Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów"

Transkrypt

1 1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów za pomocą skaningowego mikroskopu elektronowego (SEM) z przystawką do mikroanalizy rentgenowskiej (EDS). Przedmiotem ćwiczenia jest również zapoznanie się ze zjawiskami fizycznymi będącymi podstawą budowy i zasady działania skaningowego mikroskopu elektronowego, stosowana metodyka badań, preparatyka oraz interpretacja wyników. Wprowadzenie Nasze oko jest w stanie rozróżnić dwa punkty leżące od siebie nie bliżej niż 0,2 mm. Odległość ta jest zdolnością rozdzielczą oka ludzkiego i dla mniejszych odległości punkty "zlewają" się w jedną plamkę. Aby je rozróżnić potrzebna jest nam lupa (soczewka) lub inny układ optyczny (mikroskop), gdzie wielkość naszego detalu będzie równa 0,2 mm/p (P - powiększenie). W mikroskopii optycznej Istnieje jednak ograniczenie związane z długością fali światła. Minimalna odległość między dwoma punktami rozróżnialnymi przez falę określona jest wzorem Abby'ego: = 0,61 sin = 0,61 λ długość fali, n współczynnik załamania światła, α połowa kąta rozwarcia stożka światła przechodzącego przez obiektyw, Iloczyn n sin α nazywany jest aperturą numeryczną A. Im mniejsza długość fali, a większy współczynnik załamania światła i kąt rozwarcia obiektywu, tym lepsza zdolność rozdzielcza. Najkrótsza dł. fali światła widzialnego to ok. 380 nm, największe n = 1,515 dla olejku cedrowego, największy kąt rozwarcia stożka świetlanego osiąga ok. 75, a więc sin α 0,967 i A wynosi ok. 1,47. Wynika z tego, że najlepsza zdolność rozdzielcza mikroskopu optycznego wynosić będzie ok. 250 nm (w rzeczywistości jest gorsza i wynosi ok. 1µm) przy powiększeniu ok razy.

2 2 Dla większych powiększeń a co za tym idzie lepszej zdolności rozdzielczej konieczne jest zastąpienie światła strumieniem elektronów, dla których fala ma znacznie mniejszą długość. Wykorzystanie falowych własności elektronów, postulowanych przez De Brogliea, stało się fundamentem do skonstruowania mikroskopu elektronowego. Elektronom przyspieszonym w polu o potencjale U można przypisać długość fali: = h λ - długość fali h - stała Plancka p - pęd elektronu Dla elektronów poruszających się w polu elektrostatycznym o różnicy potencjałów U spełniona jest relacja: U [V] napięcie = 1,225 Tak wiec przy najczęściej stosowanych napięciach od 1 do 30 kv długość fali jest ponad razy mniejsza niż długość fali światła, co nawet dla mniejszych kątów rozwarcia promieni stosowanych w mikroskopach elektronowych daje zdolność rozdzielczą na poziomie nanometrów, czyli zdecydowanie lepszą niż w mikroskopach optycznych. Zasada działania Skaningowego Mikroskopu Elektronowego (SEM) Obraz widziany w skaningowym mikroskopie elektronowym nie jest obrazem rzeczywistym lecz powstaje w wyniku szeregu oddziaływań elektronów z powierzchnią badanego preparatu. Mikroskop skaningowy składa się z: działa elektronowego (katoda, cylinder Wehnelta, anoda), będącego źródłem wytwarzania elektronów pierwotnych, kolumny, w której następuję przyspieszanie i ogniskowanie wiązki elektronów, komory próbki, gdzie następuje oddziaływanie elektronów wiązki z próbką, zestawu detektorów odbierających różne sygnały emitowane przez próbkę, systemu przetwarzania sygnałów na obraz.

3 3 Do utworzenia wiązki elektronów potrzebne jest źródło (katoda - włókno wolframowe), gdzie wytwarzane są elektrony oraz pole, w którym następuje ich przyspieszenie. Napięcie przyspieszające powstaje w wyniku różnicy potencjałów miedzy katodą a anodą, która przyciąga elektrony. Wiązka elektronów zostaje przyspieszona w kolumnie mikroskopu, w kierunku próbki, z energią od kilkuset do kilkudziesięciu tysięcy elektronowoltów (do 30kV). Elektrony wydostające się z działa elektronowego tworzą wiązkę rozbieżną. Wiązka ta zyskuje zbieżność i zostaje zogniskowana przez zestaw soczewek magnetycznych i apertur w kolumnie. Rysunek 1. Budowa skaningowego mikroskopu elektronowego. Najbliżej próbki znajduje się soczewka nazywana obiektywem ogniskująca wiązkę w możliwie małą plamkę (spot) na powierzchni próbki. W kolumnie mikroskopu znajduje się również zestaw cewek elektromagnetycznych, których zadaniem jest odchylanie wiązki w osi X i Y w taki sposób, że wiązka elektronów pierwotnych skanuje pewien obszar próbki "punkt po punkcie" linia po linii". Stąd wywodzi się nazwa Skaningowa Mikroskopia Elektronowa. W każdym punkcie analizowanego obszaru wiązka elektronów pierwotnych oddziaływaje z atomami badanego preparatu powodując emisję energii pod różnymi postaciami (Rysunek 2): elektronów odbitych (SE), elektronów wtórnych lub inaczej nazywanych wstecznie rozproszonych (BSE), elektronów Augera, promieniowania rentgenowskiego, promieniowania fluorescyjnego.

4 4 Komora próbki jest wyposażona w ruchomy stolik umożliwiający przesuwanie próbki w trzech prostopadłych kierunkach, jej obrót wokół osi pionowej i odchylanie od pionu. Specjalne drzwiczki pozwalają na umieszczanie próbki w komorze. Wewnątrz komory zainstalowane są detektory zbierające sygnały emitowane z próbki, które dalej przesyłane są na monitor. Ponieważ wiązka elektronów przemiata pewien obszar próbki, to na monitorze powstający obraz jest punktowym odwzorowaniem badanej powierzchni. Rysunek 2. Rodzaje sygnałów generowane podczas bombardowania powierzchni próbki wiązką elektronów. Elektrony wtórne (SE) ang. secondary electrons W wyniku zderzeń niesprężystych elektronów pierwotnych z atomami próbki następuje wybijanie elektronów wtórnych z orbitali atomowych. Elektrony wtórne stanowią 90 % wszystkich elektronów wybijanych z próbki. Mają one niską energię 50 ev i są wybijane z przypowierzchniowej warstwy o grubości do ok nm. Z tego powodu powstający obraz ma najlepszą zdolność rozdzielczą równą w przybliżeniu średnicy wiązki elektronów pierwotnych padających na badaną powierzchnię. Liczba elektronów wtórnych emitowanych z próbki silnie zależna jest od kąta padania wiązki pierwotnej do powierzchni próbki. Tak więc kontrast obrazu pochodzącego z elektronów wtórnych spowodowany jest gównie topografią próbki.

5 5 Rysunek 3. Obszary emisji poszczególnych sygnałów z objętości próbki. Elektrony odbite wstecznie rozproszone (BSE) ang. backscattered electrons Są to elektrony odbite od atomów próbki wskutek zderzeń sprężystych z jądrami atomowymi, mające energie prawie identyczną z energią elektronów pierwotnych. Elektrony odbite emitowane są z większej głębokości próbki i znacznie większej średnicy niż wiązka pierwotna stanowiąc ok. 3% wszystkich elektronów emitowanych. Obraz pochodzący od elektronów odbitych ma gorszą zdolność rozdzielczą niż elektronów wtórnych a kontrast zależy od liczby atomowej pierwiastków, tzn. wraz ze zwiększaniem się liczby atomowej pierwiastka, liczba elektronów ulegających wstecznemu rozproszeniu rośnie. (SE) (BSE) Rysunek 4. Obrazy próbki uzyskane z elektronów wtórnych (SE) - lewy i z elektronów odbitych (BSE) - prawy.

6 6 Charakterystyczne promieniowanie rentgenowskie Z jeszcze większej objętości i głębokości pochodzi emisja promieniowania rentgenowskiego charakterystycznego i ciągłego. Widmo ciągłe pochodzi od hamowania i rozpraszania elektronów w polu elektrostatycznym jąder atomowych i nie dostarcza żadnych informacji. Źródłem wielu informacji jest natomiast charakterystyczne promieniowanie rentgenowskie wykorzystywane do analizy składu chemicznego preparatów w mikroobszarach. Powstaje ono na skutek wybicia elektronów z wewnętrznej powłoki atomu powodując powstanie na niej luki. Luka ta zostaje zapełniona w wyniku przejścia elektronu w powłoki wyższej (bardziej oddalonej od jądra), a różnica pomiędzy tymi dwoma poziomami zostaje wypromieniowana w postaci kwanta promieniowania charakterystycznego. W zależności, na której powłoce powstaje luka, wyróżniamy odpowiednie serie linii. Jeżeli zostaje wybity elektron z powłoki K to obserwowane linie w widmie charakterystycznego promieniowania rentgenowskiego, odpowiadające emisji energii towarzyszącej przejściu elektronu w celu uzupełnienia luki nazywamy liniami K: K α - gdy przejście elektronu następuje z powłoki L, K β - dla przejścia z powłoki M, K γ - dla przejścia z powłoki N. Jeśli wybity zostanie elektron z powłoki L to mamy do czynienia z liniami L: L α - gdy przejście elektronu następuje z powłoki M, L β - dla przejścia z powłoki N. Jeśli wybity zostanie elektron z powłoki M to obserwujemy linie M (Rysunek 5). Ogólne zasady dotyczące linii charakterystycznego promieniowania rentgenowskiego: Dla danego pierwiastka niższe linie mają wyższą energię niż linie wyższe: E K > E L > E M. W obrębie danej serii linie pierwiastków o niższej liczbie atomowej mają niższą energię, np. linia K węgla ma niższą energię niż linia K tlenu. Linie niższych serii (K) są wyraźne i mają prostą strukturę, natomiast linie serii wyższych (L i M) mają strukturę złożoną i zachodzą na siebie. Promieniowanie ciągłe stanowi tło linii charakterystycznego promieniowania rentgenowskiego w mikroanalizatorze rentgenowskim. Znajomość natężenia tego tła jest bardzo istotna przy określaniu granicy wykrywalności badanego pierwiastka. Energia tego kwantu jest ściśle określona dla każdego rodzaju przejścia w danym pierwiastku i dlatego jest cechą charakterystyczną dla danego pierwiastka. Określenie dł. fali charakterystycznego promieniowania (energii kwantu) pozwala

7 7 dokonać analizy jakościowej pierwiastków wchodzących w skład próbki, natomiast pomiar natężenia tego promieniowania ich stężenia. Istnieją dwa rodzaje detekcji promieniowania rentgenowskiego w zależności od użytego spektrometru: WDS pomiar dł. fali promieniowania rentgenowskiego oraz EDS - spektrometr mierzący energię promieniowania rentgenowskiego. Rysunek 5. Powstawanie charakterystycznego promieniowania rentgenowskiego. Mikroanaliza rentgenowska (EDS) Skaningowy mikroskop elektronowy z detektorem EDS (Energy Dispersive X - Ray Spectroscopy) pozwala na identyfikację składu pierwiastkowego badanego materiału dla wszystkich pierwiastków o liczbie atomowej większej niż bor. Większość pierwiastków jest wykrywana przy stężeniach rzędu 0,1%. Metoda EDS pozwala na uzyskanie widma (zbioru linii promieniowania charakterystycznego z tłem promieniowania ciągłego) z wybranego obszaru lub punktu próbki (Rysunek 6). Spektrum jest wyskalowane w kiloelektronowoltach (kev) na osi odciętych i liczbą impulsów (ang. counts) na osi rzędnych. Linie przewyższające tło tworzą tzw. piki. Analiza jakościowa polega na identyfikacji występujących linii spektralnych i przypisaniu ich poszczególnym pierwiastkom. Analiza ilościowa wykorzystuje zależność liczby emitowanych impulsów charakterystycznego promieniowania rentgenowskiego pierwiastka od zawartości pierwiastka w analizowanej objętości. Pomiar natężenia linii widmowych musi być poprzedzony wyodrębnieniem ich z tła promieniowania ciągłego. Obliczenia rzeczywistej zawartości pierwiastków w badanym obszarze wymaga zastosowania

8 8 specjalnych metod korekcyjnych ze względu na szereg zjawisk zachodzących w materiale w konsekwencji oddziaływania wzbudzonego promieniowania rentgenowskiego z atomami próbki (absorpcja promieniowania w materiale, fluorescencja, liczba atomowa mająca wpływ na wydajność wzbudzenia promieniowania). Wszystkie te zjawiska uwzględniane są w metodzie korekcyjnej nazywanej popularnie ZAF. Nowoczesne oprogramowanie pozwala na wykonanie tzw. analizy bezwzorcowej, gdzie program komputerowy generuje wszystkie wartości potrzebne do obliczeń. Należy jednak pamiętać, że metoda bezwzorcowa daje poprawne wyniki tylko dla materiałów litych niezawierających pierwiastków lekkich. Rysunek 6. Widmo EDS (spektogram). Mapy rentgenowskie Charakterystyczne promieniowanie rentgenowskie jest wykorzystywane do otrzymywania map rozkładu stężenia pierwiastków (ang. mapping). Wiązka analityczna skanuje analizowany obszar punkt po punkcie. Spektrometr jest ustawiany tak, aby rejestrował punkt na analizowanym obszarze, gdy wykryje impuls rentgenowski o energii charakterystycznej dla danego pierwiastka. W ten sposób powstaje mapa odwzorowująca rozmieszczenie tego pierwiastka w badanym obszarze. Nowoczesne systemy EDS potrafią utworzyć kolorowe mapy w odpowiednich odcieniach, pokazujące względną intensywność impulsu w każdym punkcie. Wymaga to jednak zastosowania wystarczająco długiego czasu postoju wiązki w każdym punkcie analitycznym. Podczas jednego przebiegu wiązki analitycznej można zarejestrować mapy rozkładu dla kilkunastu pierwiastków.

9 9 Obraz mikroskopowy powierzchni chipu (BSE) Si Al O Pt Rozkłady wszystkich pierwiastków Cr Rysunek 7. Mapa rozkładu pierwiastków na powierzchni chipu (mapping). Układ próżniowy Wewnątrz konwencjonalnego mikroskopu (w kolumnie i w komorze) panuje wysoka próżnia, czyli bardzo niskie ciśnienie, rzędu Pa. Najczęściej układ próżniowy składa się z układu dwóch pomp: rotacyjnej zapewniającej próżnię wstępną (1-10 Pa ) oraz dyfuzyjnej do uzyskania końcowego ciśnienia. Wysoka próżnia w kolumnie potrzebna jest do wygenerowania i właściwego zogniskowania wiązki elektronów. Z kolei wysoka próżnia w komorze mikroskopu wynika z konstrukcji detektora elektronów wtórnych. Taka konstrukcja, gdzie wysoka próżnia panuje we wszystkich częściach wiąże się z ograniczeniami badawczymi np. wykorzystanie mikroskopów skaningowych w naukach biologicznych do obserwacji preparatów mało odpornych na działanie próżni ujawniło wadę takiej konstrukcji. Problemy z obserwacją preparatów nieodpornych na wysoką próżnię rozwiązano w nowoczesnych mikroskopach skaningowych stosując tzw. tryb środowiskowy ze zmienną próżnią (environmental scanning electron microscope ESEM). W mikroskopach tego typu panuje możliwość regulowania atmosfery panującej w komorze mikroskopu, co zdecydowanie rozszerza możliwości badawcze. Natomiast w kolumnie mikroskopu zostaje zachowana wysoka próżnia, jak w konwencjonalnych mikroskopach, niezbędna do wygenerowania i ukształtowania pierwotnej wiązki

10 10 elektronów. Dzięki takim rozwiązaniom konstrukcyjnym, za pomocą skaningowego środowiskowego mikroskopu skaningowego możliwe jest badanie mokrych, zaolejonych, brudnych i nieprzewodzących próbek w ich naturalnym stanie bez modyfikacji czy specjalnego przygotowania. Przy obserwacji preparatów nieprzewodzących można więc pominąć etap napylania materiałami przewodzącymi. Właściwości fizyko-chemiczne próbek. Preparatyka obiektów do obserwacji w SEM Zastosowanie wiązki elektronowej do badań mikroskopowych narzuca konieczność odprowadzenia ładunku elektrycznego z powierzchni obserwowanej próbki. W związku z tym materiał powinien być przewodzący, gdyż w przeciwnym wypadku nieodprowadzenie padających elektronów powoduje gromadzenie ładunków ujemnych na powierzchni. Następuje hamowanie i odpychanie wiązki pierwotnej prowadząc do zniekształceń obrazu. Z tego powodu obserwowanie materiałów nieprzewodzących w konwencjonalnych mikroskopach (np. ceramika, materiały sztuczne) nastręcza pewnych problemów. Powierzchnię materiału nieprzewodzącego należy pokryć cienką warstewką materiału przewodzącego (np. C, Au, Al.) poprzez próżniowe naparowanie. W komorze konwencjonalnego mikroskopu skaningowego panuje wysoka próżnia, stąd niektóre preparaty nie nadają się bezpośrednio do badań, gdyż uległyby zniszczeniu (np. tkanki, komórki). W mikroskopach typu ESEM próbki nieprzewodzące lub zawierające wilgoć mogą być obserwowane bez specjalnych przygotowań. Wielkość próbek jest ograniczona wielkością komory preparatowej, (max. średnica próbki 5 cm, wysokość 3 cm). Do analizy jakościowej i ilościowej EDS wymagane są próbki lite, o odpowiednio dużej objętości i płaskiej powierzchni (obszar generowania charakterystycznego promieniowania rentgenowskiego ok.1 µm głębokości). Zastosowanie skaningowej mikroskopii elektronowej Określanie: morfologii powierzchni, wymiarów ziaren i rozkładu wielkości ziaren, średnicy włókien, jednorodności materiałów, wielkości porów; Kontrola procesów technologicznych; badania: przełomów, procesów spiekania, materiałów biologicznych.

11 11 Przebieg ćwiczenia Do ćwiczeń wykorzystany zostanie skaningowy mikroskop elektronowy Quanta 200 firmy FEI wyposażony w spektrometr promieniowania rentgenowskiego EDS firmy EDAX. 1. Przygotowanie próbek do obserwacji: próbka przewodząca próbka nieprzewodząca próbka nieprzewodząca ceramiczna 2. Obserwacja powierzchni próbek przy użyciu skaningowego mikroskopu elektronowego w warunkach wysokiej i niskiej próżni. 3. Identyfikacja składu próbek. Literatura: Opracowanie dr inż. Elżbieta Żero L. Klimek, "Elektronowy Mikroskop skaningowy w inżynierii Biomedycznej" Politechnika Łódzka, 2012 "Mikroskopia elektronowa", pod redakcją Andrzeja Barbackiego, Wydawnictwo Politechniki Poznańskiej, 2007 "Laboratorium analizy instrumentalnej", Praca zbiorowa pod redakcją Z. Brzózki, Oficyna Wydawnicza Politechniki Warszawskiej, 1998

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

Rys. 1. Schemat budowy elektronowego mikroskopu skaningowego (SEM).

Rys. 1. Schemat budowy elektronowego mikroskopu skaningowego (SEM). Ewa Teper PODSTAWY MIKROSKOPII SKANINGOWEJ Podstawowe zasady działania mikroskopu skaningowego. W mikroskopach skaningowych wiązka elektronów bombarduje próbkę, skanując jej powierzchnię linia po linii.

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Cel ćwiczenia: Celem ćwiczenia jest wykorzystanie promieniowania

Bardziej szczegółowo

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym

Bardziej szczegółowo

Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT

Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT Metody i techniki badań II Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT Dr inż. Agnieszka Kochmańska pok. 20 Zakład Metaloznawstwa i Odlewnictwa agnieszka.kochmanska@zut.edu.pl

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek

Bardziej szczegółowo

Skaningowy mikroskop elektronowy - Ilość: 1 kpl.

Skaningowy mikroskop elektronowy - Ilość: 1 kpl. Zamówienie publiczne w trybie przetargu nieograniczonego nr ZP/PN/15/2014 Przedmiot postępowania: Dostawa skaningowego mikroskopu elektronowego ARKUSZ INFORMACJI TECHNICZNEJ Wszystkie parametry podane

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

WYJAŚNIENIE TREŚCI SIWZ

WYJAŚNIENIE TREŚCI SIWZ Warszawa, dnia 17.11.2015r. WYJAŚNIENIE TREŚCI SIWZ Dotyczy przetargu nieograniczonego na: Dostawa stołowego skaningowego mikroskopu elektronowego wraz z wyposażeniem dla Instytutu Technologii Materiałów

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA ANALIZA SPECJACYJNA Specjacja - występowanie różnych fizycznych i chemicznych form danego pierwiastka w badanym materiale. Analiza specjacyjna - identyfikacja i ilościowe oznaczenie

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody

Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody Scenariusz wycieczki badawczej, przeprowadzonej w klasie II szkoły ponadgimnazjalnej, z przyrody 1. Wątek i TEMAT: B 31 Wyjście (wycieczka) do Pracowni Mikroskopii Skaningowej Nauk Biologicznych i Geologicznych.

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

1. Niskoenergetyczne elektrony wtórne SE (podstawowy sygnał w SEM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SEM i TEM)

1. Niskoenergetyczne elektrony wtórne SE (podstawowy sygnał w SEM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SEM i TEM) Rozpraszanie niesprężyste Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ Ewa Teper PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ WIELKOŚĆ I RODZAJE PRÓBEK Maksymalne wymiary próbki, którą można umieścić na stoliku mikroskopu skaningowego są następujące: Próbka powinna się

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa ćw 5 Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa PRZEDMIOT: NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Opracowały: cz. teoretyczna: dr hab. Beata Grabowska

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Mariusz Kępczyński, p. 148, kepczyns@chemia.uj.edu.pl Wstęp Plan wykładu mikroskopia

Bardziej szczegółowo

Mikroskopia fluorescencyjna

Mikroskopia fluorescencyjna Mikroskopia fluorescencyjna Mikroskop fluorescencyjny to mikroskop świetlny, wykorzystujący zjawisko fluorescencji większość z nich to mikroskopy tzw. epi-fluorescencyjne zjawisko fotoluminescencji: fluorescencja

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Inżynieria Powierzchni / Powłoki Ochronne / Powłoki Metaliczne i Kompozytowe

Bardziej szczegółowo

Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę mikroskopu elektronowego - numer Zp/pn/76/2015

Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę mikroskopu elektronowego - numer Zp/pn/76/2015 Dęblin, dnia 16.09.2015 r. Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę mikroskopu elektronowego - numer Zp/pn/76/2015 NA PYTANIE DO SPECYFIKACJI ISTOTNYCH

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Charakter struktury połączenia porcelany na podbudowie cyrkonowej w zaleŝności od rodzaju materiału licującego.

Charakter struktury połączenia porcelany na podbudowie cyrkonowej w zaleŝności od rodzaju materiału licującego. WyŜsza Szkoła InŜynierii Dentystycznej w Ustroniu Charakter struktury połączenia porcelany na podbudowie cyrkonowej w zaleŝności od rodzaju materiału licującego. Anna Legutko Promotor: prof. zw. dr hab.

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Techniki skaningowej mikroskopii elektronowej

Techniki skaningowej mikroskopii elektronowej mgr Ewa Starnawska Techniki skaningowej mikroskopii elektronowej SE morfologia BSE kompozycja i topografia BSEX - dyfrakcja EDX informacja o składzie chemicznym CL - katodoluminescencja Skaningowy mikroskop

Bardziej szczegółowo

Skaningowy mikroskop elektronowy

Skaningowy mikroskop elektronowy Skaningowy mikroskop elektronowy SH-5000M / SH-4000 / SH-3500 / detektor EDS Mikroskop elektronowy skaningowy z serii Hirox SH to najwyższej klasy system nastołowy, umożliwiającym szybkie obrazowanie w

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Unikalne cechy płytek i szalek IBIDI

Unikalne cechy płytek i szalek IBIDI Unikalne cechy płytek i szalek IBIDI Grubość płytki jest kluczowym aspektem jakości obrazowania. Typowa grubość szkiełek nakrywkowych wynosi 0,17 mm (170 µm). Większość obiektywów stosowanych do mikroskopii

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

RENTGENOWSKA ANALIZA FLUORESCENCYJNA

RENTGENOWSKA ANALIZA FLUORESCENCYJNA RENTGENOWSKA ANALIZA FLUORESCENCYJNA Cel ćwiczenia. Celem ćwiczenia jest zidentyfikowanie pierwiastków w próbkach metodą rentgenowskiej analizy fluorescencyjnej przy zastosowaniu zestawu firmy Amptek składającego

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Politechnika Politechnika Koszalińska

Politechnika Politechnika Koszalińska Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *)

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) Grażyna GILEWSKA PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) STRESZCZENIE W artykule przedstawiono stosowane metody obrazowania struktur

Bardziej szczegółowo

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X IM-20 Jakościowa i ilościowa analiza składu materiałów za pomocą XRF XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego

Bardziej szczegółowo

Wymagane parametry dla platformy do mikroskopii korelacyjnej

Wymagane parametry dla platformy do mikroskopii korelacyjnej Strona1 ROZDZIAŁ IV OPIS PRZEDMIOTU ZAMÓWIENIA Wymagane parametry dla platformy do mikroskopii korelacyjnej Mikroskopia korelacyjna łączy dane z mikroskopii świetlnej i elektronowej w celu określenia powiązań

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

SPEKTROSKOPIA FOTOELEKTRONÓW

SPEKTROSKOPIA FOTOELEKTRONÓW SPEKTROSKOPIA FOTOELEKTRONÓW Zjawisko fotoelektryczne światło elektrony = prąd Hertz (1887 r.) zauważył, że gdy światło padało na płytkę metalową umieszczoną w próżni następowała emisja elektronów a ponadto

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo