Filmy o numerycznym prognozowaniu pogody Pogodna matematyka : zakładka: Filmy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Filmy o numerycznym prognozowaniu pogody Pogodna matematyka : zakładka: Filmy"

Transkrypt

1 Modelowanie komputerowe w ochronie środowiska Wykłady x 4 Ćwiczenia x 3 Strona: Literatura: Urszula Foryś, Matematyka w biologii, Wydawnictwa Naukowo-Techniczne, Warszawa 25. Piotr Holnicki-Szulc, Modele propagacji zanieczyszczeń atmosferycznych w zastosowaniu do kontroli i sterowania jakością środowiska, Akademicka Oficyna Wydawnicza EXIT, Warszawa 26. Jerzy Małecki, Marek Nawalany, Stanisław Witczak, Tomasz Gruszczyński, Wyznaczanie parametrów migracji zanieczyszczeń w ośrodku porowatym dla potrzeb badań hydrogeologicznych i ochrony środowiska, Uniwersytet Warszawski Wydział Geologii, Warszawa 26. Maria Markiewicz, Podstawy modelowania rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 24. Romuald Szymkiewicz, Modelowanie matematyczne przepływów w rzekach i kanałach, Wydawnictwo Naukowe PWN, Warszawa 2. Janusz Uchmański, Klasyczna ekologia matematyczna, PWN, Warszawa 982. Filmy o numerycznym prognozowaniu pogody Pogodna matematyka : zakładka: Filmy O modelowaniu Etapy procesu modelowania Przykład modeli ekologicznych przykład metody numerycznej Model oznacza reprezentację badanego zjawiska w postaci innej niż ta, w jakiej występuje ono w rzeczywistości (W. Findeisen). Podstawowym celem modelowania jest tworzenie narzędzi pozwalających badać i prognozować przebieg zjawisk fizycznych w warunkach innych niż aktualnie istniejące lub w warunkach nie pozwalających na stwierdzenie faktów za pomocą bezpośredniego doświadczenia. modele fizyczne modele obliczeniowe Rozwój modelowania określanego jako modelowanie komputerowe nastąpił dzięki dostępności komputerów o mocach wystarczających do realizowania dużych obliczeń. Przykłady: Numeryczne prognozy pogody mapy.meteo.pl MSOŚ, 26, wykład /4 Anna Trykozko, ICM, Uniwersytet Warszawski

2 Zastosowania wykorzystujące prognozy pogody (energetyka, rozprzestrzenianie się zanieczyszczeń, modele falowania) modelowanie klimatu Zastosowania z zakresu inżynierii środowiska Obliczeniowa mechanika płynów (zastosowania: przemysł motoryzacyjny, lotnictwo, medycyna, inżynieria produkcji,...)... Nawet najdokładniejszy model jest tylko przybliżeniem rzeczywistości. Na to w jakim stopniu model oddaje rzeczywistość ma wpływ między innymi: poprawność przyjętych założeń, uwzględnienie wszystkich procesów istotnych dla badanego zjawiska; niepewność parametrów; niepewność warunków brzegowych; problemy związane ze skalą czasową lub przestrzenną; w tym różnorodność (rozpiętość) skali i brak możliwości ich równoczesnego uwzględnienia; nieadekwatna parametryzacja niejednorodności występujących w małych skalach. MSOŚ, 26, wykład /4 2 Anna Trykozko, ICM, Uniwersytet Warszawski

3 Im dokładniejszy model tym lepiej opisuje rzeczywistość. Natomiast tym większe problemy z dostarczeniem danych. Wynikowa dokładność modelu nie może być lepsza od dokładności danych wejściowych. Model jest uproszczoną wersją rzeczywistego systemu i w przybliżony sposób opisuje zachodzące procesy. (J. Bear, A. Verruijt, Modeling Groundwater Flow and Pollution, D.Reidel Publishing Company, Dordrecht 987.) Ponieważ model jest uproszczoną wizją prawdziwego systemu, nie istnieje jeden i jednoznaczny model opisujący zjawisko. Różne zestawy założeń przyjętych podczas tworzenia modelu prowadzą do różnych modeli, przybliżających badane zjawisko w inny sposób. A zatem nie istnieje model obiektywny. Podstawę modelu stanowi zbiór założeń, które wyrażają nasze zrozumienie systemu i jego zachowania. Przykład modelu ekologicznego Założenia: w danym środowisku występuje tylko jeden gatunek N zasoby środowiska są nieograniczone. osobniki nie umierają. populacja jest jednorodna. Model: wzrost (zmiana) populacji gatunku jest proporcjonalna do populacji w danej chwili. Wyraża to równanie Malthusa: dn( = r N(, dt gdzie: N ( - zagęszczenie osobników w chwili t; r > współczynnik rozrodczości gatunku. Uwaga: W modelu ciągłym nie rozpatruje się liczebności populacji, lecz jej zagęszczenie, czyli liczbę osobników przypadających na jednostkę powierzchni. Np można interpretować N ( jako masę danej populacji. Aby równanie miało jednoznaczne rozwiązanie niezbędne jest podanie warunku początkowego: N ( ) = N. Jest to równanie różniczkowe zwyczajne. Jego rozwiązaniem jest funkcja wykładnicza rt ( = N e N Jeśli wyznaczenie rozwiązania analitycznego nie byłoby możliwe (łatwe), równanie można rozwiązać w sposób przybliżony korzystając z metod numerycznych. MSOŚ, 26, wykład /4 3 Anna Trykozko, ICM, Uniwersytet Warszawski

4 25 Model wzrostu wykładniczego r=, r=,4 r=,6 czas Modelowanie komputerowe - etapy Model konceptualny Model matematyczny Model numeryczny Kalibracja (wyznaczenie/poprawianie wartości parametrów np. na podstawie danych eksperymentalnych) Walidacja Analiza wyników - wizualizacja Model konceptualny Stanowi szereg założeń, redukujących zagadnienie rzeczywiste i rzeczywisty obszar, do ich uproszczonych odpowiedników, które są akceptowalne w kontekście celu modelowania. Cele modelowania: edukacja, symulacja, wspomaganie zarządzania, (modele wykorzystywane w procesie wspomagania podejmowania decyzji zwykle zawierają stosunkowo dużo uproszczeń z uwagi między innymi na konieczność szybkiego generowania wyników. ) Założenia modelu konceptualnego dotyczą między innymi: wymiar przestrzenny modelu, geometria obszaru, zmienne stanu (CO się wyznacza, np. temperatura, ciśnienie, stężenie), sposób interakcji z otoczeniem warunki brzegowe, stan ustalony lub zmienność w czasie (zagadnienia ewolucyjne), warunki początkowe, rodzaj zjawiska, wzajemne zależności, np. wpływ substancji rozpuszczonej i/lub temperatury na gęstość i lepkość, Model matematyczny Większość modeli wyraża bilans pewnej wielkości, np. bilans masy wody, bilans masy (substancji), bilans ciepła. MSOŚ, 26, wykład /4 4 Anna Trykozko, ICM, Uniwersytet Warszawski

5 Modele deterministyczne: równanie lub układ równań, najczęściej równań różniczkowych cząstkowych lub zwyczajnych. Należy określić: równanie/ równania na wybór równań mają wpływ założenia uczynione na poziomie modelu konceptualnego, warunki brzegowe interakcje z otoczeniem, warunki początkowe stan systemu w chwili początkowej. Z matematycznego punktu widzenia zagadnienie musi być dobrze postawione: istnienie rozwiązania; jednoznaczność rozwiązania; stabilność (mała zmiana danych powoduje małą zmianę rozwiązania). Modele stochastyczne Model numeryczny rozwiązanie analityczne (dokładne) istnieje tylko dla ograniczonej klasy zagadnień rozwiązanie numeryczne Uzasadnieniem użycia określenia model numeryczny, zamiast metoda numeryczna uzyskania przybliżonego rozwiązania jest fakt, że również w tym kroku formułuje się szereg dodatkowych założeń. A zatem model numeryczny stanowi kolejną przybliżoną wersję rzeczywistego obiektu modelowania. dyskretyzacja - reprezentacja obszaru za pomocą komórek obliczeniowych (elementów) metoda numeryczna Dyskretyzacja Model numeryczny bazuje na dyskretyzacji obszaru, w którym zdefiniowane jest zagadnienie. W ogólnym przypadku rozwiązanie zagadnienia przybliżonego wyznacza się tylko w skończonej liczbie punktów (mówi się, że rozwiązanie jest określone w sposób dyskretny). h x i- x i x i+ MSOŚ, 26, wykład /4 5 Anna Trykozko, ICM, Uniwersytet Warszawski

6 acck. M.F. acck. B.C. i K.K. MSOŚ, 26, wykład /4 6 Anna Trykozko, ICM, Uniwersytet Warszawski

7 Rozwiązanie przybliżone konstruuje się na bazie dyskretyzacji obszaru stosując metodę numeryczną. Najczęściej stosowane metody rozwiązywania równań różniczkowych cząstkowych: metoda różnic skończonych, metoda elementu skończonego, metoda objętości skończonych. Każda z tych metod ma określone wymagania związane ze sposobem przeprowadzenia dyskretyzacji. Dyskretyzacja ma wpływ na jakość rozwiązania przybliżonego. W przypadku korzystania z gotowych kodów komputerowych, dyskretyzacja obszaru stanowi jedno z głównych zadań osoby korzystającej z modelu. W przypadku zadań o złożonej geometrii, nawet z pomocą specjalnego oprogramowania, może być to zadaniem bardzo pracochłonnym. W wyniku zastosowania jednej z wymienionych metod otrzymuje się układ równań algebraicznych, liniowych lub nieliniowych. Rozmiar układu równań jest bezpośrednio związany ze sposobem dyskretyzacji, w szczególności z liczbą komórek (elementów), na które został podzielony obszar obliczeniowy. Rozwiązanie układu równań stanowi rozwiązanie przybliżone oryginalnego zagadnienia różniczkowego. Uwaga: zwiększanie wymiaru obszaru, w którym rozważa się zjawisko, prowadzi do gwałtownego zwiększania rozmiaru układu równań. Implementacja metody obliczeniowej Symulacje Kalibracja (wyznaczenie wartości parametrów np. na podstawie danych eksperymentalnych) Walidacja MSOŚ, 26, wykład /4 7 Anna Trykozko, ICM, Uniwersytet Warszawski

8 Model matematyczny układ równań różniczkowych (zwyczajnych lub dyskretyzacja obszaru metoda różnic skończonych metoda elementu skończonego metoda objętości skończonych Model numeryczny układ równań algebraicznych (liniowych lub nieliniowych) metoda iteracyjna lub skończona Rozwiązanie analityczne (dla ograniczonej liczby przypadków) Symulacje: Rozwiązanie przybliżone porównać Obserwacje, eksperymenty porównać Odrębna klasa modeli to modele opisywane za pomocą automatów komórkowych Modele działają w oparciu o siatkę. Oczko siatki ma przypisane stany, które podlegają ewolucji według reguł definiujących dynamikę zjawiska. Zmiana stanu w oczku zależy od stanów w sąsiednich oczkach. mniej sformalizowane umożliwia wprowadzanie elementów losowych reguły można definiować w oparciu o prawdopodobieństwo. Przykład: model pożaru lasu: Inna reprezentacja schematu modelowania: ZASTOSOWANIE co robimy? ALGORYTM w jaki sposób? (równania, metody, dane) ARCHITEKTURA uszczegółowienie sposobu realizacji obliczeń (Schemat wg. strony MSOŚ, 26, wykład /4 8 Anna Trykozko, ICM, Uniwersytet Warszawski

9 Modelowanie komputerowe stanowi niezwykle mocne i przydatne narzędzie, ale trzeba mieć świadomość jego ograniczeń, oraz przyczyn powodujących te ograniczenia. Model wzrostu Założenia: w danym środowisku występuje tylko jeden gatunek N. zasoby środowiska są nieograniczone. osobniki nie umierają populacja jest jednorodna. Model: wzrost (zmiana) populacji gatunku jest proporcjonalna do populacji w danej chwili. zmniejszenie (zmiana) populacji gatunku jest proporcjonalna do populacji w danej chwili. Modyfikacja równania Malthusa: dn( = r N( s N(, dt gdzie: N ( zagęszczenie osobników w chwili t; r > współczynnik rozrodczości gatunku. s> współczynnik śmiertelności populacji dn( = ( r s) N( dt Rozwiązaniem tego równania jest funkcja wykładnicza: ( r s) t N ( = N e Zmiany liczebności populacji zależą od znaku współczynnika r s. 3 Proces urodzin i śmierci r-s> r=s r-s< czas Model logistyczny Założenia: w danym środowisku występuje tylko jeden gatunek N. zasoby środowiska są nieograniczone. zasoby środowiska są ograniczone (pojemność środowiska K), co powoduje wystąpienie konkurencji między osobnikami (np. zdobywanie pożywienia, terytorium, itp.). osobniki nie umierają populacja jest jednorodna. MSOŚ, 26, wykład /4 9 Anna Trykozko, ICM, Uniwersytet Warszawski

10 Model Idea jest taka: współczynnik wzrostu populacji (opisywany parametrem r) jest modyfikowany w zależności od populacji N( tak aby: był dodatni, gdy populacja N jest mniejsza od pojemności środowiska K. był ujemny, gdy populacja N (stan początkowy) przewyższa pojemność środowiska K. był bliski r (brak wpływu pojemności środowiska K), gdy N jest małe (w stosunku do K). był bliski gdy populacja N jest bliska pojemności środowiska K. Te założenia spełnia następujący składnik: N ( r ( ) K a równanie logistyczne (Verhulst, 838) wyraża się w postaci: dn( N( = r N( ( ), dt K gdzie: N ( - zagęszczenie osobników w chwili t; r > współczynnik rozrodczości gatunku; K> pojemność środowiska. Rozwiązanie równania logistycznego: K N( =. K rt + ( ) e N Przy t N ( K co oznacza, że liczebność populacji stabilizuje się na poziomie odpowiadającym pojemności środowiska. Model logistyczny, K= N= N=5 N=3 N=5 Metody numeryczne rozwiązywania równań różniczkowych zwyczajnych Numeryczne rozwiązanie równania różniczkowego zwyczajnego: dy( () = f ( t, y( ) dt z warunkiem początkowym y ( t ) = y polega na wyznaczeniu dyskretnych wartości y n = y( t n ), n=,2,... stanowiących przybliżone rozwiązanie () w punktach (nazywanych węzłami) t n, n=,2,... Zakładamy, że węzły są równoodległe, a sąsiadujące punkty t n i t n znajdują się w odległości h; h jest nazywane krokiem całkowania. MSOŚ, 26, wykład /4 Anna Trykozko, ICM, Uniwersytet Warszawski

11 Pochodną po czasie zastępuje się ilorazem różnicowym wyznaczonym w oparciu o węzły t n, n=,2,...: dy( yn yn yn yn =, n=,2,... dt t t h t= tn n n Metoda Eulera Najprostszą (ale najmniej dokładną) metodą jest metoda Eulera. Wzór otrzymuje się zastępując w równaniu () pochodną po czasie ilorazem różnicowym. yn yn = f ( tn, yn ), stąd: h y = + n yn h f ( tn, yn ) W szczególności: y = y + h f ( t, y ), y 2 = y + h f ( t, y), itd. Rozwiązanie przybliżone w kolejnym punkcie wyznacza się na podstawie rozwiązania wyznaczonego w punkcie poprzedzającym, wyznaczając rozwiązanie w punkcie t korzysta się z warunku początkowego y ( t ) = y. Metoda Eulera jest mało dokładna i wymaga stosowania małego kroku całkowania. Błędy z kolejnych kroków akumulują się. y 2 y y h t t t 2 t 3 Metody Runge-Kutty Lepszą jakość rozwiązania przybliżonego uzyskuje się poprzez zastosowanie następującego schematu: k h f t n, y ) = ( n k k2 = h f ( tn +,5h, yn + ) 2 yn = yn + k 2 Jest to metoda Runge-Kutty drugiego rzędu. Porównajmy przybliżone rozwiązania otrzymane za pomocą metody Eulera i metody Runge- Kutty. Na rysunku widać również zależność rozwiązania przybliżonego od długości kroku całkowania h. MSOŚ, 26, wykład /4 Anna Trykozko, ICM, Uniwersytet Warszawski

12 model wzrostu wykładniczego 4 2 N-Euler 8 N-R.-K. 6 dokładne 4 2 czas model wzrostu wykładniczego 4 2 N-Euler 8 dokładne 6 N-R.-K. 4 2 czas krok czasowy h=.5 (26 kroków) krok czasowy h=. (3 kroków) Najpopularniejszą i często stosowaną metodą jest metoda Runge-Kutty czwartego rzędu. k h f t n, y ) k k k = ( n y h f ( t +,5h, y k ) 2 h f ( t +,5h, y k2 ) 2 h f ( tn + h, yn + 3) k k2 k3 k4 yn = n n + 3 = n n + 4 = k n = + Podane metody można stosować również do układów równań różniczkowych zwyczajnych. Dwuwymiarowe modele ekologiczne model Lotki-Volterry Model dotyczy zmian liczebności populacji dwóch gatunków: ofiar (ang. prey) oraz drapieżników (ang. predator) żywiących się osobnikami pierwszego gatunku. Założenia: W środowisku występują dwa gatunki: ofiary H i drapieżnicy P. populacje H i P są jednorodne. zasoby środowiska są nieograniczone. Model: zmiana (zwiększenie) populacji ofiar H jest proporcjonalna do populacji H. zmiana (zmniejszenie) populacji ofiar H jest wprost proporcjonalna do populacji drapieżników P. zmiana (zwiększenie) populacji drapieżników P jest wprost proporcjonalna do populacji ofiar H. zmiana (zmniejszenie) populacji drapieżników P w wyniku śmiertelności jest wprost proporcjonalna do ich populacji P. Niech: H( zagęszczenie ofiar w chwili t, P( zagęszczenie drapieżników w chwili t. Ewolucja populacji dwóch gatunków jest opisana układem równań różniczkowych zwyczajnych: MSOŚ, 26, wykład /4 2 Anna Trykozko, ICM, Uniwersytet Warszawski

13 dh( = r H( a H( P( dt dp( = b H( P( m P( dt gdzie: r współczynnik rozrodczości gatunku ofiar a współczynnik skuteczności polowań b współczynnik rozrodczości drapieżników (na jednostkę upolowanej ofiary) m współczynnik śmiertelności drapieżników Rozwiązania H( i P( są funkcjami okresowymi przesuniętymi w fazie. 4 Portret fazowy układu drapieżca-ofiara Wyniki uzyskano dla następujących wartości parametrów: r=, a=,, b=,, m=,5 H =5, P =2 H P zagęszczenie drapieżców zagęszczenie ofiar H Portret fazowy prezentuje wzajemną zależność populacji dwóch gatunków. MSOŚ, 26, wykład /4 3 Anna Trykozko, ICM, Uniwersytet Warszawski

Modelowanie komputerowe w zagadnieniach środowiska. Strona:

Modelowanie komputerowe w zagadnieniach środowiska. Strona: Modelowanie komputerowe w zagadnieniach środowiska Wykład 30 godzin + Laboratorium 30 godzin Strona: http://www.icm.edu.pl/~aniat/modele/wdw1 Literatura Modelowanie Urszula Foryś, Matematyka w biologii,

Bardziej szczegółowo

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

KARTAKURSU. Efekty kształcenia dla kursu Student: W01wykazuje się znajomością podstawowych koncepcji, zasad, praw i teorii obowiązujących w fizyce

KARTAKURSU. Efekty kształcenia dla kursu Student: W01wykazuje się znajomością podstawowych koncepcji, zasad, praw i teorii obowiązujących w fizyce KARTAKURSU Nazwa Modelowanie zjawisk i procesów w przyrodzie Nazwa w j. ang. Kod Modelling of natural phenomena and processes Punktacja ECTS* 1 Koordynator Dr Dorota Sitko ZESPÓŁDYDAKTYCZNY: Dr Dorota

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Specjalnościowy Obowiązkowy Polski Semestr szósty

Specjalnościowy Obowiązkowy Polski Semestr szósty KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical

Bardziej szczegółowo

WYKŁAD 3. DYNAMIKA ROZWOJU

WYKŁAD 3. DYNAMIKA ROZWOJU WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI

MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI Biomatematyka Dr Wioleta Drobik-Czwarno UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t

Bardziej szczegółowo

Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW

Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany

Bardziej szczegółowo

Układy dynamiczne Chaos deterministyczny

Układy dynamiczne Chaos deterministyczny Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15

Bardziej szczegółowo

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015

Bardziej szczegółowo

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Równania różniczkowe Differential equations Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów. W niniejszym dokumencie znajdują się propozycje projektów na rok 2008. Tematy sformułowane są ogólnie, po wyborze tematu i skontaktowaniu z prowadzącym zostaną określone szczegółowe wymagania co do projektu.

Bardziej szczegółowo

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników, SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: KOMPUTEROWA ANALIZA KONSTRUKCJI

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Karta modułu/przedmiotu

Karta modułu/przedmiotu Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie 2. Poziom kształcenia: jednolite studia magisterskie 1. Kierunek studiów: farmacja 3. Forma studiów: stacjonarne i niestacjonarne 4. Rok:

Bardziej szczegółowo

Podstawy metodologiczne symulacji

Podstawy metodologiczne symulacji Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie

Bardziej szczegółowo

Zastosowania analizy stochastycznej w finansach Application of Stochastic Models in Financial Analysis Kod przedmiotu: Poziom przedmiotu: II stopnia

Zastosowania analizy stochastycznej w finansach Application of Stochastic Models in Financial Analysis Kod przedmiotu: Poziom przedmiotu: II stopnia Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Zastosowania analizy stochastycznej w finansach

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

ODWZOROWANIE RZECZYWISTOŚCI

ODWZOROWANIE RZECZYWISTOŚCI ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i wizualizacja procesów fizycznych Nazwa modułu w języku angielskim

Bardziej szczegółowo

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Równania różniczkowe Differential Equations

Równania różniczkowe Differential Equations KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/016 Z-ID-0a Równania różniczkowe Differential Equations A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA UKŁADÓW STEROWANIA Kierunek: Mechatronika Rodzaj przedmiotu: Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Z-ETI-1040 Metody numeryczne Numerical Methods

Z-ETI-1040 Metody numeryczne Numerical Methods Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2

01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2 Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

System prognozowania rynków energii

System prognozowania rynków energii System prognozowania rynków energii STERMEDIA Sp. z o. o. Software Development Grupa IT Kontrakt ul. Ostrowskiego13 Wrocław Poland tel.: 0 71 723 43 22 fax: 0 71 733 64 66 http://www.stermedia.eu Piotr

Bardziej szczegółowo