I kolokwium ze Wstępu do Teorii Miary
|
|
- Michalina Szewczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 I kolokwium ze Wstępu do Teorii Miary Grupa A 1. (a)udowodnić,żelim(a n B n ) lima n limb n. (b) Znaleźć granice górną i dolną ciągu zbiorów: ( A n = ( 1) n 1,1 ( 1)n 1 ) [3,4+( 1) n ). n n a)x lim(a n B n )wtedyitylkowtedy,gdyxnależydonieskończenie wieluprzekrojówa B.Alewtedyx A n dlanieskończeniewieluni x B n dlanieskończeniewielun.zatemnależyjednocześniedolima n ilimb n. b)dlakażdegoxzprzedzialu(0,1)istniejetakien,żedlan>n 0 zachodzi 1 n <x<1 1 n.zatem(0,1) lima n.punktyzodcinka[3,5] nienależądoa n dlanieparzystych,aspoza(0,1) [3,5]nienależądo A n dlaparzystychn(zwykledlażadnych),więc(0,1)=lima n. Dodatkowo,punkty0,1należądoA n dlanieparzystychn,aprzedział [3,5]zawierasięwA n dlaparzystychn.punktyz(,0) (1,3) (5, )należądoconajwyżejskończeniewielua n,więclima n =[0,1] [3,5]. 2. Znaleźć σ-ciało generowane w Z przez rodzinę wszystkich trzyelementowychzbiorówpostaci{2n,2n+1,2n+2}(n Z).Odpowiedźuzasadnić. Dowiedziemy,żejestto2 Z,czylirodzinawszystkich podzbiorów Z. Jest jasne, że jest to σ-ciało, bo skoro zawiera wszystkie podzbiory Z, to jest zamknięte na wszystkie możliwe operacje mnogościowe. Oczywiście, zawiera też zbiory trzyelementowe danej postaci, bo zawiera wszystkie podzbiory. Wystarczy więc uzasadnić, że każdy zbiór dasięuzyskaćztrzyelementowychzbiorówpostaci{2n,2n+1,2n+2} przez działania nie wyprowadzające(ogólnie) poza σ-ciało. Ponieważ każdy podzbiór Z jest przeliczalną sumą zbiorów jednoelementowych, wystarczy wygenerować zbiory jednoelementowe. Dlanparzystych,czylipostacin=2k,mamy {n}={2k,2k+1,2k+2} {2k 2,2k 1,2k}, zatem potrafimy wygenerować singletony parzyste. Wobec tego dla n nieparzystych,n=2k+1,możemyzapisać {n}={2k,2k+1,2k+2}\{2k}\{2k+1}, 1
2 co kończy dowód. 3. Zdefiniujmy σ-ciało borelowskie B na R jako najmniejsze σ-ciało zawierające wszystkie przedziały otwarte. Udowodnić, że B jest generowane przezrodzinę{(,q]:q Q}. Oznaczmy przez A σ-ciało generowane przez daną rodzinę.zauważmy,żedlakażdejliczbya Rmamy (,a)= (,q n ], gdy(q n )jestrosnącymciągiemliczbwymiernychzbieżnymdoa.podobnie, (,a]= (,q n ], gdy(q n )jestmalejącymciągiemliczbwymiernychzbieżnymdoa.zatempółproste(,a),(,a]należądoadlawszystkicha R. Ponieważ,dladowolnycha<b Rmamy (a,b)=(,b) ( (,a] ) c, każdyprzedziałotwartymusinależećdoa.czylib A. Z drugiej strony,(q, ) można zapisać, na przykład, jako przeliczalną sumęprzedziałowotwartych (q,q+n).zatem(,q]=(q, ) c należydob,czylia B. 4. Niech(X, F) będzie przestrzenią mierzalną. Ustalmy skończony zbiór {x 1,...,x k } X.Czyfunkcjazbioruµ:F [0, ]określonawzorem jest miarą? µ(a)= k A(x i ) Miara jest nieujemną przeliczalnie addytywną funkcją zbioru spełniającą przypisująca zbiorowi pustemu 0. Skoro µ jest sumąwartościfunkcjinieujemnych,tojestnieujemna.ponadto (x)=0 dlakażdegox,więcµ( )=0.Rozważmyterazciąg(A n )zbiorówparamirozłącznych.niecha= A n.dlakażdego,...,kmamy A(x i )=1wtedyitylkowtedy,gdyistniejetakin(k),że An(k) (x i )=1. Zatem k k A(x i )= A n(k) (x i ) 2
3 Co więcej, taki n może być tylko jeden dzięki rozłączności, więc k k A n(k) (x i )= A n (x i ). Zamieniając kolejność sumowania na mocy twierdzeń o arytmetyce granic,mamyµ(a)= A n. 5. Które z poniższych zdań są fałszywe, a które prawdziwe? Odpowiedzi nie trzeba uzasadniać. Za dobrą odpowiedź dodajemy 1 punkt, za złą odejmujemy 1 punkt. Brak odpowiedzi nie jest punktowany. (a)jeślia n jestwstępującymlubzstępującymciągiemzbiorówmierzalnych(wpewnejprzestrzenimierzalnej),tolima n jestzbiorem mierzalnym. (b) Każde σ-ciało jest rodziną monotoniczną. (c)µ(a\b)=µ(a) µ(b). (d)jeśliµjestmiarąi A n =,toµ( A n )= µ(a n ). (e)zbiorytypuf σ sąborelowskie. T(wtedy granice są odpowienio przeliczalną sumą lub przeliczalnym przekrojem); T(skoro jest zamknięte na wszystkie przeliczalne sumy i przekroje, to tym bardziej na monotoniczne); N(niejesttaknp.gdyA B= iµ(b)>0); N(za słabe założenie); T(F σ toprzeliczalnesumyzbiorówdomkniętych,więcborelowskich). 3
4 I kolokwium ze Wstępu do Teorii Miary Grupa B 1. (a)udowodnić,żelima n limb n lim(a n B n ). (b) Znaleźć granice górną i dolną ciągu zbiorów: B n =( 2n, n) [ ( 1) n +2,3 ( 1)n 2 n 3 n a)jeślixnależydoa n dlaprawiewszystkichn,totymbardziejnależy doa n B n dlaprawiewszystkichb n.zatemlima n lim(a n B n ). PodobniedlaB n. b)dlakażdegoxzprzedzialu(2,3)istniejetakien 0,żedlan>n 0 zachodzi2+ 1 x<3 1.Zatem(2,3) lima 2 n 3 n n.każdaliczba ujemnanależydo( 2n, n)dlaconajwyżejskończeniewielun,akażda dodatnia, za wyjątkiem przedziału(2, 3) do co najwyżej skończenie wielu[2 1,3+ 1 ).Zatem(2,3)=limA 2 n 3 n n Dodatkowo,punkty2,3należądoA n dlanieparzystychn.punkty z(,2) (3, )należądoconajwyżejskończeniewielua n,więc lima n =[2,3]. 2. Znaleźć σ-ciało generowane w Z przez rodzinę wszystkich trzyelementowych zbiorów postaci{n, 2n, 3n}(n Z). Odpowiedź uzasadnić. Dowiedziemy,żejestto2 Z,czylirodzinawszystkich podzbiorów Z. Jest jasne, że jest to σ-ciało, bo skoro zawiera wszystkie podzbiory Z, to jest zamknięte na wszystkie możliwe operacje mnogościowe. Oczywiście, zawiera też zbiory trzyelementowe danej postaci, bo zawiera wszystkie podzbiory. Wystarczy więc uzasadnić, że każdy zbiór da się uzyskać z trzyelementowych zbiorów postaci{n, 2n, 3n} przez działania nie wyprowadzające(ogólnie) poza σ-ciało. Ponieważ każdy podzbiór Z jest przeliczalną sumą zbiorów jednoelementowych, wystarczy wygenerować zbiory jednoelementowe. Ale {n}={n,2n,3n}\{2n,4n,6n}\{3n,6n,9n}. 3. Zdefiniujmy σ-ciało borelowskie B na R jako najmniejsze σ-ciało zawierające wszystkie przedziały otwarte. Udowodnić, że B jest generowane przezrodzinę{[q, ):q Q}. ). 4
5 Oznaczmy przez A σ-ciało generowane przez daną rodzinę.zauważmy,żedlakażdejliczbya Rmamy (a, )= [q n, ), gdy(q n )jestmalejącymciągiemliczbwymiernychzbieżnymdoa.podobnie, [a, )= [q n, ), gdy(q n )jestrosnącymciągiemliczbwymiernychzbieżnymdoa.zatem półproste(a, ),[a, )należądoadlawszystkicha R.Ponieważ, dladowolnycha<b Rmamy (a,b)=(a, ) ( [b, ) ) c, każdyprzedziałotwartymusinależećdoa.czylib A. Z drugiej strony,(, q) można zapisać, na przykład, jako przeliczalną sumęprzedziałowotwartych (q n,q).zatem[q, )=(,q) c należydob,czylia B. 4.Niech(X,F)będzieprzestrzeniąmierzalną.Czyfunkcjazbioruµ:F [0, ] określona wzorem liczność A, gdy A jest skończony µ(a)=, w przeciwnym wypadku jestmiarą?(przyjmujemyzgodniezintuicją: + =, +a=, >adlakażdeja R.) Miara jest nieujemną przeliczalnie addytywną funkcją zbioru spełniającą przypisująca zbiorowi pustemu 0. Skoro µ jest licznością zbioru, to jest nieujemna(ewentualnie + ). Ponadto licznośćzbiorupustegowynosi0,więcµ( )=0.Rozważmyterazciąg (A n )zbiorówparamirozłącznych.niecha= A n.jeśliktóryśz A n jestnieskończony,toateż,więcmamyµ(a)= µ(a n )=. Załóżmywięc,żeA n sąskończone.jeśliajestnieskończony,tomusinieskończeniewielespośroda n musibyćniepustych.zatemszereg µ(a n )manieskończeniewieleskładnikówniemniejszychniżjeden,więc µ(a n )= =µ(a).jeślizaśajestskończony,to prawiewszystkiea n musząbyćpuste.ponieważsumalicznościdwóch (zatem i skończonej liczby) skończonych zbiorów rozłącznych jest równa liczności ich sumy, mamy tezę. 5
6 5. Które z poniższych zdań są fałszywe, a które prawdziwe? Odpowiedzi nie trzeba uzasadniać. Za dobrą odpowiedź dodajemy 1 punkt, za złą odejmujemy 1 punkt. Brak odpowiedzi nie jest punktowany. (a)jeśli(a n )jestciągiemzbiorówmierzalnych(wpewnejprzestrzeni mierzalnej),toliminf n A n ilimsup n A n sązbioramimierzalnymi. (b)niech{a t :t T}będziedowolną(niekoniecznieprzeliczalną) rodzinązbiorówmiaryzero.wtedyµ( t TA t )=0. (c) Przekrój rodziny σ-ciał jest zawsze σ-ciałem. (d)jeśliµjestmiarąiµ(a B)=µ(A)+µ(B),toAiBsąrozłączne. (e)zbiorytypug δ sąborelowskie. T(granice górna polegają na zastosowaniu przeliczalnego przekroju i przeliczalnej sumy); N(cała przestrzeń może być sumą zbiorów miary zero, np. dla R zbiorów jednopunktowych); T(to po prostu trzeba wiedzieć); N(przekrój może być niepusty, ale miary zero); T(G δ toprzeliczalneprzekrojezbiorówotwartych,więcborelowskich). 6
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Grzegorz Plebanek Miara i całka skrypt do wykładu Funkcje rzeczywiste
Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Miara i całka skrypt do wykładu Funkcje rzeczywiste c Grzegorz Plebanek (2009) wersja γ (2013) Spis treści 0 Wiadomości wstępne 1 0.1
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
1 Przestrzenie metryczne
1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki Ostatnio poprawiłem 25 stycznia 2015 r. Nadeszła pora na całkowanie. Pierwsza rzecza jest zdefiniowanie
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Matematyka dyskretna. Andrzej Łachwa, UJ, A/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 8A/10 Zbiory przeliczalne Przyjmujemy, że Zn = {0, 1, 2, 3, n-1} dla n>0 oraz Zn = przy n=0. Zbiór skończony to zbiór bijektywny z
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Algebra. Jakub Maksymiuk. lato 2018/19
Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Zbiory liczbowe widziane oczami topologa
Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,
f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf
9. Różniczkowanie. Jeśli f jest funkcją rzeczywistą, to granice D + f(x) = lim sup t x + f(t) f(x), D f(x) = lim sup t x t x f(t) f(x), t x f(t) f(x) f(t) f(x) D + f(x) = lim inf oraz D f(x) = lim inf
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Funkcje. Granica i ciągłość.
Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica
SZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Skończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski
ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski 1 Spis treści 1 Zbiory liczbowe 5 1.1 Krótka informacja o zbiorach liczb naturalnych, całkowitych i wymiernych 5 1.1.1 Liczby naturalne.........................
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Elementy Teorii Miary i Całki
Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
Zadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)
(niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach