Macierze Lekcja I: Wprowadzenie
|
|
- Dorota Kwiecień
- 1 lat temu
- Przeglądów:
Transkrypt
1 Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej
2 Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m wierszy i n kolumn nazywamy macierzą. a 1,1 a 1,2... a 1,n a 2,1 a 2,2... a 2,n A = a m,1 a m,2... a m,n Zbiór macierzy mxn oznaczamy symbolem M m,n. Jeśli chcemy napiać, że macierz A ma m wierszy i n kolumn to piszemy A M m,n
3 Definicja Podczas tych zajęć będziemy czasem posługiwali się angielskimi odpowiednikami nazw poszczególnych pojęć. Dlaczego?
4 Definicja Podczas tych zajęć będziemy czasem posługiwali się angielskimi odpowiednikami nazw poszczególnych pojęć. Dlaczego? Angielskie nazwy występują w technice i oprogramowaniu komputerowym. Część funkcji programów bierze swoje nazwy z j. angielskiego.
5 Definicja Podczas tych zajęć będziemy czasem posługiwali się angielskimi odpowiednikami nazw poszczególnych pojęć. Dlaczego? Angielskie nazwy występują w technice i oprogramowaniu komputerowym. Część funkcji programów bierze swoje nazwy z j. angielskiego. I tak angielska nazwa dla macierzy to:
6 Zastosowanie macierzy Współcześnie dostępnych jest wiele programów komputerowych, których zasada działania opiera się na zasadach obliczeniowych macierzy (czyli na tych, które poznamy.
7 Zastosowanie macierzy Współcześnie dostępnych jest wiele programów komputerowych, których zasada działania opiera się na zasadach obliczeniowych macierzy (czyli na tych, które poznamy. Jednym z takich programów jest Matlab. Niestety jest to program komercyjny i potrzeba na niego zakupić licencję :(
8 Zastosowanie macierzy Współcześnie dostępnych jest wiele programów komputerowych, których zasada działania opiera się na zasadach obliczeniowych macierzy (czyli na tych, które poznamy. Jednym z takich programów jest Matlab. Niestety jest to program komercyjny i potrzeba na niego zakupić licencję :( Są jednak inne darmowe programy oparte na licencji GNU GPL. Przykładami są GNU Octave oraz Scilab.
9 Scilab Część przykładów będzie pokazywana w programie Scilab. Jest to oprogramowanie darmowe i można je pobrać ze strony producenta (http://www.scilab.org). Obecnie najnowszą wersją jest Scilab i jest ona dostępna na różne systemy operacyjne.
10 Scilab Część przykładów będzie pokazywana w programie Scilab. Jest to oprogramowanie darmowe i można je pobrać ze strony producenta (http://www.scilab.org). Obecnie najnowszą wersją jest Scilab i jest ona dostępna na różne systemy operacyjne. Do programu można dodatkowo pobrać moduł Xcos, który służy do przeprowadzania różnego rodzaju symulacji. I tak na przykład można wykonać symulację obwodów elektrycznych i sprawdzić jak zmienia się napięcie w obwodzie RLC w różnych warunkach. Zatem warto zapoznać się z tym programem!
11 Scilab
12 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0.
13 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0. Macierz kwadratowa (square matrix) to macierz, w której m = n
14 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0. Macierz kwadratowa (square matrix) to macierz, w której m = n Główna przekątna (main diagonal) to elementy a i,i, i = 1,..., n. Występuje w macierzach kwadratowych!
15 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0. Macierz kwadratowa (square matrix) to macierz, w której m = n Główna przekątna (main diagonal) to elementy a i,i, i = 1,..., n. Występuje w macierzach kwadratowych! Macierz trójkątna (triangular matrix) charakteryzuje się tym, że elementy powyżej lub poniżej głównej przekątnej są równe 0. Jeśli są to elementy powyżej to mówimy o macierzy trójkątnej dolnej (lower triangular matrix). W przeciwnym wypadku jest to macierz trójkątna górna (upper triangular matrix).
16 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0. Macierz kwadratowa (square matrix) to macierz, w której m = n Główna przekątna (main diagonal) to elementy a i,i, i = 1,..., n. Występuje w macierzach kwadratowych! Macierz trójkątna (triangular matrix) charakteryzuje się tym, że elementy powyżej lub poniżej głównej przekątnej są równe 0. Jeśli są to elementy powyżej to mówimy o macierzy trójkątnej dolnej (lower triangular matrix). W przeciwnym wypadku jest to macierz trójkątna górna (upper triangular matrix). Macierz diagonalna (diagonal matrix) posiada tylko niezerową główną przekątną. Jest szczególnie ważna przy potęgowaniu macierzy. Niestety to działanie wykracza poza ramy tego kursu :(
17 Podstawowe definicje Macierzą zerową nazywamy macierz, w której każdy element jest równy 0. Macierz kwadratowa (square matrix) to macierz, w której m = n Główna przekątna (main diagonal) to elementy a i,i, i = 1,..., n. Występuje w macierzach kwadratowych! Macierz trójkątna (triangular matrix) charakteryzuje się tym, że elementy powyżej lub poniżej głównej przekątnej są równe 0. Jeśli są to elementy powyżej to mówimy o macierzy trójkątnej dolnej (lower triangular matrix). W przeciwnym wypadku jest to macierz trójkątna górna (upper triangular matrix). Macierz diagonalna (diagonal matrix) posiada tylko niezerową główną przekątną. Jest szczególnie ważna przy potęgowaniu macierzy. Niestety to działanie wykracza poza ramy tego kursu :( Szczególną macierzą diagonalną jest macierz jednostkowa (identity matrix). Oznaczana przez literę I. Wtedy a i,i = 1, i = 1,..., n.
18 Macierz a wektor Często stosowanym pojęciem jest wektor. Można go traktować jako macierz, w której jeden z wymiarów jest równy 1.
19 Macierz a wektor Często stosowanym pojęciem jest wektor. Można go traktować jako macierz, w której jeden z wymiarów jest równy 1. W algebrze macierze wykorzystywane są przy rozwiązywaniu układów równań liniowych. W zaawansowanej matematyce występują o wiele częściej. A czy w życiu codziennym?
20 Działania na macierzach: dodawanie Pierwszym działaniem, które poznamy jest dodawanie macierzy.
21 Działania na macierzach: dodawanie Pierwszym działaniem, które poznamy jest dodawanie macierzy. Przypuśćmy, że dane mamy dwie macierze A = [a i,j ] oraz B = [b i,j ]. Co istotne: A, B M m,n!
22 Działania na macierzach: dodawanie Pierwszym działaniem, które poznamy jest dodawanie macierzy. Przypuśćmy, że dane mamy dwie macierze A = [a i,j ] oraz B = [b i,j ]. Co istotne: A, B M m,n! W wyniku dodawania macierzy dostajemy nową macierz C M m,n : C = A + B c i,j = a i,j + b i,j, gdzie c i,j są elementami nowej macierzy C.
23 Działania na macierzach: dodawanie Pierwszym działaniem, które poznamy jest dodawanie macierzy. Przypuśćmy, że dane mamy dwie macierze A = [a i,j ] oraz B = [b i,j ]. Co istotne: A, B M m,n! W wyniku dodawania macierzy dostajemy nową macierz C M m,n : C = A + B c i,j = a i,j + b i,j, gdzie c i,j są elementami nowej macierzy C.Mówiąc najprościej: dodajemy do siebie elementy na tych samych pozycjach w każdej z macierzy. Co istotne: jest to działanie przemienne: A + B = B + A.
24 Działania na macierzach: mnożenie przez liczbę (skalar) Dana niech będzie macierz A = [a i,j ], A M m,n oraz liczba α R.
25 Działania na macierzach: mnożenie przez liczbę (skalar) Dana niech będzie macierz A = [a i,j ], A M m,n oraz liczba α R. Wtedy: B = α A b i,j = α a i,j, gdzie b i,j są elementami nowej macierzy B.
26 Działania na macierzach: mnożenie przez liczbę (skalar) Dana niech będzie macierz A = [a i,j ], A M m,n oraz liczba α R. Wtedy: B = α A b i,j = α a i,j, gdzie b i,j są elementami nowej macierzy B.Mówiąc najprościej: mnożymy przez liczbę α każdy wyraz macierzy A. Co istotne: jest to działanie przemienne: α A = A α.
27 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność)
28 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność)
29 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność) 3 A + 0 = A
30 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność) 3 A + 0 = A 4 A + ( A) = A + A = 0
31 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność) 3 A + 0 = A 4 A + ( A) = A + A = 0 5 α(a + B) = αa + αb 6 (α + β)a = αa + βa
32 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność) 3 A + 0 = A 4 A + ( A) = A + A = 0 5 α(a + B) = αa + αb 6 (α + β)a = αa + βa 7 1 A = A
33 Kilka własności Niech A, B M m,n oraz α, β R. Wtedy: 1 A + B = B + A (przemienność) 2 A + (B + C) = (A + B) + C (łączność) 3 A + 0 = A 4 A + ( A) = A + A = 0 5 α(a + B) = αa + αb 6 (α + β)a = αa + βa 7 1 A = A 8 (αβ)a = α(βa)
34 Działania na macierzach: transponowanie macierzy Dana niech będzie macierz A = [a i,j ], A M m,n. Transpozycją macierzy A nazywamy macierz B = A T b i,j = a j,i.
35 Działania na macierzach: transponowanie macierzy Dana niech będzie macierz A = [a i,j ], A M m,n. Transpozycją macierzy A nazywamy macierz Zauważmy, że A T M n,m. B = A T b i,j = a j,i.
36 Działania na macierzach: transponowanie macierzy Dana niech będzie macierz A = [a i,j ], A M m,n. Transpozycją macierzy A nazywamy macierz B = A T b i,j = a j,i. Zauważmy, że A T M n,m. Mówimy, że macierz A jest symetryczna jeżeli A = A T. Mówimy, że macierz jest antysymetryczna jeżeli A = A T.
37 Działania na macierzach: mnożenie macierzy Chyba najbardziej skomplikowane. Niech A = [a i,j ], A M m,n oraz B = [b i,j ], B M n,k. Zwróćmy uwagę na wymiary poszczególnych macierzy!
38 Działania na macierzach: mnożenie macierzy Chyba najbardziej skomplikowane. Niech A = [a i,j ], A M m,n oraz B = [b i,j ], B M n,k. Zwróćmy uwagę na wymiary poszczególnych macierzy! W wyniku mnożenia macierzy dostajemy macierz C = [c i,j ], C M m,k o elementach c i,j = a i,1 b 1,j + a i,2 b 2,j +...a i,n b n,j.
39 Działania na macierzach: mnożenie macierzy Chyba najbardziej skomplikowane. Niech A = [a i,j ], A M m,n oraz B = [b i,j ], B M n,k. Zwróćmy uwagę na wymiary poszczególnych macierzy! W wyniku mnożenia macierzy dostajemy macierz C = [c i,j ], C M m,k o elementach c i,j = a i,1 b 1,j + a i,2 b 2,j +...a i,n b n,j. UWAGA! Mnożenie macierzy NIE jest przemienne!
40 Kilka własności Choć mnożenie macierzy nie jest przemienne, to jednak zachowane są inne własności: 1 A(B + C) = AB + AC
41 Kilka własności Choć mnożenie macierzy nie jest przemienne, to jednak zachowane są inne własności: 1 A(B + C) = AB + AC 2 (B + C)A = BA + CA
42 Kilka własności Choć mnożenie macierzy nie jest przemienne, to jednak zachowane są inne własności: 1 A(B + C) = AB + AC 2 (B + C)A = BA + CA 3 A(αB) = (αa)b = α(ab)
43 Kilka własności Choć mnożenie macierzy nie jest przemienne, to jednak zachowane są inne własności: 1 A(B + C) = AB + AC 2 (B + C)A = BA + CA 3 A(αB) = (αa)b = α(ab) 4 (AB)C = A(BC)
44 Kilka własności Choć mnożenie macierzy nie jest przemienne, to jednak zachowane są inne własności: 1 A(B + C) = AB + AC 2 (B + C)A = BA + CA 3 A(αB) = (αa)b = α(ab) 4 (AB)C = A(BC) 5 AI = IA = A dla macierzy kwadratowych.
45 Przykłady w Scilab
46 Podziękowania Dziękuję za uwagę
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Ekoenergetyka Matematyka 1. Wykład 3.
Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.
MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Przekształcenia liniowe
Algebra Przekształcenia liniowe Aleksandr Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki
Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Algebra liniowa z geometrią
Algebra liniowa z geometrią prof. dr hab. Andrzej Szczepański Wydział MFI UG Instytut Matematyki 14 czerwca 2017 rof. dr hab. Andrzej Szczepański (Wydział MFI UG Algebra Instytut liniowa Matematyki) z
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Wstęp do matematyki. Marcin Orchel
Wstęp do matematyki Marcin Orchel Spis treści 1 Ogólne działy 4 1.1 Logika...................................... 4 2 Metody numeryczne 5 2.1 Wprowadzenie do metod numerycznych................... 5 2.1.1
Macierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
1 Linia prosta na płaszczyźnie
22 listopada 2012 1 Linia prosta na płaszczyźnie Prosta na płaszczyźnie może być podana wzorem funkcyjnym: y a x + b Współczynnik a jest nazywany współczynnikiem kierunkowym - określa, jak stroma jest
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Algorytmy numeryczne 1
Algorytmy numeryczne 1 Wprowadzenie Obliczenie numeryczne są najważniejszym zastosowaniem komputerów równoległych. Przykładem są symulacje zjawisk fizycznych, których przeprowadzenie sprowadza się do rozwiązania
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
1 Działania na macierzach
1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie