S Y L A B U S P R Z E D M I O T U

Wielkość: px
Rozpocząć pokaz od strony:

Download "S Y L A B U S P R Z E D M I O T U"

Transkrypt

1 "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE NUMERICAL METHODS FOR SCIENTIFIC AND ENGINEERING COMPUTATIONS Kod przedmiotu: WMLAACSM NMO, WMLAACNM NMO Podstawowa jednostka organizacyjna (PJO): (prowadząca kierunek studiów) Wydział Mechatroniki i Lotnictwa Kierunek studiów: Mechatronika Specjalność: Poziom studiów: Forma studiów: Automatyka i sterowanie studia drugiego stopnia Język prowadzenia: język polski studia stacjonarne, studia niestacjonarne Sylabus ważny dla naborów od roku akademickiego 2013/ REALIZACJA PRZEDMIOTU Osoby prowadzące zajęcia (koordynatorzy): dr hab. inż. Zdzisław ŁĘGOWSKI PJO/instytut/katedra/zakład: Wydział Mechatroniki i Lotnictwa / Instytut Techniki Uzbrojenia / Zakład Balistyki 2. ROZLICZENIE GODZINOWE a. studia stacjonarne semestr forma zajęć, liczba godzin/rygor (x egzamin, + zaliczenie na ocenę, z zaliczenie) punkty ECTS razem wykłady ćwiczenia laboratoria projekt seminarium I 46/ /+ 14/+ 4 razem b. studia niestacjonarne semestr forma zajęć, liczba godzin/rygor (x egzamin, + zaliczenie na ocenę, z zaliczenie) punkty ECTS razem wykłady ćwiczenia laboratoria projekt seminarium I 30/+ 10 6/+ 14/+ 4 razem

2 3. PRZEDMIOTY WPROWADZAJĄCE WRAZ Z WYMAGANIAMI WSTĘPNYMI Matematyka: znajomość rachunku różniczkowego i całkowego, teorii ciągów i szeregów funkcyjnych oraz równań różniczkowych. Informatyka 1: znajomość zasad algorytmiki, kodowania oraz uruchamiania programów komputerowych. 4. ZAKŁADANE EFEKTY KSZTAŁCENIA Symbol W1 W2 W3 U1 U2 U3 Efekty kształcenia Student, który zaliczył przedmiot, zna zasady funkcjonowania oraz charakterystyczne właściwości podstawowych metod numerycznego rozwiązywania algebraicznych równań nieliniowych (metoda bisekcji, metoda stycznych Newtona) oraz metod interpolacji i aproksymacji funkcji (wielomiany interpolacyjne Lagrange a, funkcje sklejane, metoda najmniejszych kwadratów) ma ugruntowaną wiedzę z zakresu najbardziej popularnych metod numerycznego całkowania funkcji jednej zmiennej z wykorzystaniem kwadratur interpolacyjnych Lagrange a (metody prostokątów, trapezów, metoda Simpsona) zna zasady formułowania zagadnień granicznych, konstruowania algorytmów i ich optymalizacji oraz wyznaczania numerycznych rozwiązań tych zagadnień dla równań różniczkowych zwyczajnych i cząstkowych (jednokrokowe metody Rungego-Kutty, metody różnic skończonych) potrafi efektywnie wyznaczać rozwiązania algebraicznych równań nieliniowych metodą bisekcji i metodą stycznych Newtona z założoną dokładnością oraz wykorzystywać walory każdej z tych metod, potrafi rozwiązać zadanie interpolacji i aproksymacji funkcji zadanej w postaci tablicy jej wartości z wykorzystaniem wielomianów bazowych Lagrange a i metody funkcji sklejanych (interpolacja) oraz metody najmniejszych kwadratów (aproksymacja) potrafi wyznaczać całki oznaczone funkcji jednej zmiennej z wykorzystaniem złożonych kwadratur interpolacyjnych Lagrange a (metody prostokątów, trapezów, metoda Simpsona) z założoną dokładnością oraz porównywać dokładności tych metod potrafi formułować oraz wyznaczać numeryczne rozwiązania zagadnień początkowych dla równań różniczkowych zwyczajnych metodami Rungego-Kutty różnych rzędów oraz zagadnień granicznych dla równań różniczkowych cząstkowych metodą różnic skończonych, wykonać i analizować wyniki obliczeń numerycznych. odniesienie do efektów kształcenia dla kierunku K W01, K W05 K W01, K W05 K W01, K W05 K_U01, K U07, K U08, K U20 K_U01, K U07, K U08, K U20 K_U01, K U07, K U08, K U20 5. METODY DYDAKTYCZNE Wykład z wykorzystaniem środków audiowizualnych Pisemne prace kontrolne ukierunkowane na sprawdzenie stopnia przyswojenia wiedzy Utrwalanie tematyki wykładów poprzez ćwiczenia rachunkowe Weryfikacja nabytej przez studentów wiedzy w trakcie ćwiczeń laboratoryjnych

3 6. TREŚCI PROGRAMOWE lp temat/tematyka zajęć wykł. ćwicz. liczba godzin lab. proj. semin Metody rozwiązywania równań nieliniowych. Metoda bisekcji: zasada iteracji, algorytm metody, szybkość zbieżności. Metoda stycznych Newtona: zasada iteracji, algorytm metody, warunki i szybkość zbieżności. 1.a Wyznaczanie przybliżonych rozwiązań równania nieliniowego z zadaną dokładnością metodą bisekcji oraz metodą stycznych Newtona. Porównanie szybkości zbieżności obydwu metod. 2. Interpolacja wielomianowa Lagrange a funkcji jednej zmiennej. Interpolacja funkcjami sklejanymi: minimalizacja krzywizny całkowitej, konstruowanie funkcji sklejanej (złożonej kawałkami z wielomianów trzeciego stopnia) metodą naturalną. 2.a Konstruowanie wielomianu interpolacyjnego Lagrange a badanej funkcji, zadanej w postaci dyskretnego zbioru jej wartości. Przybliżenie tej samej funkcji metodą interpolacji z wykorzystaniem funkcji sklejanej, złożonej kawałkami z wielomianów trzeciego stopnia. Porównanie dokładności obydwu metod interpolacji. 2.b Interpolacja funkcji jednej zmiennej bezpośrednią metodą wielomianową oraz metodą Lagrange a. 3. Aproksymacja wyników eksperymentów metodą najmniejszych kwadratów: funkcje aproksymujące w postaci wielomianów potęgowych. Aproksymacja funkcjami liniowymi. 3.a Aproksymacja wyników eksperymentu na przykładzie danych pomiarowych w postaci szeregu czasowego. Wyznaczanie postaci funkcji trendu zoptymalizowanej metodą najmniejszych kwadratów. Eliminacja wahań losowych efekt wygładzania szeregu. Badanie dokładności opracowanego modelu współczynnik determinacji. 3.b Aproksymacja dyskretnego zbioru danych badanej funkcji z wykorzystaniem funkcji liniowej i potęgowej, zoptymalizowanych metodą najmniejszych kwadratów. 4. Całkowanie numeryczne. Kwadratury interpolacyjne Newtona-Cotesa: metody prostokątów, metoda trapezów oraz metoda Simpsona. Wzory dla kwadratur złożonych, szacowanie błędów numerycznych metod całkowania. 4.a Obliczanie przybliżonej wartości całki oznaczonej funkcji jednej zmiennej z wykorzystaniem złożonych kwadratur interpolacyjnych Newtona-Cotesa i z zadaną dokładnością metodami prawych, lewych i średnich prostokątów, metodą trapezów oraz metodą Simpsona. Analiza porównawcza dokładności obliczeń stosowanych metod całkowania. 4.b Całkowanie numeryczne metodą trapezów oraz metodą Simpsona. 5. Metody numerycznego rozwiązywania równań różniczkowych zwyczajnych: metoda Eulera (łamanych), metody Rungego- Kutty różnych rzędów. 5.a Konstruowanie numerycznego rozwiązania zagadnienia początkowego dla równania różniczkowego pierwszego rzędu metodą Eulera oraz metodą Rungego-Kutty drugiego rzędu dla przypadku d = ½. Porównanie dokładności obydwu metod. 1/1* 1/1*

4 5.b Rozwiązywanie równań różniczkowych zwyczajnych pierwszego rzędu metodą Eulera oraz metodą Rungego-Kutty. 6. Metoda różnic skończonych 8/5* Równania różniczkowe cząstkowe: charakterystyki, klasyfikacja równań, formułowanie zagadnień granicznych dla równań różnych typów. Zasady dyskretyzacji równań różniczkowych cząstkowych. Ogólna zasada tworzenia ilorazów różnicowych dla pochodnych różnych rzędów. 6.2 Elementy ogólnej teorii numerycznego rozwiązywania równań różniczkowych cząstkowych: jawny schemat numeryczny, zbieżność rozwiązania numerycznego, twierdzenie Laxa zgodność i stabilność schematu numerycznego. 6.3 Badanie zgodności schematu numerycznego oraz jego stabilności metodą Neumanna, współczynnik wzmocnienia. Błędy dyssypacji i dyspersji wprowadzane przez schematy numeryczne. 6.3a Konstruowanie schematu numerycznego dla równania adwekcji z wykorzystaniem ilorazu róznicowego przedniego dla pochodnej względem czasu oraz ilorazu różnicowego centralnego dla pochodnej względem zmiennej przestrzennej. Badanie jego zgodności oraz stabilności metodą Neumanna. 6.4 Analiza dokładności schematu metodą równania zmodyfikowanego, optymalizacja schematu. Algorytmy numeryczne MRS dla równań parabolicznych: jawny schemat różnicowy, schemat blokowy realizacji obliczeń. 2/2* 7. Prace kontrolne, zaliczenia 4/2* Razem studia stacjonarne Razem studia niestacjonarne LITERATURA podstawowa: Kincaid D., Cheney W., Analiza numeryczna, WNT, Warszawa, 2006 Szatkowski A., Cichosz J., Metody numeryczne. Podstawy teoretyczne, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2008 Povstenko J., Wprowadzenie do metod numerycznych, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2005 Rymarz Cz., Metody numeryczne z algorytmami, WAT, Warszawa, 1981 uzupełniająca: Szymkiewicz R., Metody numeryczne w inżynierii wodnej, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2007 Skibicki D., Nowicki K., Metody numeryczne w budowie maszyn, Wydawnictwo Uczelniane Akademii Techniczno-Rolniczej w Bydgoszczy, Bydgoszcz, 2006 Fortuna Z., Macukow B., Wąsowski J., Metody numeryczne, WNT, Warszawa, SPOSOBY WERYFIKACJI ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA Efekt W1 sprawdzany jest na sprawdzianach kontrolnych i na zaliczeniu przedmiotu. Zakres wiedzy Zna podstawy metod numerycznego rozwiązywania algebraicznych równań nieliniowych,

5 metod interpolacji i aproksymacji w stopniu umożliwiającym ich stosowanie. Zna zasady metod numerycznego rozwiązywania algebraicznych równań nieliniowych, metod interpolacji i aproksymacji. Potrafi ogólnie ocenić zalety i ograniczenia stosowanych metod. Zna dokładnie zasady metod numerycznego rozwiązywania algebraicznych równań nieliniowych, metod interpolacji i aproksymacji. Potrafi precyzyjnie definiować właściwości stosowanych metod oraz uzasadniać ich występowanie. Efekt W2 sprawdzany jest na sprawdzianach kontrolnych i na zaliczeniu przedmiotu. Zakres wiedzy Zna podstawy metod numerycznego całkowania funkcji jednej zmiennej z wykorzystaniem kwadratur interpolacyjnych Lagrange a w stopniu umożliwiającym ich stosowanie. Zna zasady metod numerycznego całkowania funkcji jednej zmiennej z wykorzystaniem kwadratur interpolacyjnych Lagrange a. Potrafi ogólnie ocenić zalety i ograniczenia stosowanych metod. Zna dokładnie zasady metod numerycznego całkowania funkcji jednej zmiennej z wykorzystaniem kwadratur interpolacyjnych Lagrange a. Potrafi precyzyjnie definiować właściwości stosowanych metod oraz uzasadniać ich występowanie. Efekt W3 sprawdzany jest na sprawdzianach kontrolnych i na zaliczeniu przedmiotu. Zakres wiedzy Zna podstawy numerycznego rozwiązywania zagadnień granicznych dla równań różniczkowych zwyczajnych i cząstkowych (metody Rungego-Kutty, metoda różnic skończonych) w stopniu umożliwiającym ich stosowanie. Zna zasady numerycznego rozwiązywania zagadnień granicznych dla równań różniczkowych zwyczajnych i cząstkowych (metody Rungego-Kutty, metoda różnic skończonych). Potrafi ogólnie ocenić zalety i ograniczenia stosowanych metod. Zna dokładnie zasady numerycznego rozwiązywania zagadnień granicznych dla równań różniczkowych zwyczajnych i cząstkowych (metody Rungego-Kutty, metoda różnic skończonych). Potrafi precyzyjnie definiować właściwości stosowanych metod oraz uzasadniać ich występowanie. Efekt U1 sprawdzany jest praktycznie na ćwiczeniach rachunkowych, ćwiczeniach laboratoryjnych, w trakcie realizacji zadań indywidualnych i na zaliczeniu przedmiotu. Opis umiejętności Potrafi efektywnie wyznaczać rozwiązania algebraicznych równań nieliniowych z założoną dokładnością oraz rozwiązać zadanie interpolacji i aproksymacji funkcji zadanej w postaci tablicy jej wartości. Potrafi efektywnie wyznaczać rozwiązania algebraicznych równań nieliniowych z założoną dokładnością oraz rozwiązać zadanie interpolacji i aproksymacji funkcji zadanej w postaci tablicy jej wartości. Potrafi wykorzystać zalety najważniejszych ze stosowanych metod. Potrafi efektywnie wyznaczać rozwiązania algebraicznych równań nieliniowych z założoną dokładnością oraz rozwiązać zadanie interpolacji i aproksymacji funkcji zadanej w postaci tablicy jej wartości. Potrafi interpretować i uzasadniać otrzymywane rezultaty wszystkich stosowanych metod oraz porównywać je ze sobą. Efekt U2 sprawdzany jest praktycznie na ćwiczeniach rachunkowych, ćwiczeniach laboratoryjnych, w trakcie realizacji zadań indywidualnych i na zaliczeniu przedmiotu. Opis umiejętności Potrafi efektywnie wyznaczać całki oznaczone funkcji jednej zmiennej z wykorzystaniem złożonych kwadratur interpolacyjnych Lagrange a (metodami prostokątów, trapezów oraz metodą Simpsona) z założoną dokładnością. Potrafi efektywnie wyznaczać całki oznaczone funkcji jednej zmiennej z wykorzystaniem złożonych kwadratur interpolacyjnych Lagrange a (metodami prostokątów, trapezów oraz metodą Simpsona) z założoną dokładnością. Potrafi wykorzystać zalety najważniejszych ze stosowanych metod. Potrafi efektywnie wyznaczać całki oznaczone funkcji jednej zmiennej z wykorzystaniem

6 złożonych kwadratur interpolacyjnych Lagrange a (metodami prostokątów, trapezów oraz metodą Simpsona) z założoną dokładnością. Potrafi interpretować i uzasadniać otrzymywane rezultaty wszystkich stosowanych metod oraz porównywać je ze sobą. Efekt U3 sprawdzany jest praktycznie na ćwiczeniach rachunkowych, ćwiczeniach laboratoryjnych, w trakcie realizacji zadań indywidualnych i na zaliczeniu przedmiotu. Opis umiejętności Potrafi efektywnie wyznaczać numeryczne rozwiązania zagadnień początkowych dla równań różniczkowych zwyczajnych najprostszą metodą Rungego-Kutty oraz zagadnień granicznych dla równań różniczkowych cząstkowych metodą różnic skończonych. Potrafi efektywnie wyznaczać numeryczne rozwiązania zagadnień początkowych dla równań różniczkowych zwyczajnych metodami Rungego-Kutty różnych rzędów oraz zagadnień granicznych dla równań różniczkowych cząstkowych metodą różnic skończonych. Potrafi wskazać zalety najważniejszych ze stosowanych metod. Potrafi efektywnie wyznaczać numeryczne rozwiązania zagadnień początkowych dla równań różniczkowych zwyczajnych metodami Rungego-Kutty różnych rzędów oraz zagadnień granicznych dla równań różniczkowych cząstkowych metodą różnic skończonych. Potrafi interpretować i uzasadniać otrzymywane rezultaty wszystkich stosowanych metod oraz porównywać je ze sobą. Forma i warunki zaliczania przedmiotu: przedmiot zaliczany jest na podstawie zaliczenia na ocenę zaliczenie przedmiotu przeprowadzane jest w formie pisemnej warunkiem dopuszczenia do zaliczenia jest zaliczenie laboratorium oraz ćwiczeń rachunkowych. autor sylabusa... dr hab. inż. Zdzisław ŁĘGOWSKI Dyrektor Instytutu Techniki Uzbrojenia... prof. dr hab. inż. Józef GACEK + UZGODNIONO Kierownik Katedry Mechatroniki... prof. dr hab. inż. Bogdan ZYGMUNT

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U. Roboty przemysłowe

S Y L A B U S P R Z E D M I O T U. Roboty przemysłowe "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu:

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu:

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki Prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: Podstawowa jednostka organizacyjna

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: KOMPUTEROWE SYSTEMY AUTOMATYKI

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół

Bardziej szczegółowo

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: INFORMATYKA W SYSTEMACH AUTOMATYKI

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: KOMPUTEROWE WSPOMAGANIE EKSPLOATACJI

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U. Systemy pomiarowe Measurement systems WMLAMCSI-SPom, WMLAMCNI-SPom

S Y L A B U S P R Z E D M I O T U. Systemy pomiarowe Measurement systems WMLAMCSI-SPom, WMLAMCNI-SPom "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M".. Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: INFORMATYKA W ZASTOSOWANIACH

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

Matematyka - opis przedmiotu

Matematyka - opis przedmiotu Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Badania Operacyjne w Informatyce Operations Research in Computer Science

Bardziej szczegółowo

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa Prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

Podstawy elektroniki i miernictwa

Podstawy elektroniki i miernictwa Podstawy elektroniki i miernictwa Kod modułu: ELE Rodzaj przedmiotu: podstawowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Poziom studiów: pierwszego stopnia Profil studiów: ogólnoakademicki

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Wykład Ćwiczeni a 15 30

Wykład Ćwiczeni a 15 30 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 Z-EKO-476 Analiza matematyczna Calculus A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy automatyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy automatyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy automatyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 4 4-0_1 Rok: II Semestr: 4 Forma studiów:

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

Maszyny Elektryczne I Electrical Machines I. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. kierunkowy obowiązkowy polski Semestr IV

Maszyny Elektryczne I Electrical Machines I. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. kierunkowy obowiązkowy polski Semestr IV Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Teoria maszyn i mechanizmów Kod przedmiotu

Teoria maszyn i mechanizmów Kod przedmiotu Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU. 2. Kod przedmiotu ZP-Z1-19

Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU. 2. Kod przedmiotu ZP-Z1-19 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: BADANIA MARKETINGOWE 3. Karta przedmiotu ważna od roku akademickiego: 2014/2015

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Organizacja Systemów Produkcyjnych Organization of Production Systems Kierunek: Zarządzanie i Inżynieria Produkcji Management and Production Engineering Rodzaj przedmiotu: obowiązkowy

Bardziej szczegółowo

Podstawy logiki i analizy ilościowej Kod przedmiotu

Podstawy logiki i analizy ilościowej Kod przedmiotu Podstawy logiki i analizy ilościowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy logiki i analizy ilościowej Kod przedmiotu 11.1-WK-IDP-PLAI-W-S14_pNadGenC99R6 Wydział Kierunek Wydział

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1

Bardziej szczegółowo

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18 Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:

Bardziej szczegółowo

KARTA KURSU. Punktacja ECTS* Prof. dr hab. inż. Jerzy Jura

KARTA KURSU. Punktacja ECTS* Prof. dr hab. inż. Jerzy Jura KARTA KURSU Nazwa Inżynieria Procesowa 1 Nazwa w j. ang. Process Engineering 1. Kod Punktacja ECTS* Koordynator Prof. dr hab. inż. Jerzy Jura Zespół dydaktyczny Prof. dr hab. inż. Jerzy Jura Opis kursu

Bardziej szczegółowo

Modelowanie przetworników pomiarowych Kod przedmiotu

Modelowanie przetworników pomiarowych Kod przedmiotu Modelowanie przetworników pomiarowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Modelowanie przetworników pomiarowych Kod przedmiotu 06.0-WE-ED-MPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy automatyzacji Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy automatyzacji Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy automatyzacji Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 5 36-0_1 Rok: III Semestr: 5 Forma studiów:

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Mechanika analityczna - opis przedmiotu

Mechanika analityczna - opis przedmiotu Mechanika analityczna - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika analityczna Kod przedmiotu 06.1-WM-MiBM-D-01_15W_pNadGenVU53Z Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2015/2016. Kierunek: Opis przedmiotu

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2015/2016. Kierunek: Opis przedmiotu Sylabus przedmiotu: Specjalność: Nowoczesne metody Wszystkie specjalności Data wydruku: 3.01.016 Dla rocznika: 015/016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Projektowanie Produktu Product Design PRZEWODNIK PO PRZEDMIOCIE

Projektowanie Produktu Product Design PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek: Rodzaj przedmiotu: specjalnościowy Projektowanie Produktu Product Design Zarządzanie i Inżynieria Produkcji Management and Production Engineering Rodzaj zajęć: Wykład, laboratorium,

Bardziej szczegółowo

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy

I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy 1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim

Bardziej szczegółowo

Rozwinięcie zdolności samodzielnego definiowania i klasyfikowania rodzajów ewidencji finansowej dla poszczególnych rodzajów przedsiębiorców.

Rozwinięcie zdolności samodzielnego definiowania i klasyfikowania rodzajów ewidencji finansowej dla poszczególnych rodzajów przedsiębiorców. Kod przedmiotu: PLPILA0-IEEKO-L-4s9-01ZMISPNS Pozycja planu: D9 C1 C C3 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Rachunkowość MSP Rodzaj przedmiotu Specjalizacyjny/Obowiązkowy 3 Kierunek

Bardziej szczegółowo