostrze mikroskopu STM W ostrze NaOH Uzyskiwanie ostrza d 90 % prądu tunelowego 99 % prądu tunelowego próbka 90 % prądu tunelowego zawiera się w obszarze 1 atomu Promień krzywizny ostrza wynosi około 1 nm.

43 Skaner mikroskopu 0 +V V Rozmiary piezoelektryka zmieniamy zmieniając napięcie V. Odpowiednia geometria elementu piezoelektrycznego wraz z elektrodami pozwala na sterowanie ruchem ostrza w kierunku x, y, z.

44 Skaningowy mikroskop tunelowy napięcie sterujące piezoelektrykiem wzmacniacz prądu tunelowego system kontroli odległości i skanowania próbka napięcie tunelowe wyświetlanie i opracowywanie danych

45 Obrazy z mikroskopu STM Monokryształ niklu Obraz powierzchni miedzi Nanorurka węglowa Fala stojąca wywołana przez defekt w miedzi

46 Manipulowanie atomami przemieszczanie atomu podnoszenie atomu opuszczanie atomu Przepływ prądu tunelowego oznacza, Ŝe ostrze oddziałuje z próbką. Takie oddziaływanie moŝe być zarówno przyciągające, jak i odpychające.

47 Manipulowanie atomami - przykłady Przegroda z atomów Ŝelaza na powierzchni (111) Cu Stadia przygotowania zagrody

48 Manipulowanie atomami - przykłady Atomy ksenonu

49 STM zastosowania w biologii Obraz (236nm x 192 nm) nici DNA poddanych liofilizacji i pokrytych przewodzącą warstwą Pt-Ir-C.

50 Mikroskop siła tomowych AFM fotodetektor światło lasera dźwignia ruch dźwigni Ostrze jest umocowane na swobodnym końcu dźwigni o długości mm. Detektor mierzy ugięcie dźwigni podczas, skanowania próbki lub gdy próbka jest przesuwana pod ostrzem.

51 Mikroskop siła tomowych AFM Dźwignia jest odchylana na skutek sił działających pomiędzy ostrzem i próbką, które opisane są przez potencjał Lennarda Jonesa Φ( r) = σ 4ε r 12 6 σ r. Siły te na małych odległościach są odpychające (tryb pracy kontaktowy), na długich przyciągające (tryb pracy bezkontaktowy). Siły te występują we wszystkich materiałach, nie są ograniczone jedynie do metali i półprzewodników. Parametry ε oraz σ zaleŝą od składu chemicznego próbki, co pozwala na tworzenie map rozkładu chemicznego. Ta technika umoŝliwia obserwacje próbek biologicznych, równieŝ w środowisku ciekłym.

52 Mikroskop siła tomowych AFM tłumienie błony płynu 10 µm siły elektrostatyczne (odpychające i przyciągające) 0,1 1 µm siły napięcia powierzchniowego płynu (przyciągające) nm siły van der Waalsa (przyciągające), 1 Å siły coulombowskie (odpychające), 0,1-1 Å powierzchnia próbki

53 Tryby pracy mikroskopu sił atomowych Tryb kontaktowy duŝa rozdzielczość obrazów; duŝe siły adhezyjne spowodowane obecnością zanieczyszczeń na powierzchni; moŝliwość uszkodzenia próbki lub ostrza. Tryb bezkontaktowy mniejsza rozdzielczość obrazów. Tryb z przerywanym kontaktem (tapping mode) moŝliwość skanowania miękkich powierzchni; dobra zdolność rozdzielcza.

54 Obrazy w mikroskopie sił atomowych W mikroskopie AFM moŝna przeprowadzać obserwacje w powietrzu oraz w cieczach. Rozdzielczość mikroskopu wynosi 0,01 nm. Obraz DNA otrzymany w trybie Tapping Mode. Odległość między poszczególnymi helisami DNA wynosi około 4 nm.

55 Obrazy w mikroskopie sił atomowych Powierzchnia płyty kompaktowej, głębokość rowka wynosi 150 nm, szerokość około 2,5 µm, odległość pomiędzy rowkami 2,5 µm. Sieć neuronowa konika morskiego, 15 x 15 µm Główka nasienia, skok helisy 650 nm, średnica 450 nm, długość do 40 µm.

56 Mikroskop sił magnetycznych MFM ostrze pokryte warstwą magentyczną droga ostrza domeny magnetyczne płaska próbka magnetyczna Kontrast wynika ze zmiany pól rozproszonych wywołanych niejednorodnościami namagnesowania.

57 Obrazy z mikroskopu sił magnetycznych MFM Zapis bitów na nośniku magneto optycznym TbFeCo Twardy dysk

58 Przyszłość mikroskopii skaningowej z rozdzielczością atomową Konstrukcja udoskonalonych ostrzy mikroskopów będzie moŝliwa, jeŝeli lepiej zrozumiemy zaleŝności pomiędzy składem chemicznym, kształtem i rozmiarami ostrz. W chwili obecnej ostrza mają bardzo nieregularne zakończenia, dlatego istotne jest opanowanie technologii produkcji ostrzy o ściśle określonej geometrii. Ograniczone rozmiary ostrzy powodują zniekształcenia obrazu blisko sąsiadujących ze sobą atomów.

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład IX Mikroskopia optyczna i elektronowa Mikroskopia w konserwacji identyfikacja pigmentów, identyfikacja spoiw, badanie składu warstw malarskich, badanie

Bardziej szczegółowo

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Metodyka Badań Materiałów i Technik Malarskich

Metodyka Badań Materiałów i Technik Malarskich Metodyka Badań Materiałów i Technik Malarskich Wykład IV Echografia ultradźwiękowa Mikroskopia optyczna Mikroskopia elektronowa Badania mikroskrystaloskopowe Przekroje poprzeczne Widmo fal akustycznych

Bardziej szczegółowo

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy)

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) Spis treści 1 Historia 2 Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) 2.1 Skaningowy mikroskop tunelowy (STM od ang. Scanning Tunneling Microscope) 2.1.1 Uzyskiwanie obrazu metodą

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1.

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) I. Wstęp teoretyczny 1. Wprowadzenie Mikroskop sił atomowych AFM (ang. Atomic Force Microscope) jest jednym

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 11 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów 1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów

Bardziej szczegółowo

Mikroskopia skaningowa tunelowa i siłowa

Mikroskopia skaningowa tunelowa i siłowa Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

M2 Mikroskopia sił atomowych: badanie nanostruktur.

M2 Mikroskopia sił atomowych: badanie nanostruktur. M2 Mikroskopia sił atomowych: badanie nanostruktur. Celem ćwiczenia jest poznanie mikroskopii sił atomowych i zbadanie otrzymanych próbek. Wymagane zagadnienia Podstawy fizyczne mikroskopii sił atomowych:

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

WYJAŚNIENIE TREŚCI SIWZ

WYJAŚNIENIE TREŚCI SIWZ Warszawa, dnia 17.11.2015r. WYJAŚNIENIE TREŚCI SIWZ Dotyczy przetargu nieograniczonego na: Dostawa stołowego skaningowego mikroskopu elektronowego wraz z wyposażeniem dla Instytutu Technologii Materiałów

Bardziej szczegółowo

Mikroskopia Sił Atomowych (AFM)

Mikroskopia Sił Atomowych (AFM) Narzędzia dla nanotechnologii Mikroskopia Sił Atomowych (AFM) Tomasz Kruk* Wprowadzenie Wśród wielu urządzeń kojarzonych z nanotechnologią żadne nie jest tak dobrze rozpoznawalne i proste w założeniu swojej

Bardziej szczegółowo

Przewodniki, półprzewodniki i izolatory

Przewodniki, półprzewodniki i izolatory Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie

Bardziej szczegółowo

PRACOWNIA MIKROSKOPII

PRACOWNIA MIKROSKOPII 1. Kierownik Pracowni: Dr hab. Andrzej Wojtczak, prof. UMK 2. Wykonujący badania: Mgr Grzegorz Trykowski 3. Adres: Uniwersytet Mikołaja Kopernika Wydział Chemii Pracownia Analiz Instrumentalnych ul. Gagarina

Bardziej szczegółowo

Rys. 1. Schemat budowy elektronowego mikroskopu skaningowego (SEM).

Rys. 1. Schemat budowy elektronowego mikroskopu skaningowego (SEM). Ewa Teper PODSTAWY MIKROSKOPII SKANINGOWEJ Podstawowe zasady działania mikroskopu skaningowego. W mikroskopach skaningowych wiązka elektronów bombarduje próbkę, skanując jej powierzchnię linia po linii.

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład X Transmisyjna mikroskopia elektronowa (TEM) Dyfrakcja elektronowa (ED) Zalety mikroskopii elektronowej

Bardziej szczegółowo

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa ćw 5 Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa PRZEDMIOT: NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Opracowały: cz. teoretyczna: dr hab. Beata Grabowska

Bardziej szczegółowo

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM)

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Zasada działania Historia odkryć Zastosowane rozwiązania Przykłady zastosowania Bolesław AUGUSTYNIAK Zasada działania mikroskopu skanującego

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Mikroskop sił atomowych

Mikroskop sił atomowych Mikroskop sił atomowych AFM: jak to działa? Krzysztof Zieleniewski Proseminarium ZFCS, 5 listopada 2009 Plan seminarium Łyczek historii Możliwości mikroskopu Budowa mikroskopu na Pasteura Podstawowe mody

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY:

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY: . (Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11 Opis oferowanej dostawy OFERUJEMY: 1) Mikroskop AFM według pkt 1 a) załącznika nr 7 do SIWZ, model / producent..... Detekcja

Bardziej szczegółowo

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *)

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) Grażyna GILEWSKA PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) STRESZCZENIE W artykule przedstawiono stosowane metody obrazowania struktur

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur Prowadzący: Kontakt e-mail: Rafał Bożek rafal.bozek@fuw.edu.pl Celem ćwiczenia jest zapoznanie się z zasadami mikroskopii sił atomowych

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Cel ćwiczenia: Celem ćwiczenia jest wykorzystanie promieniowania

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ /12/6/6/2012

DOTYCZY: Sygn. akt SZ /12/6/6/2012 Warszawa dn. 2012-07-26 SZ-222-20/12/6/6/2012/ Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż i uruchomienie

Bardziej szczegółowo

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Instytut Materiałów Inżynierskich i Biomedycznych 1 Projekt MERFLENG... W 2012 roku

Bardziej szczegółowo

Techniki skaningowej mikroskopii elektronowej

Techniki skaningowej mikroskopii elektronowej mgr Ewa Starnawska Techniki skaningowej mikroskopii elektronowej SE morfologia BSE kompozycja i topografia BSEX - dyfrakcja EDX informacja o składzie chemicznym CL - katodoluminescencja Skaningowy mikroskop

Bardziej szczegółowo

Opis przedmiotu zamówienia

Opis przedmiotu zamówienia ZP/UR/169/2012 Zał. nr 1a do siwz Opis przedmiotu zamówienia A. Spektrometr ramanowski z mikroskopem optycznym: 1) Spektrometr ramanowski posiadający podwójny tor detekcyjny, wyposażony w chłodzony termoelektrycznie

Bardziej szczegółowo

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny

Bardziej szczegółowo

Podstawowe właściwości elektronu

Podstawowe właściwości elektronu Podstawowe właściwości elektronu Ładunek elektronu (e) (-)1.602 x 10-19 C 1 ev 1.602 x 10-19 J Masa spoczynkowa m o Energia kinetyczna (ładunek x różnica potencjałów) Stała Plancka Szybkość światła w próżni

Bardziej szczegółowo

Mikroskop sił atomowych (AFM)

Mikroskop sił atomowych (AFM) Mikroskop sił atomowych (AFM) 1. Wprowadzenie Mikroskop sił atomowych (ang. Atomic Force Microscope AFM) został skonstruowany w 1986 r. w laboratorium IBM w Zurichu (Binnig G., Quate C.F., Gerber C., Phys.

Bardziej szczegółowo

Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody

Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody 1. Wątek i TEMAT: B 31 Wyjście (wycieczka) do Pracowni Mikroskopii Skaningowej Nauk Biologicznych i Geologicznych.

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ Ewa Teper PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ WIELKOŚĆ I RODZAJE PRÓBEK Maksymalne wymiary próbki, którą można umieścić na stoliku mikroskopu skaningowego są następujące: Próbka powinna się

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1.

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Materiały Reaktorowe Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Uszkodzenie radiacyjne Uszkodzenie radiacyjne przekaz energii od cząstki inicjującej do materiału oraz rozkład jonów w ciele stałym

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

... Rozprawa doktorska. Detekcja sygnału i technika obrazowania w skaningowym mikroskopie elektronowym w zakresie niskiej próżni.

... Rozprawa doktorska. Detekcja sygnału i technika obrazowania w skaningowym mikroskopie elektronowym w zakresie niskiej próżni. Wydział Elektroniki Mikrosystemów i Fotoniki Rozprawa doktorska... Detekcja sygnału i technika obrazowania w skaningowym mikroskopie elektronowym w zakresie niskiej próżni Michał Krysztof Promotor prof.

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Strona 1 z 5 Wersja z dnia 9 grudnia 2010 roku

Strona 1 z 5 Wersja z dnia 9 grudnia 2010 roku Strona 1 z 5 Załącznik nr 7 WYMAGANIA DOTYCZĄCE STANOWISKA DO INTERPRETACJI (STANOWISKA OPI- SOWEGO) DLA RADIOLOGII CYFROWEJ I. Wymagania ogólne 1. W radiologii cyfrowej uŝywa się dwóch podstawowych rodzajów

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13 1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMII

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMII Autor: Jerzy Sarbiewski TEST PRZED MATURĄ 2007 PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego POZIOM ROZSZERZONY Czas pracy 150 minut 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii Ćw. 6/7 Wyznaczanie gęstości cieczy za pomocą wagi Mohra. Wyznaczanie gęstości ciał stałych metodą hydrostatyczną. 1. Gęstość ciała. 2. Ciśnienie hydrostatyczne. Prawo Pascala. 3. Prawo Archimedesa. 4.

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Badanie emiterów promieniowania optycznego

Badanie emiterów promieniowania optycznego LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 9 Badanie emiterów promieniowania optycznego Cel ćwiczenia: Zapoznanie studentów z podstawowymi charakterystykami emiterów promieniowania optycznego. Badane elementy:

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Spektroskopia Fluorescencyjna promieniowania X

Spektroskopia Fluorescencyjna promieniowania X Spektroskopia Fluorescencyjna promieniowania X Technika X-ray Energy Spectroscopy (XES) a) XES dla określenia składu substancji (jakie pierwiastki) b) XES dla ustalenia struktury elektronicznej (informacja

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo