Nieeuklidesowe sieci neuronowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nieeuklidesowe sieci neuronowe"

Transkrypt

1 Unwersytet Mkoaja Kopernka Wydza Fzyk, Astronom Informatyk Stosowanej IS Helena Jurkewcz numer albumu: Praca magsterska na kerunku Fzyka Komputerowa Neeukldesowe sec neuronowe Opekun pracy dyplomowej prof. dr hab. Wodzsaw Duch Unwersytet Mkoaja Kopernka Toruń 2009 Przyjmuj akceptuj Potwerdzam złożene pracy dyplomowej data podps opekuna pracy data podps pracownka dzekanatu

2 UMK zastrzega sobe prawo własnośc nnejszej pracy magsterskej w celu udostępnana dla potrzeb dzałalnośc naukowo-badawczej lub dydaktycznej 2

3 Sps treśc 1 Wstęp Cel pracy Sec neuronowe - nformacje ogólne Sec MLP Neuron Funkcje transferu Sec jedno welowarstwowe Uczene sec neuronowych Metoda propagacj wstecznej błedu Reguła delta Algorytm propagacj wstecznej błędu DMLP Neeukldesowe sec neuronowe DMLP Implementacja neeukldesowych sec neuronowych przez renormalzację coś jeszcze Robota Coś o programe??? Dane,ch przygotowane, coś jeszcze? Rezultaty Podsumowane wnosk,zakonczene 13 3

4 1 Wstęp 1.1 Cel pracy Wstęp cel opszę jak reszta pracy będze gotowa. 1.2 Sec neuronowe - nformacje ogólne Coś o tym że sec bologczne były nspracją dla sztucznych sec neuronowych. Jakeś zastosowana td. 4

5 2 Sec MLP Seć MLP (Mult Layer Perceptron) to welowarstwowa, sprzężona do przodu(?? a może lepej jednokerunkowa)(feedforward) seć neuronowa. Sec MLP nadają sę do rozwązywana zagadneń klasyfkacyjnych... Podstawową jednostką sztucznej sec neuronowej jest neuron. 2.1 Neuron Wykorzystany w pracy model neuronu można najogólnej przedstawć na ponższym rysunku:(psać coś o modelu MacCullocha-Pttsa?) Rysunek 1: Neuron Powyższy model neuronu ma wele wejść jedno wyjśce. Dane wchodzące na wejśca (x), mnożone są przez pewne współczynnk (wag) sumowane, tworząc sygnał pobudzający, oznaczony jako net: net = N w x (1) Gdze N oznacza lczbę wejść neuronu, uzależnoną od wymaru wektora danych wejścowych. =0 To właśne wag zmenają swą wartość podczas procesu uczena sec są analogą do czułośc bologcznego neuronu na mpulsy, pochodzące z poszczególnych wejść. Do aktywacj neuronu może zostać dodany tzw próg (bas) oznaczony jako θ, pobudzene ma wtedy postać: net = N w x + θ (2) =0 Przepyw sygnałów odbywa sę w jednym kerunku: od wejść do wyjśca. W cele neuronu net jest przetwarzany, dając w rezultace sygnał wyjścowy. Do przetwarzana net wykorzystywana jest pewna funkcja, zwana funkcją transferu: y = f(net) (3) W najprostszym przypadku funkcja może być tożsamoścowa dawać na wyjśce net,częścej jednak wykorzystywane są bardzej skomplkowane funkcje. 5

6 2.2 Funkcje transferu Funkcja transferu to funkcja określająca zazwyczaj nelnową zależność mędzy pobudzenem neuronu net, a jego wyjścem y. W klasycznych modelach sec neuronowych wykorzystywana była funkcja bnarna o postac: { 1, gdy net > 0 f(net) = (4) 0, gdy net 0 Jak wdać jest to funkcja skokowa przyjmująca wartośc 0 1. Bardzej nteresujące są funkcje cągłe, przyjmujące też wartośc pośredne. Jedną z klas funkcj transferu są funkcje o kształce sgmody. Funkcje te, lczone od aktywacj w postac sumy ważonej wejść, są dość powszechne używane w secach MLP zalczane są do tzw. funkcj nelokalnych, (czyl funkcj, których wartość jest różna od zera dla danych wejścowych, leżących na neskończonym obszarze wejścowym). W mojej pracy korzystam z trzech funkcj transferu:(na raze tylko wzory wykresy, potem coś jeszcze dopszę) Funkcja logstyczna : f 1 (net) = e β net (5) Rysunek 2: Wykres funkcj logstycznej (5) β jest parametrem określającym skos funkcj, tym nemnej skos może być też regulowany wartoścam wag progu. Funkcja troj? 0, x < a x 1 2 f 2 (x a, x) = + (x a)(2 x+x a) 2( x), x [a x, a) (x a)(2 x x+a) 2( x), x [a, a + x] 2 1, x > a + x (6) 6

7 Rysunek 3: Wykres funkcj tr x jest odpowednkem szerokośc (nepewnośc x) f 3 (x a, b) = 1 [ ] 1 + e x a+b 2b ln 1 + e x a b (7) Rysunek 4: Wykres funkcj log 7

8 Funkcje f 2 f 3 pochodzą z (tu będze przypsa do pracy prof Ducha) 2.3 Sec jedno welowarstwowe Połączone ze sobą neurony tworzą seć. Jej budowa określona jest poprzez lczbę sposób połączena neuronów. Najprostszym przykładem sec neuronowej jest seć utworzona tylko z jednej warstwy. Każdy z neuronów danej warstwy ma ten sam wektor danych wejścowych, wag są jednak ndywdualne dla każdego neuronu. Szczególnym przypadkem sec jednowarstwowej jest seć złożna z jednego neuronu, która pozwala jedyne na odzelene dwóch separowalnych lnowo klas.(zał aktywacja funkcje transferu z powyższych sekcj) Wększe możlwośc dają sec welowarstowe, gdze wyjśca neuronów jednej warstwy połączone są z wejścam neuronów warstwy następnej. Zazwyczaj rozróżna sę warstwy : Wejścową - do neuronów tej warstwy dochodzą dane zewnętrzne. Wewnętrzną - może zawerać jedną lub węcej warstw, każdą o lośc neuronów zależnej od problemu. Zewnętrzną - zazwyczaj lość neuronów tej warstwy odpowada lośc klas rozpoznawanych w danym zadanu. Każdy neuron odpowada jednej klase danych. W zależnośc od lczby warst neuronów sec take mogą tworzyć różne, skomplkowane obszary decyzyjne. 2.4 Uczene sec neuronowych Nauka sec polega na modyfkacj wag neuronów, której celem jest mnmalzacja funkcj błędu (funkcj kosztu). W zależnośc od wymagań, można używać różnych funkcj błędu. Powszechne stosowaną wykorzystaną w nnejszej pracy funkcją kosztu, jest funkcja sumująca kwadraty różnc pomędzy wartoścam wyjścowym oblczonym przez seć, a wartoścam wzorcowym. Podczas uczena, w każdej teracj redukowana jest funkcja błędu dla kolejnych, poszczególnych obrazów wejścowych. Łączny błąd dla całego zboru danych uczących można przedstawć jako: E = 1 2 n =1 j=0 m (d j y j (x )) 2 (8) Gdze n jest lczbą obrazów ( wektorów wejścowych) uczących seć, m lczbą wyjść sec, y j (x ) oznacza odpowedż oblczoną przez seć na j-tym wyjścu od wektora wejścowego x, natomast d j to oczekwana odpowedż neuronu. Zbór danych uczących seć oprócz wektorów wejścowych, pownen zawerać także nformację do jakej klasy należy dany wektor danych. Tak sposób nauk określany jest jako uczene nadzorowane. Do nauk sec najczęścej wykorzystywane są różne procedury oparte na metodach gradentowych. Podstawową metodą nauk dla MLP jest metoda propagacj wstecznej błędu. 2.5 Metoda propagacj wstecznej błedu Metoda wstecznej propagacj błędu zalczana jest do metod gradentowych. Mnmalzacja funkcj błędu wąże sę z lczenem gradentów po parametrach adaptacyjnych (wagach) zmane wag w kerunku przecwnym do oblczonego gradentu. Oblczane gradentu wymaga aby funkcja błędu, a co za tym dze także funkcje transferu dla neuronów były różnczkowalne Reguła delta Ponżej wyjaśnono sposób nauk oparty na tzw regule delta, dla sec jednowarstwowej. Wag w procese uczena modyfkowane są zazwyczaj teracyjne. Wzór na współczynnk o jak dokonuje sę korekcja wag ma postać: w = η E l (w ) (9) 8

9 Gdze E l to błąd jednego (l-tego) obrazu wejścowego, w to wektor wag dla -tego neuronu. Rozpsując k-tą składową gradentu uwzględnając, to że błąd zależy od wag poprzez aktywację można dojść do ponższego wzoru: E l = E l net (10) w k net w k Gdze w k jest wagą k-tego wejśca, -tego neuronu w danej warstwe, a net to aktywacja -tego neuronu. Błąd jest zależny od aktywacj poprzez funkcję transferu, rozwjając perwszą część prawej strony wzoru (10), dostaje sę wyrażene określane jako δ: δ l = E l = 1 (d l f l ) 2 = (d l f l )f (net ) (11) net 2 net Indeks l przy d l f l ma podkreślać, że są to wartośc dla l-tego obrazu wejścowego. f (net ) oznacza pochodną funkcj aktywacj po pobudzenu -tego neuronu. Ne jest to zaznaczone wprost, ale oczywśce pobudzene jest w tym wypadku lczone od wartośc l-tego obrazu. Drug człon prawej stronu równana (10) równy jest wartośc k-tej składowej wektora wejścowego (do tego neuronu?): net w k = x k (12) Podsumowując wzór na korekcję k-tej wag, -tego neuronu, w j-tym kroku, dla jednego wektora wejścowego, w jednej warstwe można zapsać: w (j+1) k = w (j) k + η (d f ) f (net )x k (13) Powyższy przykład można łatwo uogólnć dla bardzej rozbudowanej sec. Na regule delta bazuje, mający zastosowane dla sec welowarstwowych, algorytm propagacj wstecznej Algorytm propagacj wstecznej błędu Wzory dla sec welowarstwowej są analogczne do wzorów dla sec jednowarstwowej. Różnca polega na tym, że funkcja błędu lczona jest tylko dla ostatnej warstwy, gdyż wzorcowe wartośc sygnału znane są tylko dla wyjśca sec, ne zaś dla wyjść poszczególnych warstw wewnętrznych. Nazwa propagacja wsteczna błędu oznacza, że do oblczena błędu (w sense δ) danej warstwy musmy najperw oblczyć błąd warstwy, która znajduje sę przed ną. Czyl najperw lczy sę wartośc na wyjścu sec, na ch podstawe określa błędy warstw, cofając sę aż do warstwy wejścowej. Nech δ (s) oznacza sygnał delty dla -tego neuronu s-tej warstwy, a cała seć kończy sę na warstwe o numerze s+1, wzory są odpowedne dla jednego, danego wektora wejścowego(w poprzednej sekcj zaznaczał to ndeks l, teraz dla czytelnośc pomnęty mn. dla E (a może lepej dać ten ndeks jednak?)): f (s) δ (s) = E net = E f (s) f (s) net = E f (s) f (net ) (14) określa wartość wyjśca tego neuronu s-tej warstwy jest tym samym jedną ze składowych wektora wejśca f (s) dla warstwy s+1. E f (s) = 1 2 f (s) m j=0 [ ( )] 2 m d j f (s+1) net j (f (s) ) = j=0 [ (d j f (s+1) j )f (net j ) net j f (s) ] = m j=0 δ (s+1) j w j (15) Delta używana do oblczana poprawk dla warstwy s wykorzystuje deltę lczoną w warstwe s+1, tak samo delta dla warstwy s-1 korzysta z delty warstwy s td. Ostateczne delta dla -tego neuronu warstwy s wynos: δ (s) = f (net ) m j=0 δ (s+1) w (s+1) j (16) 9

10 Zmana wag k-tego wejśca tego neuronu: w (s) k = ηf (s 1) k δ (s) (17) Algorytm nauk polega na teracyjnym poprawanu wag dla neuronów sec przy pomocy powyższych wzorów. W jednej teracj do nauk wykorzystywane są wszystke obrazy zboru uczącego, dobrze jest gdy wektory danych podawane są na wejśce w kolejnośc losowej. Po wykonanej teracj aby można oblczyć błąd całoścowy ze wzoru (8). Istneją różne krytera określające moment zakończena nauk sec,np.: Nauka jest przerywana, gdy wartość całoścowej funkcj błędu osągne wartość mnejszą od wcześnej zadanego parametru: E < ɛ Nauka jest przerywana gdy zmana całoścowej funkcj błędu jest mnejsza od zadanego parametru: E < ɛ Wadam tej metody są wolna zbeżność możlwość utykana na mnmach lokanych. Opracowano wele modyfkacj tego algorytmu. (Psać coś o nnych algorytmach uczena, albo o ulepszenach typu metoda momentu?) 10

11 3 DMLP Neeukldesowe sec neuronowe Jako aktywacj neuronu w sec, poza omówonym w poprzednm rozdzale loczynem skalarnym wektora wag wektora wejścowego, można stosować aktywację opartą na merze odlegóśc. Aktywacj opartej na odegłośc używa sę mędzy nnym w secach z radalnym funkcjam bazowym (sec RBF wykorzystujące jako aktywację odległość od centrum funkcj bazowej).także w secach MLP aktywację w fome kombnacj lnowej wag wejśca, da sę zastąpć aktywacją opartą o odlegóść. Sec MLP, uzywające jako pobudzena funkcj opartej o odległość, nazwać można (ref) D-MLP(Dstance-based MLP). Sec D-MLP w których wykorzystana została mara odłegłośc nna nż eukldesowa noszą mano (tak obektywne są nazywane?) neeukldesowych sec MLP. Zastąpene ważonej aktywacj funkcją bazującą na odległośc, powoduje znaczną zmanę kształtów obszarów decyzyjnych wyznaczanych przez seć. Korzyścą z (?) użyca neeukldesowych sec neuronowych jest możlwość uzyskana podobnych, złożonych obszarów decyzyjnych jak przy zwykłej sec MLP, jednak przy nższej złożonośc sec neeukldesowej w porównanu do zwykłej sec welowarstwowej. 3.1 DMLP Funkcję aktywacj neuronu, da sę przekształcć tak, aby stała sę sę funkcją zawerającą odlegóść : (jakeśc referencje do pracy prof Ducha,Dr Adamczaka Dercksena) w x = w 2 + x 2 w x 2 (18) W ogólnośc funkcję transferu lczyć można od aktywacj w postac: net = d 0 D(w, x) (19) Gdze d 0 ma wartość ustaloną( np dla d 0 = w 2 + x 2, jeśl wektory x w są unormowane), bądź jest parametrem adaptacyjnym, a D(w, x) to funkcja odległośc. Norma eukldesowa może zostać zastąpona przez nny rodzaj normy. Np przez dowolną normę Mnkowskego w postac: D M (w, x, α) = ( N =1 w x α ) 1 α Dla α = 2 dostaje sę zwykła odległość eukldesową. Dla oblczeń symbolcznych możlwe jest użyce metryk opartej na:... Implementację neeukldesowej sec MLP można wykonać na dwa sposoby. Prezentowana w nnejszej pracy metoda polega na zastąpenu aktywacj net poprzez net wymusza małą modyfkację w algorytme nauk. Algorytm propagacj wtecznej błędu zakłada stnene pochodnej funkcj aktywacj, a co za tym dze mus stneć pochodna funkcj odległośc.jest to spełnone dla mary Mnkowskego. Bez problemu da sę dla nej wyznaczyć gradent: ( N ) D M (w, x, α) 1 α 1 = w x α w k x k α 1 w k x k (21) w k w =1 k Możlwe jest też zamplementowane neeukldesowej secl MLP bez zman w algorytme nauk, a tylko poprzez odpowedną transformację danych wejścowych. Metoda została opsana w artykule (Duch Adamczak nn). Krótko omówę ją w następnej sekcj: 3.2 Implementacja neeukldesowych sec neuronowych przez renormalzację Zakłada sę stałą normę wektorów wejścowych x. Aby ustalene stałej normy ne łączyło sę ze stratą nformacj wymagane jest dodane jednej, lub węcej cech do wektorów uczących. Dodatkową składową wektora uczącego może być wartość x r = R 2 x 2 gdze R max x x. Powyższe dzałana skutkują umeszczenem danych na półsferze o promenu R. Wektor typu (x, x R ) może zostać znormalzowany do (x, x R ) D = 1 przy użycu norm opartych o różne funkcje odległośc, np normy Mnkowskego. Węcej szczegółów w artykule (fer do art) coś jeszcze dopsać (20) 11

12 3.3 coś jeszcze 12

13 4 Robota 4.1 Coś o programe??? 4.2 Dane,ch przygotowane, coś jeszcze? 4.3 Rezultaty 5 Podsumowane wnosk,zakonczene 13

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty)

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty) Plan wykładu Dzałane neuronu dyskretnego warstwy neuronów dyskretnych Wykład : Reguły uczena sec neuronowych. Sec neuronowe ednokerunkowe. Reguła perceptronowa Reguła Wdrowa-Hoffa Reguła delta ałgorzata

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Katedra Informatyki Stosowanej Helena Jurkiewicz numer albumu: 177622 Praca magisterska na kierunku fizyka komputerowa

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych

Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych Ćwczene arametry statyczne tranzystorów bpolarnych el ćwczena odstawowym celem ćwczena jest poznane statycznych charakterystyk tranzystorów bpolarnych oraz metod dentyfkacj parametrów odpowadających m

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 5. SZTUCZNE SIECI NEURONOWE REGRESJA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wdzał Elektrczn Poltechnka Częstochowska PROBLEM APROKSYMACJI FUNKCJI Aproksmaca funkc przblżane

Bardziej szczegółowo

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii Pomary dawek promenowana wytwarzanego w lnowych przyspeszaczach na użytek radoterap Włodzmerz Łobodzec Zakład Radoterap Szptala m. S. Leszczyńskego w Katowcach Cel radoterap napromenene obszaru PTV zaplanowaną,

Bardziej szczegółowo

Współczynniki aktywności w roztworach elektrolitów. W.a. w roztworach elektrolitów (2) W.a. w roztworach elektrolitów (3) 1 r. Przypomnienie!

Współczynniki aktywności w roztworach elektrolitów. W.a. w roztworach elektrolitów (2) W.a. w roztworach elektrolitów (3) 1 r. Przypomnienie! Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ (s) Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H H H r Przypomnene! tw, Ag ( aq) tw, ( aq) Jest ona merzalna ma sens fzyczny.

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI ODSTAJĄCYCH, UZUPEŁNIANIE BRAKUJĄCYCH DANYCH Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska WYKRYWANIE

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Katedra Informatyki Stosowanej Helena Jurkiewicz numer albumu: 177622 Praca magisterska na kierunku fizyka komputerowa

Bardziej szczegółowo

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka Zestaw przezbrojenowy na nne rodzaje gazu 8 719 002 262 0 1 Dysza 2 Podkładka 3 Uszczelka PL (06.04) SM Sps treśc Sps treśc Wskazówk dotyczące bezpeczeństwa 3 Objaśnene symbol 3 1 Ustawena nstalacj gazowej

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

architektura komputerów w. 3 Arytmetyka komputerów

architektura komputerów w. 3 Arytmetyka komputerów archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

Współczynniki aktywności w roztworach elektrolitów

Współczynniki aktywności w roztworach elektrolitów Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ 2 (s) = Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag ( aq) Jest ona merzalna ma sens fzyczny.

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Katedra Informatyki Stosowanej Helena Jurkiewicz numer albumu: 177622 Praca magisterska na kierunku fizyka komputerowa

Bardziej szczegółowo

Równania rekurencyjne na dziedzinach

Równania rekurencyjne na dziedzinach Marek Materzok Równana rekurencyjne na dzedznach Pommo, ż poczynłem starana, aby praca ta była możlwe kompletna wolna od błędów, ne mogę zagwarantować, że ne wkradły sę do nej żadne neścsłośc czy pomyłk.

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI Wojcech BOŻEJKO, Marusz UCHROŃSKI, Meczysław WODECKI Streszczene: W pracy rozpatrywany jest ogólny problem kolejnoścowy

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym. =DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo