Sztuczna Inteligencja i Systemy Doradcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczna Inteligencja i Systemy Doradcze"

Transkrypt

1 Sztuczna Inteligencja i Systemy Doradcze Sieci bayessowskie Sieci bayessowskie 1

2 Niepewnosc Niech akcja A t = wyjedź na lotnisko t minut przed odlotem Czy A t pozwoli mi zdążyć na czas? Problemy: 1) informacja częściowa (stan ulic, plany innych kierowców, etc.) 2) niedokładne informacje (raport o korkach) 3) niepewność działania akcji (złapanie gumy, etc.) 4) ogromna złożoność modelowania i przewidywania ruchu Stąd czysto logiczne podejście albo 1) ryzykuje fałszywość: A 25 pozwoli mi zdążyć na czas albo 2) prowadzi do wniosków zbyt słabych do podjęcia decyzji: A 25 pozwoli mi zdążyć na czas jeśli nie będzie wypadku na moście i nie będzi padać i nie złapię gumy itd. (A 1440 mogłoby być uznane że rozsądnie zapewnia, że zdąże na czas, ale nie chcę czekać całą noc na lotnisku...) Sieci bayessowskie 2

3 Podstawy prawdopodobienstwa Ω przestrzeń próbek np. 6 możliwych wyników rzutu kostką. ω Ω jest punktem próbkowym/dopuszczalnym stanem świata/ zdarzeniem atomowym Przestrzeń prawdopobieństwa lub model prawdopodobieństwa to przestrzeń próbek z przypisaniem P(ω) dla każdego ω Ω spełniającego warunki 0 P(ω) 1 Σ ω P(ω) = 1 np. P(1) =P(2) =P(3) =P(4) =P(5) = P(6) = 1/6. Zdarzenie A jest podzbiorem Ω P(A) = Σ {ω A} P(ω) Np. P(rzut kostką < 4) = 1/6 + 1/6 + 1/6 = 1/2 Sieci bayessowskie 3

4 Zmienne losowe Zmienna losowa jest funkcją z przestrzeni próbek w pewien zbiór wartości, np. rzeczywistych lub boolowskich np. Odd(1) = true. P indukuje rozkład prawdopodobieństwa dla dowolnej zm. los. X: P(X = x i ) = Σ {ω:x(ω) =xi }P(ω) np. P(Odd =true) = 1/6 + 1/6 + 1/6 = 1/2 Sieci bayessowskie 4

5 Zdania Zdania reprezentują pewne zdarzenia (podzbiory przestrzeni próbek) w których są prawdziwe Boolowskie zmienne losowe np. Cavity (czy jestem osłabiony?) Dyskretne zmienne losowe (skończone lub nieskończone) np. Weather ma jedną wartość z sunny, rain, cloudy, snow W eather = rain jest zdaniem Wartości muszą być kompletne i wzajemnie się wykluczać Ciągłe zmienne losowe (ograniczone lub nieograniczone) np. emp = 21.6; można także emp < Dowolne kombinacje boolowskie prostych zdań Sieci bayessowskie 5

6 Prawdopodobienstwo bezwarunkowe Bezwarunkowe prawdopodobieństwo zdań np. P(Cavity =true) = 0.1 i P(Weather =sunny) = 0.72 odpowiada przekonaniom przed dostarczeniem jakiejkolwiek (nowej) przesłanki Rozkład prawdopodobieństwa daje wartości dla wszystkich przypisań: P(W eather) = 0.72, 0.1, 0.08, 0.1 (znormalizowana: sumuje się do 1) Łączny rozkład prawdopodobieństwa dla zbioru zm. los. daje prawdopodobieństwa każdego zdarzenia atomowego na tych zm. los. (tzn. każdy punkt próbkowy) P(Weather, Cavity) = macierz wartości 4 2: W eather = sunny rain cloudy snow Cavity = true Cavity = f alse Każde pytanie o dziedzinę może być odpowiedziane przez łączny rozkład ponieważ każde zdarzenie jest sumą punktów próbkowych Sieci bayessowskie 6

7 Prawdopodobienstwo warunkowe Prawdopodobieństwo warunkowe lub a posteriori np. P(cavity toothache) = 0.8 tzn. zakładając, że toothache to to, o czym wiem NIE jeśli toothache to 80% szans na cavity Notacja rozkładów warunkowych: P(Cavity oothache) = 2-elementowy wektor 2-elementowych wektorów Jeśli wiemy więcej, np. cavity też jest dane, wtedy mamy P(cavity toothache, cavity) = 1 Uwaga: mniej specyficzne przekonania pozostają prawdziwe po dojściu nowych przesłanek, ale nie zawsze są użyteczne Nowe przesłanki mogą być nieistotne, umożliwiając upraszczanie, np. P(cavity toothache, 49ersW in) = P(cavity toothache) = 0.8 en rodzaj wnioskowania, uwarunkowany wiedzą dziedzinową, jest kluczowy Sieci bayessowskie 7

8 Prawdopodobienstwo warunkowe Definicja prawdopobieństwa warunkowego: P(a b) = P(a b) P(b) if P(b) 0 Reguła produkcji daje sformułowanie alternatywne: P(a b) = P(a b)p(b) = p(b a)p(a) Ogólna wersja zachodzi dla całych rozkładów, np. P(W eather, Cavity) = P(W eather Cavity)P(Cavity) (jako zbiór 4 2 równań, nie mnożenie macierzy) Reguła łańcuchowa otrzymywana przez kolejne zastosowania reguły produkcji: P(X 1,..., X n ) = P(X 1,..., X n 1 ) P(X n X 1,..., X n 1 ) = P(X 1,..., X n 2 ) P(X n1 X 1,..., X n 2 ) P(X n X 1,..., X n 1 ) =... = Π n i = 1P(X i X 1,..., X i 1 ) Sieci bayessowskie 8

9 Wnioskowanie przez wyliczanie Zazwyczaj interesuje nas rozkład warunkowy zadanych zmiennych Y przy danych specyficznych wartościach e dla zmiennych-przesłanek E Zmienne ukryte H = X Y E Ogólny pomysł: ustalamy zmienne-przesłanki i sumujemy prawdopodobieństwa po wartościach zmiennych ukrytych: P(Y E =e) = αp(y,e=e) = ασ h P(Y,E=e,H=h) Wyrażenia w sumowania są wartościami łącznego rozkładu ponieważ Y, E i H razem wyczerpują cały zbiór zmiennych losowych Problemy: 1) Złożoność czasowa O(d n ) gdzie d jest maks. liczbą wartości zmiennej 2) Złożoność pamięciowa O(d n ), żeby pamiętać łączny rozkład 3) Jak zbudować słownik wartości prawdopodobieństw dla O(d n ) punktów próbkowych??? Sieci bayessowskie 9

10 Niezaleznosc A i B są niezależne wtw P(A B) = P(A) lub P(B A) = P(B) lub P(A, B) = P(A)P(B) oothache Cavity Weather Catch decomposes into P( oothache, Catch, Cavity, W eather) = P( oothache, Catch, Cavity)P(W eather) Cavity oothache Catch Weather 32 wartości prawdopodobieństw zredukowane do 12; dla n niezależnych rzutów monetą 2 n n Pełna niezależność zmiennych jest bardzo efektywna, ale bardzo rzadka Sieci bayessowskie 10

11 Niezaleznosc warunkowa P(oothache, Cavity, Catch) wymaga = 7 niezależnych wartości Jeśli mam osłabienie, prawdopodobieństwo, że złapię wtedy przeziębienie jest niezależne od tego, czy mam ból zęba: (1) P(catch toothache, cavity) = P(catch cavity) a sama niezależność pozostaje, jeśli nie mam osłabienia: (2) P(catch toothache, cavity) = P(catch cavity) Catch jest warunkowo niezależne od oothache przy danym Cavity: P(Catch oothache, Cavity) = P(Catch Cavity) Równoważne zdania: P( oothache Catch, Cavity) = P( oothache Cavity) P( oothache, Catch Cavity) = P( oothache Cavity)P(Catch Cavity) Sieci bayessowskie 11

12 Niezaleznosc warunkowa Używając pełnego łącznego rozkładu i reguły łańcuchowej: P( oothache, Catch, Cavity) = P( oothache Catch, Cavity)P(Catch, Cavity) = P( oothache Catch, Cavity)P(Catch Cavity)P(Cavity) = P( oothache Cavity)P(Catch Cavity)P(Cavity) zn = 5 niezależnych wartości (równania 1 i 2 usuwają 2) W większości przypadków użycie prawdopodobieństwa warunkowego redukuje rozmiar reprezentacji łącznego rozkładu z wykładniczego od n do linowego od n. Niezależność warunkowa jest najbardziej podstawową i efektywną formą wiedzy o niepewnym środowisku. Sieci bayessowskie 12

13 Regula Bayessa Reguła produkcytjna P(a b) = P(a b)p(b) = P(b a)p(a) reguła Bayessa P(a b) = P(b a)p(a) P(b) lub dla rozkładów P(Y X) = P(X Y )P(Y ) P(X) = αp(x Y )P(Y ) Użyteczne przy szacowaniu prawdopodobieństwa diagnostycznego na podstawie prawdopodobieństwa przyczynowego: P(Cause Effect) = P(Effect Cause)P(Cause) P(Effect) Np. M dolegliwość meningitis, S sztywnienie szyji: P(m s) = P(s m)p(m) P(s) = = Sieci bayessowskie 13

14 Regula Bayessa i niezaleznosc warunkowa P(Cavity toothache catch) = α P(toothache catch Cavity)P(Cavity) = α P(toothache Cavity)P(catch Cavity)P(Cavity) Model wnioskowania naiwny Bayessowski (zakłada niezależność obserwacji): P(Cause, Effect 1,..., Effect n ) = P(Cause)Π i P(Effect i Cause) Cavity Cause oothache Catch Effect 1 Effect n Całkowita liczba parametrów liniowa od n Sieci bayessowskie 14

15 Sieci bayessowskie Prosta, grafowa notacja do reprezentacji stwierdzeń o niezależności warunkowej i do zwartej specyfikacji pełnych rozkładów wielu zmiennych losowych Składnia: zbiór węzłów, jeden dla każdej zmiennej losowej skierowany graf acykliczny (strzałka bezpośrednio wpływa na ) dla każdego węzła rozkład warunkowy na podstawie rodziców: P(X i Parents(X i )) W najprostszym przypadku rozkład warunkowy reprezentowany jest jako tablica prawdopodobieństwa warunkowego (PW) dająca rozkład X i dla każdej kombinacji wartości rodziców Sieci bayessowskie 15

16 Sieci bayessowskie: przyklad opologia sieci koduje stwierdzenie o warunkowej niezależności: Weather Cavity oothache Catch Weather jest niezależna od innych zmiennnych oothache i Catch są warunkowo niezależne przy danym Cavity Sieci bayessowskie 16

17 Sieci bayessowskie: przyklad Jestem w pracy, sąsiad John dzwoni do mnie, mówiąc mi, że mój alarm domowy się włączył, ale sąsiadka Mary nie dzwoni. Czasami alarm włącza się przy drobnych trzęsieniach ziemi. Czy to jest włamanie? Zmienne: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls opologia sieci odzwierciedla wiedzę przyczynowo-skutkową : Włamywacz może uruchomić alarm rzęsienie ziemi może uruchomić alarm Uruchomiony alarm może spowodować, że Mary zadzwoni Uruchomiony alarm może spowodować, że John zadzwoni Sieci bayessowskie 17

18 Sieci bayessowskie: przyklad Burglary P(B).001 Earthquake P(E).002 B E P(A B,E) Alarm JohnCalls A P(J A) MaryCalls A P(M A) Sieci bayessowskie 18

19 Zwartosc reprezentacji sieci z k boolowskimi zmiennymi-rodzicami B E PW dla boolowskiej zmiennej X i ma 2 k wierszy będących kombinacjami wartości zmiennych-rodziców A Każdy wiersz PW wymaga jednej wartości prawd. p dla X i = true (prawdopodobieństwo dla X i =false jest 1 p) J M Jeśli każda zmienna ma co najwyżej k rodziców, to pełna sieć wymaga O(n 2 k ) wartości prawdopodobieństw zn. rośnie liniowo z n, vs. O(2 n ) dla pełnego rozkładu łącznego Dla sieci z włamaniem, = 10 wartości prawdopodobieństw (vs = 31) Sieci bayessowskie 19

20 Globalna semantyka Globalna semantyka definiuje pełny rozkład łączny jako produkt lokalnych rozkładów warunkowych: P(X 1,..., X n ) = Π n i = 1P(X i Parents(X i )) np. P(j m a b e) = B J A E M Sieci bayessowskie 20

21 Globalna semantyka Globalna semantyka definiuje pełny rozkład łączny jako produkt lokalnych rozkładów warunkowych: P(X 1,..., X n ) = Π n i = 1P(X i Parents(X i )) np. P(j m a b e) = P(j a)p(m a)p(a b, e)p( b)p( e) B J A E M Sieci bayessowskie 21

22 Lokala semantyka Lokalna semantyka: każdy węzeł jest warunkowo niezależny przy danych rodzicach od pozostałych węzłów nie będących jego potomkami U 1... U m Z 1j X Z nj Y 1... Y n wierdzenie: Lokalna semantyka globalna semantyka Sieci bayessowskie 22

23 Konstruowanie sieci bayessowskiej Wymaga metody takiej, że ciąg lokalnie testowalnych zależności warunkowych nadaje znaczenie globalne 1. Wybierz uporządkowanie zmiennych los. X 1,..., X n 2. Dla każdego i = 1 do n dodaj X i do sieci wybierz rodziców X 1,..., X i 1 takich, że P(X i Parents(X i )) = P(X i X 1,..., X i 1 ) Wybór rodziców gwarantuje znaczenie globalne: P(X 1,..., X n ) = Π n i = 1P(X i X 1,..., X i 1 ) (reguła łańcuchowa) = Π n i = 1P(X i Parents(X i )) (przez konstrukcję) Sieci bayessowskie 23

24 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls P(J M) = P(J)? Sieci bayessowskie 24

25 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? Sieci bayessowskie 25

26 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? P(B A, J,M) = P(B)? Nie Sieci bayessowskie 26

27 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary Earthquake P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? ak P(B A, J,M) = P(B)? Nie P(E B,A, J,M) = P(E A)? P(E B,A, J,M) = P(E A, B)? Nie Sieci bayessowskie 27

28 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary Earthquake P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? ak P(B A, J,M) = P(B)? Nie P(E B,A, J,M) = P(E A)? Nie P(E B,A, J,M) = P(E A, B)? ak Nie Sieci bayessowskie 28

29 Konstruowanie sieci bayessowskiej: przyklad MaryCalls JohnCalls Alarm Burglary Earthquake Rozpoznawanie warunkowych niezależności i oszacowanie prawdopodobieństw warunkowych jest trudne dla ludzi w nie przyczynowo-skutkowych kierunkach Sieć jest mniej zwarta: = 13 wartości prawdopodobieństw jest potrzebne Sieci bayessowskie 29

30 Siec bayessowska: diagnoza samochodu Początkowa przesłanka: samochód nie zapala Zmienne testowalne (zielone), zmienne zepsute, napraw to (pomarańczowe), zmienne ukryte (szare) rozrzedzają strukturę, redukują parametry battery age alternator broken fanbelt broken battery dead no charging battery meter battery flat no oil no gas fuel line blocked starter broken lights oil light gas gauge car won t start dipstick Sieci bayessowskie 30

31 Siec bayessowska: ubezpieczenie samochodu Age GoodStudent RiskAversion Seniorrain SocioEcon Mileage VehicleYear ExtraCar DrivingSkill MakeModel DrivingHist Antilock DrivQuality Airbag CarValue HomeBase Antiheft Ruggedness Accident OwnDamage heft Cushioning OtherCost OwnCost MedicalCost LiabilityCost PropertyCost Sieci bayessowskie 31

32 Wnioskowanie w sieci bayesowskiej Wnioskowanie dokładne Przez wyliczanie wartości Przez eliminację zmiennych Wnioskowanie aproksymacyjne Przez symulację stochastyczną metodą Monte Carlo z łancucha Markowa Sieci bayessowskie 32

33 Wnioskowanie przez wyliczanie wartosci Sumowanie iloczynów z prawdopodobieństw brzegowych bez faktycznego konstruowania ich jawnej reprezentacji, przy użyciu prawdopodobieństw warunkowych z sieci bayessowskiej Proste zapytanie w sieci z alarmem domowym: P(B j, m) = P(B, j, m)/p(j, m) = αp(b, j, m) = ασ e Σ a P(B,e, a, j, m) B J A E M Przechodząc po zmiennych w kolejności zgodnej z siecią (np. B,E, A, J, M) wyciągamy sumowanie po kolejnych zmiennych na zewnąrz wyrażenia i używamy wartości prawdopodobieństw z tablic PW: P(B j, m) = ασ e Σ a P(B)P(e)P(a B,e)P(j a)p(m a) = αp(b)σ e P(e)Σ a P(a B,e)P(j a)p(m a) Sieci bayessowskie 33

34 Wyliczanie wartosci: algorytm function Enumeration-Ask(X,e,bn) returns a distribution over X inputs: X, the query variable e, observed values for variables E bn, a Bayesian network with variables {X} E Y Q(X ) a distribution over X, initially empty for each value x i of X do extend e with value x i for X Q(x i ) Enumerate-All(Vars[bn],e) return Normalize(Q(X)) function Enumerate-All(vars,e) returns a real number if Empty?(vars) then return 1.0 Y irst(vars) if Y has value y in e then return P(y P arent(y )) Enumerate-All(Rest(vars), e) else return Σ y P(y Parent(Y )) Enumerate-All(Rest(vars),e y ) where e y is e extended with Y = y Sieci bayessowskie 34

35 Wyliczanie wartosci: dzialanie P(b).001 P(e).002 P( e).998 P(a b,e) P( a b,e) P(a b, e) P( a b, e) P(j a).90 P(j a).05 P(j a).90 P(j a).05 P(m a) P(m a) P(m a) P(m a) Rekurencyjne wyliczanie zmiennych w głąb sieci: O(n) pamięci, O(d n ) czasu Sieci bayessowskie 35

36 Wyliczanie wartosci: dzialanie P(b).001 P(e).002 P( e).998 P(a b,e) P( a b,e) P(a b, e) P( a b, e) P(j a).90 P(j a).05 P(j a).90 P(j a).05 P(m a) P(m a) P(m a) P(m a) Wyliczanie jest nieefektywne: powtarza obliczenia np. liczy P(j a)p(m a) dla każdej wartości e Sieci bayessowskie 36

37 Wnioskowanie przez eliminacje zmiennych Eliminacja zmiennych: wykonuje sumowanie z prawej do lewej, pamięta wyniki pośrednie (czynniki) w celu uniknięcia powtórzeń P(B j, m) = αp(b) } {{ } B f M (A) = Σ e P(e) } {{ } E Σ a P(a B,e) } {{ } A P(j a) } {{ } J = αp(b)σ e P(e)Σ a P(a B, e)p(j a)f M (a) = αp(b)σ e P(e)Σ a P(a B, e)f JM (a) = αp(b)σ e P(e)f ĀJM (b, e) = αp(b)f ĒĀJM (b) = αf B (b) f ĒĀJM (b) P(m a) P(m a) P(m a) } {{ } M, f JM (A) = f J (A) f M (A) = f A (A, B,E) jest macierzą dla wszystkich wartości A, B, E f ĀJM (B, E) = f A (a, B, E) f JM (a) + f A ( a, B, E) f JM ( a) f ĒĀJM (B, E) = f E (e) f ĀJM (B, e) + f E ( e) f ĀJM (B, e) P(j a)p(m a) P(j a)p(m a) Sieci bayessowskie 37

38 Eliminacja zmiennych: algorytm function Elimination-Ask(X,e,bn) returns a distribution over X inputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution P(X 1,..., X n ) factors [ ]; vars Reverse(Vars[bn]) for each var in vars do factors [Make-actor(var, e) factors] if var is a hidden variable then factors Sum-Out(var, factors) return Normalize(Pointwise-Product(factors)) Sieci bayessowskie 38

39 Eliminacja zmiennych: zmienne nieistotne Rozważmy zapytanie P(JohnCalls Burglary = true) P(J b) = αp(b)σ e P(e)Σ a P(a b,e)p(j a)σ m P(m a) Suma po m jest równa 1; M jest nieistotne dla zapytania Można pominąć sumowanie po zmiennych nieistotnych B J A E M w 1: Y jest nieistotne jeśli Y Ancestors({X} E) utaj X = JohnCalls, E = {Burglary}, i Ancestors({X} E) = {Alarm, Earthquake} więc M jest nieistotne Sieci bayessowskie 39

40 Eliminacja zmiennych: zmienne nieistotne Def: moralny graf sieci bayessowskiej (nieskierowany): zawiera krawędzie z oryginalnej sieci bez kierunku oraz krawędzie pomiędzy każdą parą rodziców mającą wspólne dziecko Def: A jest m-odseparowane od B przez C wtw gdy jest odseparowane przez C w grafie moralnym w 2: Y jest nieistotne jeśli jest m-odseparowane od X przez E B E Dla P(JohnCalls Alarm = true), obie Burglary i Earthquake są nieistotne J A M Sieci bayessowskie 40

41 L L L L Zlozonosc dokladnego wnioskowania Sieci pojedynczych połączeń (polidrzewa): każde dwa wierzchołki połączone są co najwyżej jedną ścieżką złożoność czasowa i pamięciowa algorytmu eliminacji zmiennych O(d k n) Sieci wielokrotnych połączeń: można zredukować 3SA do dokładnego wnioskowania NP-trudne równoważne zliczaniu modeli 3SA #P-zupełne A B C D 1. A v B v C 2. C v D v A B v C v D AND Sieci bayessowskie 41

42 Wnioskowanie przez symulacje stochastyczna Podstawowy pomysł: 1) Losuj N próbek z rozkładem próbkowym S 2) Oblicz aproksymacyjne prawdopodobieństwo wynikowe ˆP 3) Udowodnij zbieżność do prawdopodobieństwa faktycznego P Wnioskowanie stochastyczne bezwarunkowe (bez przesłanek): Próbkowanie bezpośrednie 0.5 Coin Wnioskowanie stochastyczne warunkowe (z przesłankami): Próbkowanie z odrzucaniem: odrzuca próbki niezgodne z przesłankami Ważenie prawdopodobieństwa próbek: używa przesłanek do ważenia prawdopodobieństwa próbek Monte Carlo z łancucha Markowa (MCMC): próbkuje z procesu stochastycznego, w którym proawdopodobieństo stacjonarne jest rzeczywistym prawdopodobieństwem warunkowym Sieci bayessowskie 42

43 Probkowanie bezposrednie function Direct-Sampling(X, bn, N) returns an estimate of P(X) local variables: N, a vector of counts over X, initially zero for j = 1 to N do x Prior-Sample(bn) N[x] N[x]+1 where x is the value of X in x return Normalize(N[X]) function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X 1,..., X n ) x an event with n elements for i = 1 to n do x i a random sample from P(X i Parents(X i )) return x Sieci bayessowskie 43

44 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 44

45 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 45

46 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 46

47 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 47

48 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 48

49 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 49

50 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 50

51 Probkowanie bezposrednie: wlasnosci Prawdopodobieństwo, że PriorSample generuje dane zdarzenie S PS (x 1... x n ) = Π n i = 1P(x i Parents(X i )) = P(x 1... x n ) to odpowiada prawdopodobieństwu faktycznemu tego zdarzenia Np. S PS (t, f, t, t) = = = P(t, f, t, t) N PS (x 1... x n ) liczbą próbek wygenerowanych dla zdarzenia x 1,..., x n Wtedy lim N ˆP(x 1,..., x n ) = lim N N PS(x 1,..., x n )/N = S PS (x 1,..., x n ) = P(x 1... x n ) Powyższą własność algorytmu DirectSampling nazywamy spójnością Notacja: ˆP(x1,..., x n ) P(x 1... x n ) Sieci bayessowskie 51

52 Probkowanie z odrzucaniem ˆP(X e) szacowane z próbek zgodnych z przesłankami e function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X e) local variables: N, a vector of counts over X, initially zero for j = 1 to N do x Prior-Sample(bn) if x is consistent with e then N[x] N[x]+1 where x is the value of X in x return Normalize(N[X]) Np. oszacowanie P(Rain Sprinkler = true) przy użyciu 100 próbek 27 próbek ma Sprinkler = true Z tego, 8 ma Rain =true i 19 ma Rain =false. ˆP(Rain Sprinkler = true) = Normalize( 8, 19 ) = 0.296, Sieci bayessowskie 52

53 Probkowanie z odrzucaniem: wlasnosci ˆP(X e) = αn PS (X,e) (wynik algorytmu RejectionSampling) = N PS (X,e)/N PS (e) (normalizowane przez N PS (e)) P(X, e)/p(e) (własność PriorSample) = P(X e) (prawdopodobieństwo faktyczne) Zatem próbkowanie z odrzucaniem ma własność spójności tzn. oszacowanie zbiega do faktycznego prawdopodobieństwa warunkowego Problem: bardzo kosztowne jeśli P(e) jest małe P(e) rozpada się wykładniczo wraz z liczbą zmiennych! Sieci bayessowskie 53

54 Wazenie prawdopodobienstwa probek Pomysł: ustala zmienne z przesłanek, próbkuje tylko zmienna spoza przesłanek, i waży prawdopodobieństwo każdej próbki stosownie do przesłanek function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X e) local variables: W, a vector of weighted counts over X, initially zero for j = 1 to N do x, w Weighted-Sample(bn) W[x] W[x] + w where x is the value of X in x return Normalize(W[X ]) function Weighted-Sample(bn,e) returns an event and a weight x an event with n elements; w 1 for i = 1 to n do if X i has a value x i in e then w w P(X i = x i Parents(X i )) else x i a random sample from P(X i Parents(X i )) return x, w Sieci bayessowskie 54

55 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 55

56 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 56

57 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 57

58 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 58

59 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 59

60 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 60

61 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = = Sieci bayessowskie 61

62 Wazenie prawdopodobienstwa probek: wlasnosci Prawdopodobieństwo próbki ważonej WeightedSample wynosi S WS (z,e) = Π l i = 1P(z i Parents(Z i )) Uwaga: S WS uwzględnia tylko przesłanki z przodków z i daje prawdopodobieństwo pośrednie pomiędzy prawdopodobieństwem a priori i a posteriori Sprinkler Cloudy Rain Waga dla danej próbki z,e wynosi w(z,e) = Π m i = 1P(e i Parents(E i )) Wet Grass Ważone prawdopodobieństwo próbkowe: S WS (z,e)w(z,e) = Π l i = 1P(z i Parents(Z i )) Π m i = 1P(e i Parents(E i )) = P(z,e) (ze standardowej, globalnej semantyki sieci) Stąd ważenie prawdopodobieństwa też ma własność spójności ale efektywność nadal maleje przy dużej liczbie przesłanek ponieważ bardzo mało próbek ma dużą wagę Sieci bayessowskie 62

63 Monte Carlo dla lancucha Markowa Stan sieci: bieżące przypisanie wszystkich zmiennych Łańcuch Markowa: ciąg stanów sieci, następny stan jest generowany poprzez próbkowanie jednej zmiennej nie będącej przesłanką na podstawie jej koca Markowa function MCMC-Ask(X, e, bn, N) returns an estimate of P(X e) local variables: N[X ], a vector of counts over X, initially zero Z, the nonevidence variables in bn x, the current state of the network, initially copied from e initialize x with random values for the variables in Y for j = 1 to N do N[x] N[x] + 1 where x is the value of X in x for each Z i in Z do sample the value of Z i in x from P(Z i MB(Z i )) given the values of MB(Z i ) in x return Normalize(N[X ]) Sieci bayessowskie 63

64 Koc Markowa Każdy węzeł jest warunkowo niezależny od wszystkich pozostałych przy danym jego kocu Markowa: rodzice + dzieci + inni rodzice dzieci U 1... U m Z 1j X Z nj Y 1... Y n Sieci bayessowskie 64

65 Koc Markowa: przyklad Koc Markowa dla Cloudy: Sprinkler i Rain Koc Markowa dla Rain: Cloudy, Sprinkler i WetGrass Sprinkler Cloudy Wet Grass Prawdopodobieństwo warunkowe przy danym kocu Markowa: P(x i MB(X i )) = P(x i Parents(X i ))Π Zj Children(X i )P(z j Parents(Z j )) Rain Sieci bayessowskie 65

66 Lancuch Markowa Przy przesłankach Sprinkler = true, W etgrass = true łancuch Markowa zawiera 4 stany: Cloudy Cloudy Sprinkler Rain Sprinkler Rain Wet Grass Wet Grass Cloudy Cloudy Sprinkler Rain Sprinkler Rain Wet Grass Wet Grass Sieci bayessowskie 66

67 Monte Carlo dla lancucha Markowa: przyklad Szacowanie P(Rain Sprinkler = true, W etgrass = true) Algorytm powtarza próbkowanie zmiennych Cloudy i Rain na podstawie ich koca Markowa. Zlicza, ile razy Rain było true i false w kolejnych stanach sieci. Np. odwiedza 100 stanów 31 ma Rain = true, 69 ma Rain =false ˆP(Rain Sprinkler = true, W etgrass = true) = Normalize( 31, 69 ) = 0.31, 0.69 Sieci bayessowskie 67

68 Monte Carlo dla lancucha Markowa: wlasnosci wierdzenie: łańcuch zbiega do rozkładu stacjonarnego ( spójność): proporcja czasu spędzonego w danym stanie w czasie długiego działania sieci jest dokładnie propocjonalna do faktycznego prawdopodobieństwa warunkowego Zalety Metoda nie jest wrażliwa na topologię sieci Można stosować do zmiennych dyskretnych i ciągłych Wady Zbieżność może być wolna rudno określić moment, w którym algorytm daje już bliskie rozwiązanie Może być czasowo rozrzutny, jeśli występują duże koce Markowa: P(X i MB(X i )) nie zmienia się dużo (Prawo Wielkich Liczb) a jest liczone za każdym razem Sieci bayessowskie 68

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Sieci bayessowskie 1 Sieci bayessowskie 1 1 Niepewnosc Niech akcja A t = wyjedź na lotnisko t minut przed odlotem Czy A t pozwoli mi zdążyć na czas? Problemy: 1)

Bardziej szczegółowo

SID Wykład XI Sieci Bayesowskie

SID Wykład XI Sieci Bayesowskie SID Wykład XI Sieci Bayesowskie Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Niepewność Niech akcja A t = wyjedź na lotnisko t minut przed odlotem. Czy A t pozwoli mi zdażyć na czas?

Bardziej szczegółowo

Na podstawie: AIMA, ch13. Wojciech Jaśkowski. 15 marca 2013

Na podstawie: AIMA, ch13. Wojciech Jaśkowski. 15 marca 2013 Na podstawie: AIMA, ch13 Instytut Informatyki, Politechnika Poznańska 15 marca 2013 Źródła niepewności Świat częściowo obserwowalny Świat niedeterministyczny Także: Lenistwo i ignorancja (niewiedza) Cel:

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Modelowanie Niepewności

Modelowanie Niepewności Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca 2014 Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności. Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady

Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności. Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady Zarządzanie wiedzą Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności 1 Plan wykładu Niepewność Wnioskowanie statystyczne: Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności

Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności Systemy ekspertowe Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności 1 Plan wykładu Niepewność Wnioskowanie statystyczne: Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna Motywacja Wiedza o świecie jaka posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedze kompletna i pewna, może to być niepraktyczne. W sztucznej

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Algorytmy z powrotami

Algorytmy z powrotami Algorytmy z powrotami Algorytmy z powrotami są wykorzystywane do rozwiązywania problemów, w których z określonego zbioru jest wybierana sekwencja obiektów tak, aby spełniała ona określone kryteria. Klasycznym

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi. Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 7 teoria kolejek prawo Little a systemy jedno- i wielokolejkowe 1/75 System kolejkowy System kolejkowy to układ złożony

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Niepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk

Niepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk Zarządzanie wiedzą Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka Joanna Kołodziejczyk 13 maj 2011 Plan wykładu 1 Niepewność 2 Belief Networks 3 SE Pochodzenie niepewności

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo