Obliczenia inspirowane Naturą
|
|
- Teresa Kasprzak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/ / 31
2 Czego dowiedzieliśmy się na poprzednim wykładzie? / 31
3 / 31
4 to jeden z pierwszych i najpopularniejszych modeli obliczeniowych inspirowanych zjawiskami obserwowanymi w przyrodzie. Jest to model układów dynamicznych w którym czas i przestrzeń są dyskretne. Model automatów komórkowych został wymyślony przez Johna von Neumana i Stanisława Ulama w latach czterdziestych XX wieku. Jednak stał się on popularny dopiero w latach 70 dzięki grze Life wymyślonej przez Johna Conwaya. 4 / 31
5 Uniwersalny konstruktor John von Neumana opracował w latach 40 automat nazywany uniwersalnym konstruktorem. ( Neumann universal constructor) 5 / 31
6 Uniwersalny konstruktor Replikator z dwuwymiarową taśmą. 6 / 31
7 Dlaczego automaty komórkowe są ciekawe? Jest to prosty model pozwalający na odtworzenie wielu struktur (fraktale, proce urodzin i śmierci). Mają zdolność do samopowielania i mogą służyć za model ewolucji. Jest to model obliczeń równoważny uniwersalnej maszynie Turinga wiele problemów ma swoje odpowiedniki (np. problem stopu i problem rajskich ogrodów). 7 / 31
8 Definicja Automatem komórkowym nazywamy trójkę złożoną z: sieci komórek w przestrzeni o wymiarze D, zbioru stanów {s i : i = 1, 2,..., k} pojedynczej komórki, funkcji F określającej stan komórki w chwili t + 1 na podstawie stanów komórek z jej otoczenia, s i (t + 1) = F ({s j (t) : j O(s i )}), gdzie O(s i ) to otoczenie komórki s i. 8 / 31
9 Taka definicja pozwala na bardzo ogólne określenie zarówno układu połączeń pomiędzy komórkami sieci, jak i ewolucji całego układu. W praktyce najczęściej spotyka się automaty komórkowe realizowane na linii lub kracie. Funkcja F zależy najczęściej jedynie od ilość komórek otoczenia w danym stanie a nie od ich wzajemnego rozmieszczenia. Automaty głosujące Automaty dwustanowe których reguły przejścia zależą od ilości jedynek w otoczeniu nazywa się automatami głosującymi. 9 / 31
10 Typowo przy rozważaniach dotyczących automatów komórkowych rozważa się dwa rodzaje otoczenia lub sąsiedztwa. (a) Moorea a (b) von Neumanna 10 / 31
11 Badanie automatów komórkowych w dużym stopniu sprowadza się do ich symulacji. W związku z tym konieczne jest określenie jak będzie zachowywał się układ na brzegach siatki którą wykorzystany do symulacji. Możemy narzucić warunki brzegowe periodyczne takie warunki prowadzą do automatów na sferze czy torusie; pochłaniające w takim wypadku wyjście poza brzegi siatki powoduje zniknięcie cząstki; odbijające w takim wypadku dojście na brzegi siatki powoduje odbicie cząstki. 11 / 31
12 Zmienność stanu Do określenia zmian stanu automatu stosuje się odległość Hamminga, d H (σ 1, σ 2 ) = i s i (σ 1 ) s i (σ 2 ), gdzie s i (σ k ) oznacza stan komórki numer i w konfiguracji k. Obserwacja d H w dla długich czasów i dużych rozmiarów to podstawowe narzędzie klasyfikacji automatów. 12 / 31
13 Klasyfikacja na podstawie reguł Dla automatów 1D możemy określić aktywność jako względną ilość jedynek w tabeli. Taka wielkość daje informacje o średnim zachowaniu automatu. Zaniedbuje jednak korelacje pomiędzy komórkami. 13 / 31
14 Parametr λ zdefiniowany jako λ = K N n K N gdzie K to ilość stanów automatu, N = (2r + 1) to rozmiar otoczenia, a n to ilość przejść do wybranego stanu stacjonarnego, pozwala na oszacowanie złożoności automatu. λ = 0 brak zmian; λ = 1 brak przejścia do stanu stacjonarnego; λ = K 1 K wszystkie stany jednakowo dostępne; 14 / 31
15 Stephen Wolfram, twórca systemu algebry komputerowej Mathematica, poświęcił wiele prac badawczy modelowi automatów komputerowych. ( W systemie Mathematica dostępna jest rozbudowana funkcja CellularAutomaton, która umożliwia zabawę z automatami komórkowymi. 15 / 31
16 Jedną z najbardziej znanych klasyfikacji automatów komórkowych wprowadził Stephen Wolfram. Klasyfikacja ta opiera się na obserwacji stanów sieci rządzonej poszczególnymi regułami; przypadkowym doborze stanów początkowych. 16 / 31
17 W klasyfikacji Wolframa wyróżnione są cztery rodzaje automatów komórkowych: I. Automaty jednorodne. II. Automaty periodyczne (regularne). III. Automaty chaotyczne. IV. Automaty złożone. 17 / 31
18 Automaty jednorodne Automaty jednorodne przechodzą w skończonym czasie do stanu, w którym wszystkie komórki przyjmują jednakowe wartości. 18 / 31
19 Automaty periodyczne (regularne) Automaty periodyczne (regularne) przechodzą w skończonym czasie do stanu, będącego kombinacją konfiguracji stabilnych i struktur powtarzalnych. Struktury stabilne nazywamy atraktorami, natomiast struktury powtarzalne (periodyczne) to oscylatory. 19 / 31
20 Automaty chaotyczne Automaty chaotyczne pozwalają na generowanie struktur losowych np. fraktali o ustalonych własnościach statystycznych. Własności chaotyczne są obserwowane dla skończonych czasów. 20 / 31
21 Automaty złożone Automaty złożone ewoluują do złożonych konfiguracji lokalnych. 21 / 31
22 Automaty zaliczane do klas I i II prowadzą do stałych konfiguracji. Automaty klasy III są niestabilne małe zmiany konfiguracji początkowej mogą prowadzić do dużych zmian ewolucji czasowej; Automaty klasy IV mogą być potencjalnie wykorzystane do obliczeń istnieją konfiguracje sieci blokujące rozchodzenie się uszkodzeń. 22 / 31
23 które charakteryzują rodziny automatów to: wymiar D; zbiór stanów w właściwie jego moc k; otoczenie a właściwie jego promień r. Często do opisanie rodziny automatów korzysta się z notacji (k, r), czyli podając jedynie liczbę dozwolonych stanów i promień otoczenia. Niestety taka notacja nie mówi nic o typie otoczenia i wymiarze przestrzeni. 23 / 31
24 Ewolucja Najprostszy model to (2, 1), czyli D = 1 i mamy 2 stany komórki. Stan komórki w chwili t + 1 jest zależny od: stanu komórki w chwili t; stanu sąsiadów w chwili t. Jeżeli stan komórki w chwili t + 1 zależy tylko od ilości jedynek w jej otoczeniu, to automat taki nazywamy automatem głosującym. 24 / 31
25 Automaty elementarne Najprostszą rodzinę automatów dają układy dla D = 1, czyli automaty jednowymiarowe. Automaty elementarne (2, 1) nazywamy elementarnymi. Automaty legalne Automaty które zachowują stan próżni (czyli 000 mapują na 0) są nazywane legalnymi. 25 / 31
26 Notacja (2, 1) opisuje się podając ich numer skonstruowany poprzez podanie wartości funkcji przejścia. Przykładowo to automat 90 (Rule 90 albo Reguła 90). 26 / 31
27 Przykłady klasyfikacji I. Automaty jednorodne np. Reguła 222. II. Automaty periodyczne (regularne) np. Reguła 190. III. Automaty chaotyczne np. Reguła 30. IV. Automaty złożone np. Reguła / 31
28 Równoważność Każdy z automatów jest równoważny trzem innym zamianę 0 z 1, symetrię funkcji względem otoczenia, obie powyższe operacje. Równoważność oznacza, że automaty dają tą samą konfigurację przy odpowiedniej zamianie stanów komórek. 28 / 31
29 Równoważność Przykład Reguła 42 jest równoważna z 171 (zamiana 0 z 1), 112 (symetria otoczenia), 241 (obie operacje). 29 / 31
30 Gra w życie Life Gra Life pozwala na wykonanie dowolnych obliczeń i jest równoważna modelowi maszyny Turinga. Jest to zatem przykład uniwersalnego modelu obliczeń. 30 / 31
31 Gra w życie Bakteria, która ma zero lub jednego sąsiada, umiera z osamotnienia. Żywa bakteria, która ma dwóch lub trzech żywych sąsiadów, jest szczęśliwa i żyje nadal. W pustym obszarze, który ma trzech sąsiadów, pojawia się, ze względu na optymalne warunki środowiska, żywa bakteria. Bakteria, która ma czterech lub więcej sąsiadów, umiera z zatłoczenia. 31 / 31
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
Automaty komórkowe. Katarzyna Sznajd-Weron
Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Modelowanie systemów biomedycznych
Modelowanie systemów biomedycznych - automaty komórkowe (czy jest to "nowe oblicze nauki"?) Arkadiusz Mandowski Modelowanie... R. Tadeusiewicz (2008) Modelowanie... R. Tadeusiewicz (2008) Jak rozpoznać
Podręcznik. Model czy teoria
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 58 92 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
AUTOMATY KOMÓRKOWE. Symulacje komputerowe (11) Sławomir Kulesza
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (11) AUTOMATY KOMÓRKOWE Wykład dla studentów Informatyki (1 rok MU) Ostatnia zmiana: 1.06.2012 (ver. 3.13) UKŁADY ZŁOŻONE Wszelki rozwój
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić?
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić? KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 16-18 listopada 2007 Spis treści Spis treści 1 Spis treści 1 2 Spis treści
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 00 Metainformacje i wprowadzenie do tematyki Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 19 1 Metainformacje Prowadzący, terminy, i.t.p. Cele wykładu Zasady
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie
Game of life Spis treści Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie Powstanie gry Game of life (Gra
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Automaty komórkowe Wersja: 6 maja
Ćwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.
1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody
Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu
Mateusz Żyliński Tadeusz Włodarkiewicz WireWorld Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu 1 I. Informacje ogólne A utomat komórkowy to system
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Fraktale. i Rachunek Prawdopodobieństwa
Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
CZYM SĄ OBLICZENIA NAT A URALNE?
CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Maszyna Turinga (Algorytmy Część III)
Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
ŻYCIE I EWOLUCJA. w komputerze. czwartek, 23 maja 13
ŻYCIE I EWOLUCJA w komputerze CO TO JEST ŻYCIE? CO TO JEST EWOLUCJA? CO TO JEST ŻYCIE? Trudno zdefiniować jednoznacznie co to jest życie Łatwiej podać cechy charakteryzujące organizmy (niekoniecznie pojedyncze
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Modelowanie pola akustycznego. Opracowała: prof. dr hab. inż. Bożena Kostek
Modelowanie pola akustycznego Opracowała: prof. dr hab. inż. Bożena Kostek Klasyfikacje modeli do badania pola akustycznego Modele i metody wykorzystywane do badania pola akustycznego MODELE FIZYCZNE MODELE
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 07 - Genetyka i automaty (uzupełnienie wykładu 06) Jarosław Miszczak IITiS PAN Gliwice 21/04/2016 1 / 21 1 Wprowadzenie 2 3 2 / 21 Wprowadzenie 1 Wprowadzenie 2 3 3
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Złożoność informacyjna Kołmogorowa. Paweł Parys
Złożoność informacyjna Kołmogorowa Paweł Parys Serock 2012 niektóre liczby łatwiej zapamiętać niż inne... (to zależy nie tylko od wielkości liczby) 100...0 100 100... 100 100 100 25839496603316858921 31415926535897932384
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Automaty komórkowe. Każdy węzeł siatki znajduje się w jednym z N dyskretnych stanów. Np. w modelu SIR moglibyśmy mieć
Automaty komórkowe 1 Wstęp 1.1 Definicja Automaty komórkowe są narzędziem wykorzystywanym czasem do modelowania układów dynamicznych. Są przykładem tego, że proste zasady i lokalne oddziaływania mogą prowadzić
Zbigniew JERZAK Adam KOTLIŃSKI. Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach
Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach Program zrealizowany na potrzeby Pracowni Komputerowej Analizy Obrazu i Mikroskopii Konfokalnej w Centrum Onkologii w Gliwicach Gliwice,
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Rozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Automaty komórkowe v. 2.71828182845904523536028 Krzysztof Malarz Niniejsze opracowanie Notatek do wykładu z automatów komórkowych jest prywatną własnością Krzysztofa Malarza i wykorzystywane jest wyłącznie
Elementy symetrii makroskopowej.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Matematyka dyskretna
Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Statystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Podręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Wyrażenia regularne.
Teoretyczne podstawy informatyki Wykład : Wyrażenia regularne. Prof. dr hab. Elżbieta Richter-Wąs.2.202 Wyrażenia regularne Wyrażenia regularne (ang. regular expressions) stanowią algebraiczny sposób definiowania