1. Niskoenergetyczne elektrony wtórne SE (podstawowy sygnał w SEM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SEM i TEM)

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Niskoenergetyczne elektrony wtórne SE (podstawowy sygnał w SEM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SEM i TEM)"

Transkrypt

1 Rozpraszanie niesprężyste Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony wtórne S (podstawowy sygnał w SM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SM i TM) 3. Ciągłe promieniowanie rentgenowskie (Bremsstrahlung) granica Duane-Hunta 4. Katodoluminescencja emisja promieniowania elektromagnetycznego w zakresie: podczerwieni, światła widzialnego ultrafioletu.

2 Niskoenergetyczne elektrony wtórne S

3 lektrony wtórne S (Secondary lectrons) lektrony pasma walencyjnego i pasma przewodnictwa atomów próbki. Umownie są to elektrony o energiach od 0 do 50 ev (max. 2-3 ev) n n S B i i S B δ - współczynnik emisji S n S - liczba elektronów S i S - liczba elektronów S n B - liczba elektronów wiązki i B - prąd elektronów wiązki Współczynnik δ maleje, gdy energia wiązki rośnie 5 kev 20 kev 50 kev Al Au

4 i Beam = i BS + i S + i B + i abs gdzie: i Beam natężenie prądu wiązki i BS natężenie prądu elektronów wstecznie rozproszonych (I) i S natężenie prądu elektronów wtórnych (III) i B natężenie prądu tła (II) i abs natężenie prądu elektronów zaabsorbowanych

5

6

7 Wpływ topografii Working distance WD 3.2 mm HV = 1 kv Working distance WD 3.2 mm HV = 30 kv

8 Wpływ energii Working distance WD 9.7 mm HV 1 kv Working distance WD 9.7 mm HV 30 kv

9 Dobór napięcia przyspieszającego Polimer na siatce Cu Zakres detekcji S od 5 do 50 nm!

10 10 kev fekt degradacji polimeru Zmieniamy strukturę powierzchni stosując zbyt wysokie energie elektronów 900 ev

11 Maksymalna głębokość, z której rejestrowane są S to 5λ λ MFP ca 1 nm dla metali λ MFP ca 10 nm dla izolatorów 5 nm < λ < 50 nm 50 A < λ < 500A p exp Z p prawdopodobieństwo ucieczki elektronów wtórnych z próbki Z głębokość, z której generowane są elektrony wtórne (S) λ MFP dla S

12 20 kev δ Total η S 2 /S 1 C Al Cu Au δ Total = δ 1 + δ 2 η S 1 przeważa dla C i Al (rozpraszanie wsteczne jest małe) Dla materiałów o średniej Z (np. Cu): S 1 = S 2 S 2 przeważa dla pierwiastków ciężkich (rozpraszanie wsteczne jest duże) Zmienia się zdolność rozdzielcza sygnału wraz ze wzrostem liczby atomowej! Si

13 Możemy obserwować materiały nieprzewodzące przy niskich energiach wiązki elektronowej!!! ponieważ sumaryczna liczba elektronów opuszczających próbkę > od liczby elektronów wiązki padających na próbkę Podstawowy warunek prowadzenia eksperymentu w SM (C-SM Conventional Scanning lectron Microscopy): Próbka musi przewodzić prąd elektryczny!!! jeżeli nie cała próbka, to przynajmniej warstwa powierzchniowa musi być przewodząca (chyba że znajdziemy się w zakresie 1 2!)

14

15 Polystyrene balls High vacuum, 16 kx

16 Polystyrene balls High vacuum, 100 kx

17 Polystyrene balls Low vacuum, 16 kx

18 Polystyrene balls Low vacuum, 100 kx

19 Mirror effect 30 kev 3 kev

20 Dla wyższych energii wiązki elektronów (np. 20 kev) stosujemy pokrywanie izolatora w napylarce próżniowej cienką warstwą: C, Au (wyspy!), Pd, Pt, Ag a dla HR SM: Ir, Ta, W, i Cr Alternatywa: Variable Pressure SM (VP-SM) nvironmental SM (-SM)

21

22 η - rośnie silnie z liczba atomową Z!!! δ - zmiana niewielka!!! Średnia wartość δ = 0.1; dla od C δ = 0.05 do Au δ = 0.2 (dla 20 kev)

23 Pierre Auger i Niels Bohr

24 lektron KL 1 L 23 KL1L23 = K - L1 - L23 * L23 * energia wiązania w obecności dziury elektronowej na powłoce L 1 różna od L23

25 Wydajność fluorescencji K produkcja jonizacja fotonów K powłoki K dla C ω K ~ dla Ge ω K ~ 0.5 misja elektronów Augera przeważa dla niskich Z (niska energia wiązania)

26 Zakres energii elektronów Augera od kilkuset ev do kilku kev misja z kilku monowarstw atomowych idealna technika do analizy powierzchni: SAM Scanning Auger Microscopy

27

28

29 Promieniowanie rentgenowskie hc h kev nm gdzie: h stała Plancka ν częstotliwość c prędkość światła λ długość fali promieniowania rentgenowskiego (nm) energia fotonu (kev) W zależności co analizujemy: czy λ stosujemy odpowiednie techniki badawcze: DS i WDS Widmo energetyczne dla czystej miedzi zarejestrowanie spektrometrem DS Promieniowanie ciągłe (Bremsstrahlung) Promieniowanie charakterystyczne

30 Promieniowanie ciągłe (Bremsstrahlung) lektrony wiązki tracą energię poprzez straty prędkości hamowanie (nazwa: Bremsstrahlung Bremse niem.: Hamulec) w polu elektrycznym jąder atomowych (oddziaływanie coulombowskie). Wynikająca strata energii Δ emitowana jest w postaci fotonu o energii hν. Proces losowy, który generuje fotony w całym zakresie energetycznym: 0 o. Maksymalną energię prom. X obserwuje się przy całkowitej stracie energii elektronu o = hν Max energia prom. X = min. długość fali X, tzw. λ SWL Short Wave Limit granica Duane -Hunta (1916) granica krótkofalowa widma!!! (bardzo ważny parametr w VP-SM)

31 Symulacja widma ciągłego dla C dla energii wiązki elektronowej: 10 kev, 15 kev i 20 kev Dlaczego przy niskich energiach natężenie promieniowania ciągłego brehmsstrahlung rośnie? Im niższa energia elektronów tym łatwiej tracą one energię przy oddziaływaniu Coulombowskim!

32 Natężenie promieniowania ciągłego I cm dla każdej energii/długości fali (Kramer, 1923) I cm i p Z o i p prąd wiązki elektronowej Z średnia liczba atomowa o energia elektronów wiązki ν energia fotonu w danym miejscu widma Natężenie I cm rośnie z prądem wiązki elektronowej i p, energią wiązki elektronowej o oraz średnią liczbą atomową próbki Z

33 Zależność natężenia widma ciągłego od energii wiązki Zakres widma z wyciętym bremsstrahlung - Absorpcja na okienku spektrometru DS A = 10 kev B = 5 kev C = 3 kev

34 Wzrost natężenia I cm wraz z liczbą atomową Z związany jest z oddziaływaniem Coulombowskim jądra większy ładunek silniej oddziałuje na elektrony wiązki Natężenie brehmsstrahlung dla Al będzie bardzo małe w porównaniu z Bi (dla tych samych warunków pomiarowych identyczny prąd wiązki elektronów!)

35 Rozmycie szerokości linii spektralnej ca 70x rozdzielczość DS Widmo teoretyczne (Cu, 20 kev) Widmo eksperymentalne (Cu, 20 kev) Bremsstrahlung duży kłopot podczas analizy Obniżenie granicy wykrywalności (piki promieniowania charakterystycznego utopione w widmie ciągłym)

36 Promieniowanie charakterystyczne Teoria przewiduje, że nie wszystkie przejścia pomiędzy powłokami są dozwolone Np. dla Cu: Przejście elektronu z podpowłoki L 3 K prom. rtg. Kα 1 o energii Kα1 = K - L3 Przejście elektronu z podpowłoki L 2 K prom. rtg. Kα 2 o energii Kα2 = K - L2 Przejście elektronu z podpowłoki L 1 K brak emisji fotonu

37

38 Krytyczna energia jonizacji energia potrzebna do usunięcia elektronu z powłoki Critical xcitation nergy Reguła: Pracujemy z energią wiązki elektronowej 2-3 większą od krytycznej energii jonizacji dla danego pierwiastka!!! nergia charakterystycznego promieniowania jest zawsze < od krytycznej energii jonizacji dla danej powłoki, z której elektron został usunięty Np. dla Si: Kα = kev< c =1.839 kev

39

40 Prawo Moseley a (1914) opisuje związek między liczbą atomową Z a energią/długością fali emitowanego prom. rtg. A(Z (Z A C) C) 2 2 A, C stałe Np. C = 1.13 dla serii K C = 7 dla serii L Promieniowanie charakterystyczne ściśle zdefiniowania energia/długość fali dla wzbudzanego pierwiastka nergie powłok elektronowych zmieniają się w dyskretny sposób wraz z liczbą atomową

41 R Zakres penetracji elektronów w materiale tarczy Kanaya i Okayama (1972) K O A 0.89 Z A ciężar atomowy (g/mol), Z liczba atomowa ρ gęstość (g/cm 3 ) o energia elektronów wiązki (kev) 1.67 o m R KO k k stała materiałowa = A/Z0.89 o energia elektronów wiązki (kev) n Głębokość wzbudzenia promieniowania rentgenowskiego (ciągłego i charakterystycznego) Kanaya i Okayama (1972) n o m R KO k( m Głębokość wzbudzenia promieniowania rentgenowskiego (ciągłego i charakterystycznego) jest ZAWSZ MNIJSZA od głębokości penetracji elektronów!!! n o n c ) k stała materiałowa = A/Z 0.89 k f(a,z) c krytyczna energia jonizacji dla prom. charakterystycznego lub określona energia dla prom. ciągłego n

42 Głębokość wzbudzenia promieniowania rentgenowskiego (ciągłego i charakterystycznego) Anderson-Hasler (1966) R AH ( 1.68 o 1.68 c ) m Przykład: Cu, ρ Cu = 8.93 g/cm 3, 0 = 20 kev Symulacje R Cu L( R ( Cu K( R c 0keV c c ( kev) kev) m ) ) 1.09 m 0.81m

43

44 Przestrzenna zdolność rozdzielcza promieniowania rtg. w próbce litej (SM) Uwaga: Zmienia się kształt i objętość, z której generowane jest prom. rtg. Al, ρ ~ 3 g/cm 3 Cu, ρ ~ 10 g/cm 3 Przestrzenna zdolność rozdzielcza L x powstaje przez projekcję maksymalnej średnicy rozkładu prom. rtg. na powierzchnię próbki

45 Rozkład natężenia prom. rtg. na głębokości próbki litej (SM) Histogram wzbudzenia prom. rtg. z głębokością, tzw. funkcja φ(ρz). Maksimum produkcji prom. rtg. znajduje się pod powierzchnią próbki!

46 Symulacja Monte Carlo wzbudzenia linii Al Kα, 30 kev Zmienna liczba trajektorii: 1000 i 10050

47 Przestrzenna zdolność rozdzielcza promieniowania rtg. w cienkiej folii (TM) SM TM Cu, ρ ~ 10 g/cm 3 W TM przestrzenna zdolność rozdzielcza L x limitowana jest poszerzeniem wiązki elektronowej wewnątrz cienkiej folii

48 Natężenie emitowanego charakterystycznego promieniowania rentgenowskiego Przekrój czynny na jonizację wewnętrznych powłok elektronowych wg Bethego (1930) Q 6.51x10 20 n b s U s 2 c ln(c s U) n s liczba elektronów na danej powłoce np. n s =2 dla powłoki K b s, c s stałe dla danej powłoki c krytyczna energia jonizacji danej powłoki U overvoltage - krotność krytycznej energii jonizacji U o c!!! Prawdopodobieństwo jonizacji rośnie silnie od U = 1 i osiąga maksimum dla U 3 Np. dla c Si K = kev, max. jonizacja powłoki nastąpi dla o 5.5 kev

49 Natężenie emitowanego charakterystycznego promieniowania rentgenowskiego SM (Green 1963, Lifshin 1980) I 1 o c n c ipa ipa(u ) ch n x liczba fotonow/e - Q przekrój czynny N o liczba Avogadro ρ gęstość, t grubość folii!!! n x n ω wydajność fluorescencji rtg. TM QN a Z 4 o Z 4 1 A i p prąd wiązki a, n stałe U overvoltage!!! Krotność krytycznej energii jonizacji t

50 1 n c c 0 Z 1 cm I c I B P c v v v 0 Z n c c 0 cm I c I B P v v 0 Z b i cm I n c c 0 b i c I Gdy różnica pomiędzy energią o a krytyczną energią jonizacji c (wyrażenie: o - c ) rośnie to: Peak to Background ratio rośnie Granica wykrywalności (mass fraction) maleje (poprawia się!!!) 0 energia wiązki elektronowej c krytyczna energia jonizacji ν wybrana energia widma ciągłego I n natężenie promieniowania charakterystycznego I ν natężenie promieniowania ciągłego i B - prąd wiązki elektronowej

51 Katodoluminescencja emisja fotonów w zakresie światła widzialnego i ultrafioletu A: pasmo przewodnictwa puste, pasmo walencyjne zapełnione B: elektron w paśmie przewodnictwa, dziura w paśmie walencyjnym występuje w: izolatorach, półprzewodnikach C: rekombinacja i anihilacja pary elektron- dziura emisja fotonu hν = GAP Ponieważ GAP jest ściśle określona, to emitowane promieniowanie ma ściśle określoną długość fali (energię) charakterystyczną dla danego pierwiastka GAP = 2.4 ev (CdS) GAP = 1.1 ev (Si)

52 Jeżeli nie zrobimy nic - nastąpi rekombinacja elektronów z dziurami emisja promieniowania Jeżeli przyłożymy potencjał do próbki - rozdzielimy elektrony i dziury. Pikoamperomierzem mierzymy sygnał w próbce próbka działa jako swoisty detektor! Mierzony prąd w próbce to: lectron Beam Induced Current - BIC Jeżeli będziemy go monitorować podczas skanowania wiązką po powierzchni próbki Charge-Collection Microscopy or CCM Obraz BIC krzemu z baterii słonecznej ciemne miejsca to centra rekombinacji

53 Diagram of inelastic excitations, X-ray, photon and Auger emissions with respect to different energy levels.

Rozpraszanie nieelastyczne

Rozpraszanie nieelastyczne Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 6 Promieniowanie. Produkcja i oddziaływanie. Potencjały jonizacyjne 3 Podpowłoki Tab. Oznaczenia literowe podpowłok l 0 1 3 4 5 Oznaczenie

Bardziej szczegółowo

Spektroskopia Fluorescencyjna promieniowania X

Spektroskopia Fluorescencyjna promieniowania X Spektroskopia Fluorescencyjna promieniowania X Technika X-ray Energy Spectroscopy (XES) a) XES dla określenia składu substancji (jakie pierwiastki) b) XES dla ustalenia struktury elektronicznej (informacja

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów 1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów

Bardziej szczegółowo

Zaawansowane techniki badawcze w skaningowym mikroskopie elektronowym

Zaawansowane techniki badawcze w skaningowym mikroskopie elektronowym Zaawansowane techniki badawcze w skaningowym mikroskopie elektronowym Marek Faryna Instytut Metalurgii i Inżynierii Materiałowej Polska Akademia Nauk Kraków, ul. Reymonta 25 nmfaryna@imim-pan.krakow.pl

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Spektroskopia elektronów Augera AES

Spektroskopia elektronów Augera AES Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Analiza składu chemicznego powierzchni

Analiza składu chemicznego powierzchni Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Elektronowa mikroskopia skaningowa ze zmienną próżnią

Elektronowa mikroskopia skaningowa ze zmienną próżnią Elektronowa mikroskopia skaningowa ze zmienną próżnią Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy Debbie Stokes, John Wiley &Sons, 2008 LV-SEM Low Vacuum Scanning

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

SPEKTROSKOPIA RENTGENOWSKA

SPEKTROSKOPIA RENTGENOWSKA Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Wczesne modele atomu

Wczesne modele atomu Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Podstawy fizyczne absorpcji rentgenowskiej

Podstawy fizyczne absorpcji rentgenowskiej Podstawy fizyczne absorpcji rentgenowskiej Anna Wolska IF PAN Warszawa 2006 http://www-als.lbl.gov/als/quickguide/vugraph.html Promieniowanie rentgenowskie - promieniowanie elekromagnetyczne w zakresie

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Elektronowa mikroskopia skaningowa ze zmienną próżnią

Elektronowa mikroskopia skaningowa ze zmienną próżnią Elektronowa mikroskopia skaningowa ze zmienną próżnią Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy Debbie Stokes, John Wiley &Sons, 2008 LV-SEM Low Vacuum Scanning

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Absorpcja promieni rentgenowskich 2 godz.

Absorpcja promieni rentgenowskich 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Badanie próbek środowiskowych

Badanie próbek środowiskowych J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X IM-20 Jakościowa i ilościowa analiza składu materiałów za pomocą XRF XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego

Bardziej szczegółowo

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009 Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

SPEKTROSKOPIA FOTOELEKTRONÓW

SPEKTROSKOPIA FOTOELEKTRONÓW SPEKTROSKOPIA FOTOELEKTRONÓW Zjawisko fotoelektryczne światło elektrony = prąd Hertz (1887 r.) zauważył, że gdy światło padało na płytkę metalową umieszczoną w próżni następowała emisja elektronów a ponadto

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu Zakres wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym

Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Oskar Gawlik, Jacek Grela 24 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie licznika

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 9 5 grudnia 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Spektroskopia elektronów Augera (AES) Tekst

Spektroskopia elektronów Augera (AES) Tekst Spektroskopia elektronów Augera (AES) Tekst Slad 2 plan prezntacji 1. Podstawy fizyczne 2. Charakterystyka próbek i problemu badawczego 3. Opis przyrządów pomiarowych/ detekcyjnych 4. Wynik metody 5. Zalety

Bardziej szczegółowo