Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Macierze - obliczanie wyznacznika macierzy z użyciem permutacji"

Transkrypt

1 Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki r. Typeset by FoilTEX

2 Streszczenie Celem wykładu jest wprowadzenie pojęcia macierzy oraz podstawowych operacji na macierzach i zapoznanie słuchaczy z własnościami tychże operacji. Macierze są obiektami matematycznymi o bardzo szerokich zastosowaniach w matematyce, zarówno szkolnej, jak i wyższej. Stosuje się je między innymi do rozwiązywania układów równań liniowych postaci { ax + by = c1 cx + dy = c 2. Jednak w wykładzie tym, interesującymi dla nas będą fakty dotyczące macierzy i operacji na nich, a nie zastosowania. 1

3 Definicja macierzy Definicja 1. Niech m, n N. Macierzą o wymiarach m n o współczynnikach rzeczywistych nazywamy każdą funkcję A: {1,..., m} {1,..., n} R. Macierz jest zatem funkcją, która przyporządkowuje parze i, j liczb naturalnych, gdzie i {1,..., m}, j {1,..., n} liczbę rzeczywistą Ai, j, często oznaczaną symbolem a ij. 2

4 Jak rozumieć definicję macierzy? Macierz o wymiarach m n możemy traktować jako tablicę o m wierszach i n kolumnach. We wierszu o numerze i a w kolumnie o numerze j takiej tablicy umieszczamy wartość funkcji A w punkcie o współrzędnych i, j, czyli Ai, j, uzyskując np. dla m = 2, n = 3: A = A1, 1 A1, 2 A1, 3 A2, 1 A2, 2 A2, 3, czyli A = a11 a 12 a 13. a 21 a 22 a 23 3

5 Przykładowe macierze A = a 11 = A1, 1 = 3, a 12 = A1, 2 = 2, a 23 = A2, 3 = 8 2, a 32 = A3, 2 = 2, a 43 = A4, 3 = 7. Poniżej macierz kwadratowa, czyli macierz o jednakowej liczbie kolumn i wierszy m = n = B =

6 Dodawanie macierzy Definicja 2. Niech A, B będą macierzami o wymiarach m n, m, n N i współczynnikach rzeczywistych. Sumą macierzy A i B nazywamy macierz C = A + B o wymiarach m n taką, że c ij = a ij + b ij, dla dowolnej pary liczb i {1,..., m}, j {1,..., n}. A = B = C = A + B =

7 Mnożenie macierzy przez liczbę Oznaczmy przez M m n R zbiór wszystkich macierzy o współczynnikach rzeczywistych. Niech A M m n R, t R. Wynikiem mnożenia macierzy A przez liczbę t jest macierz B = ta taka, że dla dowolnej pary liczb i {1,..., m}, j {1,..., n} mamy równość b ij = ta ij. Na przykład dla mamy B = ta = 1 2 t = 1 2, A = = 2 3,

8 Mnożenie macierzy przez macierz Niech A M m n R, B M n k R, m, n, k N. Definicja 3. Iloczynem macierzy A i B nazywamy macierz C = AB M m k R taką, że dla dowolnej pary liczb i {1,..., m}, j {1,..., n} zachodzi równość gdzie n c ij = a ir b rj, r=1 n z r = z 1 + z 2 + z z n 1 + z n. r=1 7

9 Przykład. [Mnożenie macierzy przez macierz] A = B = AB = C = AB =

10 Istotne uwagi Dodawać do siebie można tylko macierze o jednakowych wymiarach, ale niekoniecznie kwadratowe Macierze A i B możemy pomnożyć tylko wtedy, gdy liczba kolumn macierzy A odpowiada liczbie wierszy macierzy B, Mnożenie macierzy na ogół nie jest przemienne AB BA, a często nawet niewykonalne jest mnożenie BA, pomimo, że możemy wykonać mnożenie AB, 9

11 Ćwiczenia Ćwiczenie 1. Mając dane macierze A i B znajdź ich sumę C. Pomnóż każdą spośród macierzy A, B i C przez liczby 2 i 3. A = B = Ćwiczenie 2. Wykonaj mnożenie macierzy A = B =

12 Permutacje Zmierzamy do określenia wyznacznika macierzy kwadratowej. Definicja 4. Bijekcją nazywamy każdą funkcję f : X Y taką, że i jeżeli x 1 x 2, to fx 1 fx 2, f różnowartościowa ii dla dowolnego y Y istnieje element x X taki, że fx = y. f na Definicja 5. Niech n N. Permutacją zbioru {1, 2,..., n}, nazywamy każdą bijekcję f : {1, 2,..., n} {1, 2,..., n}. Permutacje oznaczamy często literkami greckimi σ, τ,... zamiast f, g,..., a zapisujemy w następującej postaci 11

13 n f1 f2... fn. 12

14 Przykłady permutacji, składanie permutacji Permutacje składamy w następujący sposób. Składając f = z g = , uzyskujemy g f = = ; g f1 = gf1 = g4 = 1, g f2 = gf2 = g2 = 3, g f3 = gf3 = g1 = 2, g f4 = gf4 = g3 = 4. Zbiór wszystkich permutacji zbioru {1, 2,..., n} oznaczamy symbolem S n. 13

15 Cykle, transpozycje Definicja 6. Mówimy, że permutacja f S n zachowuje liczbę i {1, 2,..., n}, o ile fi = i. Definicja 7. Niech i 1, i 2,..., i k różne liczby ze zbioru {1, 2,..., n}, k n. Jeżeli permutacja f S n zachowuje pozostałe n k liczb ze zbioru {1, 2,..., n} oraz fi 1 = i 2, fi 2 = i 3,..., fi k 1 = i k, fi k = i 1, to mówimy, że f jest cyklem długości k i oznaczamy i 1 i 2... i k. Cykl długości 1 zachowuje każdy element zbioru, a cykl i j długości 2 nazywamy transpozycją = , = 1 4 3, =

16 Rozkład permutacji na cykle i transpozycje Definicja 8. Niech k, l n Mówimy, że cykle f = i 1 i 2... i k, g = j 1 j 2... j l są rozłączne, o ile zbiory {i 1, i 2,..., i k }, {j 1, j 2,..., j l } są rozłączne. Zauważmy, że jeżeli cykle f, g są rozłączne, to g f = f g. Twierdzenie 9. Każda permutacja f S n jest złożeniem pewnej liczby cykli rozłącznych. Przedstawienie permutacji f w postaci złożenia cykli rozłącznych jest jednoznaczne z dokładnością do porządku czynników kolejności składania Przykład: = Każda permutacja z S n jest złożeniem pewnej liczby transpozy- Wniosek 10. cji. 15

17 Dowód. Zauważmy, że i 1 i 2... i k = i 1 i k i 1 i 3 i 1 i 2. Teza wniosku wynika z Twierdzenia 6. Ćwiczenie 3. Sprawdzić, że =

18 Rozkład permutacji na cykle i transpozycje Uwaga 11. Rozkład permutacji na iloczyn złożenie transpozycji nie jest jednoznaczny. Na przykład, w S 4 zachodzą równości = = = = = = Uwaga 12. Przypomnijmy, że rozkład permutacji na cykle rozłączne jest jednoznaczny z dokładnością do kolejności ich składania. 17

19 Parzystość, nieparzystość i znak permutacji Twierdzenie 13. Jeżeli f = g 1 g 2... g r, r N jest jednym z rozkładów permutacji f S n na iloczyn transpozycji, to liczba sgnf = 1 r, nazywana znakiem permutacji f, zależy jedynie od f, a nie zależy od rozkładu. Zatem parzystość liczby r jest taka sama w każdym rozkładzie permutacji f na iloczyn transpozycji. Jeżeli również g S n, to sgng f = sgng sgnf. Definicja 14. Permutację f S n nazywamy parzystą, jeśli sgnf = 1. Jeśli sgnf = 1, to mówimy, że f jest permutacją nieparzystą. Uwaga 15. Liczba elementów zbioru S n, tj. permutacji zbioru {1, 2,..., n}, wynosi n! = n. 18

20 Wyznacznik macierzy Definicja 16. nazywamy liczbę Niech n N, A M n n R. Wyznacznikiem macierzy A deta = f S n sgnf a f11 a f22... a fnn. Przykład 17. Niech n = 1, A = a 11, wówczas S 1 = {id {1} } = { 1 1 } oraz deta = sgnid {1} a 11 = a 11. Przykład 18. Niech n = 2, A = a 11 a 12 a 21 a , wówczas S 2 = { , } = {1 22 1, 1 2} =: {f, g} oraz deta = sgnf a f11 a f22 +sgng a g11 a g22 = a 11 a 22 a 21 a

21 Przykład 19. Niech n = 3, A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 M 3 3 R, wtedy S 3 = oraz { , , , , = {1 22 1, 2 3, 1 2, , , 1 3} =: {f 1, f 2, f 3, f 4, f 5, f 6 }, } deta = sgnf 1 a f1 11 a f1 22 a f sgnf 2 a f2 11 a f2 22 a f sgnf 3 a f3 11 a f3 22 a f sgnf 4 a f4 11 a f4 22 a f sgnf 5 a f5 11 a f5 22 a f sgnf 6 a f6 11 a f6 22 a f

22 deta = a 11 a 22 a 33 a 11 a 32 a 23 a 21 a 12 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 a 31 a 22 a

23 Istotne uwagi Wyznacznik macierzy definiuje się tylko dla macierzy kwadratowych o jednakowej liczbie wierszy i kolumn. Składanie permutacji na ogół nie jest przemienne, ale składanie rozłącznych cykli jest przemienne. Każdą permutację można w sposób jednoznaczny z dokładnością do kolejności składania przedstawić w postaci złożenia pewnej ilości rozłącznych cykli. Każdą permutację można przedstawić w postaci złożenia pewnej ilości transpozycji. Przedstawienie to nie jest jednoznaczne, ale parzystość liczby czynników rozkładu jest taka sama dla każdego z przedstawień. Identyczność jest permutacją parzystą, a każda transpozycja jest permutacją nieparzystą. 22

24 Ćwiczenia Podaj przykład permutacji f, g S n takich, że g f f g. Przedstaw poniższe permutacje w postaci złożenia rozłącznych cykli f = , g = Przedstaw powyższe permutacje w postaci złożenia transpozycji. Wypisz wszystkie permutacje zbioru {1, 2, 3, 4}. Ile elementów ma zbiór S 7? 23

25 Ćwiczenia Zastanów się kiedy dla jakich wymiarów dwie macierze możemy zarówno dodać do siebie, jak i pomnożyć przez siebie. Oblicz wyznacznik macierzy A =

26 Zadania Napisać programy np. w języku Pascal realizujące algorytmy: dodawania macierzy o podanych przez użytkownika wymiarach, mnożenia macierzy przez liczbę, mnożenia macierzy o podanych przez użytkownika wymiarach, obliczania wyznacznika macierzy dowolnego wymiaru. 25

27 Bibliografia G. Banaszak, W. Gajda, Elementy algebry liniowej cz. Naukowo-Techniczne, Warszawa 2002 I, Wydawnictwa 26

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Kody blokowe Wykład 2, 10 III 2011

Kody blokowe Wykład 2, 10 III 2011 Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY Dodawanie i odejmowanie macierzy jest możliwe tylko dla dwóch macierzy o takich samych wymiarach! Wynikiem tych operacji jest macierz o takich samych

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez

Bardziej szczegółowo

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z]. 1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Paweł Gładki. Algebra. pgladki/

Paweł Gładki. Algebra.  pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa...

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa... Funkcje i tabele Paweł Bednarz 29 marca 2015 Spis treści 1 Funkcje 2 1.1 Funckja liniowa............................ 2 1.1.1 Własności funkcji liniowej.................. 2 1.2 Funkcja kwadratowa.........................

Bardziej szczegółowo