Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba"

Transkrypt

1 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu reguła uczena, możlwośc perceptronu (np.: klasyfkacja w oparcu o separowalność zborów) 2. Środowsko Matlab, w szczególnośc z zakresu: tworzena perceptronu (newp) uczena perceptronu (tran, adept) konstruowana skryptów WPROWADZENIE TEORETYCZNE Perwszy perceptron został zbudowany w 1958 roku przez Rosenblata - było to elektronczno-elektromechanczne urządzene przeznaczone do rozpoznawana znaków. W odróżnenu od nnych urządzeń perceptron Rosenblata ne wymagał klasycznego programowana gdyż posadał zdolność do uczena sę. Ponadto odkryto nną bardzo ważną cechę tego elementu, którą znamy jako twerdzene Rosenblatta o zbeżnośc perceptronu: jeżel tylko stneje tak wektor wag w, przy pomocy którego element perceptronowy odwzorowuje w sposób poprawny zbór wzorcowych wektorów wejścowych na odpowadający mu zbór oczekwanych wartośc wyjścowych, to stneje metoda uczena tego elementu gwarantująca zbeżność do wektora w. Perceptron prosty Perceptron prosty składa sę jedyne z warstwy wejścowej warstwy wyjścowej, stanow węc najprostszą seć jednokerunkową. Poneważ ne stneją połączena pomędzy elementam warstwy wyjścowej, każdy z neuron może być traktowany nezależne jako osobna seć o welu wejścach jednym wyjścu. b x x n W 1. u y W lub. W n Perceptron składa sę z neuronów o budowe dentycznej jak wszystke sztuczne neurony (rys.2.1), różnca polega jedyne na ogranczenu sę do dwóch funkcj przejśca: unpolarnej: y = 1( u) 1 = 0 dla u > 0 dla u 0 Rys Model perceptronu bpolarnej: y = sgn( u) 1 dla u > 0 = 1 dla u 0

2 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b bas neuronu x -te wejśce neuronu u = n = 1 w x b Seć perceptronowa (perceptron welowarstwowy) W sec perceptronowej można wyodrębnć warstwy neuronów, wśród których wyróżnć można warstwę wejścową wyjścową. Pozostałe noszą nazwę warstw ukrytych. W sec perceptronowej (w perceptrone) ne ma połączeń pomędzy elementam należącym do tej samej warstwy elementy łączą sę jedyne z elementam z warstw sąsednch wg reguły każdy z każdym. Połączena pomędzy warstwam są asymetryczne skerowane zgodne z ch uporządkowanem, tzn. od warstwy wejścowej do perwszej warstwy ukrytej, następne od perwszej do drugej warstwy ukrytej, td. aż do warstwy wyjścowej. Ne ma połączeń zwrotnych. Warstwa wejścowa posada elementy o neco uproszczonej funkcj przejśca jednym wejścu. Jest to swego rodzaju układ receptorów odberających sygnały wejścowe po wstępnym ch przetworzenu (np. normalzacj, fltracj) przesyłających je do elementów warstwy następnej. Umowne jest to warstwa zerowa sec. Stąd perceptron zawerający jedyne warstwy wejścową wyjścową nos nazwę perceptronu jednowarstwowego lub naczej perceptronu prostego (jedyne warstwa wyjścowa jest warstwą przetwarzana neuronowego). Analogczne, jeśl stneje jedna warstwa ukryta, mamy do czynena z perceptronem dwuwarstwowym, td. Wymenone cechy perceptronu jednoznaczne klasyfkują go do grupy sec jednokerunkowych. Uczene perceptronu Uczene perceptronu (podobne jak uczene nnych sztucznych sec neuronowych) polega na takej modyfkacj jego wag aby kolejne jego odpowedz były coraz blższe odpowedz pożądanej. Oczekwana odpowedź mus być znana a proces uczena ma charakter uczena nadzorowanego (z nauczycelem). Algorytm uczena można sformułować w następujący sposób: 1. Podaj wektor wejścowy x wyznacz wyjśce y. 2. Podejmj jedną z ponższych decyzj: o jeśl odpowedź (y) jest poprawna, to wróć do punktu 1 zaprezentuj nny wektor wejścowy x; o jeśl odpowedź (y) jest nepoprawna zbyt mała (równa 0, bądź 1 zależne od funkcj przejśca), to dodaj wartość każdego wejśca x pomnożoną przez pewną lczbę η do wartośc odpowednego współczynnka wag, w ; o jeśl odpowedź (y) jest nepoprawna zbyt duża (równa 1), to odejmj wartość każdego wejśca x pomnożoną przez pewną lczbę η od wartośc odpowednego współczynnka wag, w. 3. Wróć do punktu perwszego pokaż nny wektor wejścowy x.

3 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str Jeżel podawane kolejnych wektorów wejścowych ne powoduje zman wag należy proces uczena zakończyć. Przedstawone w powyższym algorytme zmany wag można opsać zależnoścą: w ( t +1) = w ( t ) + w ( t ) gdze: w(t+1) wartość wag -tego wejśca neuronu w chwl t+1 (przyszła wartość) w(t) - wartość wag -tego neuronu w chwl t (aktualna wartość), w(t) zmana wartość wag -tego neuronu w chwl. Korektę wag w(t) można wyznaczyć na klka sposobów, najprostszy opsuje zależność: rys.2.2. Schemat uczena perceptronu w ( t ) =ηδ ( t )x µ wartość δ µ opsuje błąd popełnany przez neuron w odpowedz na podane µ tego wektora wejścowego (d µ oczekwana odpowedź, y µ rzeczywsta odpowedź) δ ( ) = d y ( t ) µ t µ µ Możlwośc perceptronu Rozmar wektora wejścowego (lość jego elementów) określa wymar przestrzen poddanej analze. Jeśl wektor wejścowy lczy 2 elementy to mamy doczynena z przestrzeną dwuwymarową (płaszczyzną) w układze współrzędnym na osach mamy sygnały wejścowe, zaś sygnał wyjścowy z perceptronu (y) to punkt znajdujący sę w obrębe przestrzen y=1 układu. Jeżel zapszemy wzór na potencjał membranowy perceptronu prostego dla przypadku dwuwymarowego: u = w1x1 + w2x2 b 0=w x +w x -b y=0 1 2 zauważymy, ż perceptron przełącza sę gdy potencjał membranowy u=0 to otrzymujemy równane prostej, Rys.2.3. Klasyfkacja perceptronu dwuwejścowego w 1 x1 + w2x2 b = 0 która dzel płaszczyznę na dwe półpłaszczyzny (rys.2.3.). Dla wejść z jednej półprzestrzen perceptron jest aktywy (y=1) a dla drugej ne (y=0 lub y=-1). Z przedstawonego rozważana wynka, że aby funkcja mogła być realzowana przez perceptron prosty sygnały wejścowe dla których funkcja aktywacj przyjmuje wartość 0

4 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 4 (-1) muszą leżeć w nnej półpłaszczyźne nż te sygnały wejścowe dla których funkcja ta przyjmuje wartość 1. Mów sę że muszą one być lnowo separowalne. Uogólnając rozważane na przestrzeń n-wymarową należy stwerdzć, ż perceptron dzel ją na dwe podprzestrzene (n-1)-wymarowe hperpłaszczyzną opsana równanem: n = 1 w x b = 0 Przykładem zadań lnowo separowanych może być problem bramk OR czy bramk AND. Jak wdać na rysunku 4.2 łatwo jest znaleźć prostą, która rozdzel 0 (zera) od 1 (jedynek), a zatem można wyznaczyć take wag perceptronu, które umożlwą wykonane odpowednej klasyfkacj. OR(x,x )=1 OR(x,x )=0 AND(x,x )=1 AND(x,x )=0 Rys.4.2. Lnowa separowalność punktów bramk OR AND Zupełne naczej będze z bramką XOR, rozkład jej punktów (rys.4.3a.) ne pozwala dokonać separacj przy pomocy jednej prostej. Oznacza to, ż klasyfkacj punktów bramk XOR ne może dokonać perceptron prosty gdyż ne są one lnowo separowane. Zauważyl to Mnsky Papert w 1969r. powodując swom odkrycem długoletn marazm w badanach nad sztucznym secam neuronowym. XOR(x,x )=1 XOR(x,x )=0 XOR(x,x )=1 XOR(x,x )=0 Rys.4.3. Brak lnowej separowalnośc punktów bramk XOR (a). Rozwązane problemu XOR przez perceptron dwuwarstwowy (b)

5 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 5 Ogranczene lnowej separowalnośc perceptronu prostego można usunąć poprzez wprowadzene warstw ukrytych co prowadz do perceptronu welowarstwowego. Własnośc perceptronu welowarstwowego pozwalają rozwązać problem XOR (rys4.3b.) do jego rozwązana wystarczy perceptron dwuwarstwowy (rys.4.4.) u 1 W 11 W 12 V 1 u W 21 V 2 u 2 x2 W 22 Rys.4.4 Schemat perceptronu dwuwarstwowego rozwązującego problem XOR Perceptron trójwarstwowy, tzn. seć z dwema warstwam ukrytym może realzować dowolne odwzorowana przestrzen stanów wejścowych w przestrzeń stanów wyjścowych. Innym słowy, perceptron trójwarstwowy gwarantuje stnene układu pojedyncza warstwa seć dwuwarstwowa seć trójwarstwowa Rys.4.5 Możlwośc podzału przestrzen w zależnośc od lczby warstw perceptronu wag sec realzującej poprawne dowolne odwzorowane zboru wzorcowych wektorów wejścowych {x} na odpowadający mu zbór oczekwanych odpowedz (wektorów wyjścowych {y}). Każdy z elementów perwszej warstwy ukrytej dzel przestrzeń stanów wejścowych na dwe półprzestrzene rozdzelona pewną hperpłaszczyzną decyzyjną. Następne każdy z elementów drugej warstwy, dokonuje przekształcena mnogoścowego półprzestrzen z warstwy perwszej, dzeląc przestrzeń stanów wejścowych na dwe podprzestrzene, z których jedną stanow zbór weloścenny wypukły. Następne każdy z elementów warstwy wyjścowej dokonuje transformacj mnogoścowej powyższych zborów wypukłych, w wynku której można uzyskać zbór o dowolnej postac. Jedynym ogranczenem jest dostateczne duża lczba elementów przetwarzających w sec połączeń mędzy nm.

6 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 6 PRZEBIEG ĆWICZENIA Zadane 1 Zbadać czy ponższe zadana klasyfkacj wzorców możlwe są do realzacj przy użycu perceptronu (czy zbory A B są lnowo-separowalne). Rozwązane przedstawć na rysunku odpowedź uzasadnć. a) A={a1, a2}, B={b1, b2} gdze a1={0.5, -0.5}, a2={-0.5, -1}, b1={1, 2}, b2={-1, 2}; b) A={a1, a2, a3}, B={b1, b2} gdze a1={-0.5, -0.5}, a2={0.5, 0.5}, a3={1, 1.5}, b1={0, -0.5}, b2={0, 1}; c) A={a1, a2},b={b1, b2, b3} gdze a1={0.5, -0.5}, a2={1, -0.5}, b1={-1.5, 0.5}, b2={-1, 2} b3={-2, 1}; d) d) A={a1, a2},b={b1, b2} gdze a1={-2, 1} a2={-3, 4} b1={2, -3} b2={1, 4} Wskazówka: Wykorzystać funkcję plotpv z paketu Matlab. Na potrzeby funkcj koneczne jest zakodowane zborów A oraz B np.: poprzez przypsane zborow A 0 oraz zborow B 1. Zadane 2 Opracować w matlabe skrypt wykonujący uczene perceptronu dla problemów podanych w zadanu 1 a) za pomocą funkcj tran, b) za pomocą funkcj adept. % Przykładowe rozwązane zad.2b przy pomocy funkcj adept p=[ ]; % punkty wejścowe z zad1a t=[ ]; % dane wzorcowe zad1a (pożądane odpowedz) net=newp([-1 1;-],1); E=1; % błąd popełnany przez seć =0; whle(sse(e)) % sse(e) funkcja celu (zależy od błędu sec) [net,y,e]=adapt(net,p,t); % wykonane 1 epok uczena perceptronu =+1; end end; Y E f >= 100 dsp('seć ne została nauczona') break %p o 100 epokach uczena przerwj go % lczba teracj % odpowedz neuronu na wzorzec uczacy % wektor błędów sec Porównać efekty uczena sec dla obu funkcj. Zameścć w sprawozdanu odpowedz sec oraz odpowedz oczekwane. Wskazówk! 1. W macerzy sygnałów wejścowych P należy zapsać wszystke wektory uczące, w macerzy oczekwanych odpowedz T należy w przypadku przynależnośc do zboru A przypsać 0, a do zboru B 1 (lub odwrotne)

7 Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 7 Zadane 3 Sprawdzć czy ponższe zadane klasyfkacj możlwe jest do realzacj przy użycu sec złożonej z dwóch neuronów. Jeżel zadane jest możlwe do realzacj opracować w matlabe skrypt, który wyznaczy wag, dla których sec będze klasyfkowała elementy czterech zborów A, B, C, D: A={a1,a2,a3}, B={b1,b2}, C={c1,c2}, D={d1,d2,d3} gdze a1=(2,11), a2=(7,10), a3=(8,16), b1=(10,6), b2=(15,10), c1=(-4,6), c2=(0,7), c3=(-5,-15), d1=(-6,-7), d2=(-10,-4). W sprawozdanu proszę zameścć rysunek obrazujący rozkład punktów na płaszczyźne oraz proste wydzelające poszczególne zbory.

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Metody analizy obwodów

Metody analizy obwodów Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Unwersytet Mkoaja Kopernka Wydza Fzyk, Astronom Informatyk Stosowanej IS Helena Jurkewcz numer albumu: 177622 Praca magsterska na kerunku Fzyka Komputerowa Neeukldesowe sec neuronowe Opekun pracy dyplomowej

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

wiedzy Sieci neuronowe (c.d.)

wiedzy Sieci neuronowe (c.d.) Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Warszawa, 28 stycznia 2017 r., Blok tematyczny II Sztuczne sieci neuronowe (środowisko MATLAB i Simulink z wykorzystaniem Neural Network Toolbox),

Warszawa, 28 stycznia 2017 r., Blok tematyczny II Sztuczne sieci neuronowe (środowisko MATLAB i Simulink z wykorzystaniem Neural Network Toolbox), Studa Doktorancke IBS PA nt. Technk nformacyjne teora zastosowana WYKŁAD Semnarum nt. Modelowane rozwoju systemów w środowsku MATLABA Smulnka Prof. nadzw. dr hab. nż. Jerzy Tchórzewsk, jtchorzewsk@ntera.pl;

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Odtworzenie wywodu metodą wstępującą (bottom up)

Odtworzenie wywodu metodą wstępującą (bottom up) Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

SIECI NEURONOWE W ZAGADNIENIACH BEZPIECZEŃSTWA ZAOPATRZENIA W WODĘ

SIECI NEURONOWE W ZAGADNIENIACH BEZPIECZEŃSTWA ZAOPATRZENIA W WODĘ prof. dr hab. inż. Stanisław BIEDUGNIS dr inż. Mariusz SMOLARKIEWICZ Katedra Programowania i Zarządzania Bezpieczeństwem Zakład Zarządzania Ryzykiem, SGSP dr Marcin M. SMOLARKIEWICZ Katedra Programowania

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty)

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty) Plan wykładu Dzałane neuronu dyskretnego warstwy neuronów dyskretnych Wykład : Reguły uczena sec neuronowych. Sec neuronowe ednokerunkowe. Reguła perceptronowa Reguła Wdrowa-Hoffa Reguła delta ałgorzata

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II obert Berezowsk Natala Maslennkowa Wydzał Elektronk Poltechnka Koszalńska ul. Partyzantów 7, 75-4 Koszaln Mchał Bałko Przemysław Sołtan ealzacja logk szybkego przenesena w prototype prądowym układu PG

Bardziej szczegółowo

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie!

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie! Kwesta wyboru struktury modelu neuronowego Schematyczne przedstawene etapów przetwarzana danych w procese neuronowego modelowana Ne stneje ogólna recepta, każdy przypadek mus być rozważany ndywdualne!

Bardziej szczegółowo

Najlepsze odpowiedzi Najlepsze odpowiedzi p. 1/7

Najlepsze odpowiedzi Najlepsze odpowiedzi p. 1/7 Najlepsze odpowedz Rozgrzewka A B C X 1,4 2,12 0,9 Y 3,0 1,2 0,1 Z 1,12 1,0 5,3 Rozgrzewka L P A 0,0 0,0 B -2,1 1,-2 C 1,-2-2,1 Rozgrzewka L P A 0,0 0,0 B -2,1 1,-2 Gracz drug gra L C 1,-2-2,1 Rozgrzewka

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 5

METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-

Bardziej szczegółowo

ZASTOSOWANIE METOD DEKOMPOZYCJI I KOORDYNACJI W ANALIZIE SYSTEMÓW ELEKTRYCZNYCH

ZASTOSOWANIE METOD DEKOMPOZYCJI I KOORDYNACJI W ANALIZIE SYSTEMÓW ELEKTRYCZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrcal Engneerng 2016 Stansław PŁACZEK* ZASTOSOWANIE METOD DEKOMPOZYCJI I KOORDYNACJI W ANALIZIE SYSTEMÓW ELEKTRYCZNYCH Złożone systemy najlepej

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych Ćwczene arametry statyczne tranzystorów bpolarnych el ćwczena odstawowym celem ćwczena jest poznane statycznych charakterystyk tranzystorów bpolarnych oraz metod dentyfkacj parametrów odpowadających m

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo