Sztuczna Inteligencja i Systemy Doradcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczna Inteligencja i Systemy Doradcze"

Transkrypt

1 Sztuczna Inteligencja i Systemy Doradcze Sieci bayessowskie Sieci bayessowskie 1

2 Niepewnosc Niech akcja A t = wyjedź na lotnisko t minut przed odlotem Czy A t pozwoli mi zdążyć na czas? Problemy: 1) informacja częściowa (stan ulic, plany innych kierowców, etc.) 2) niedokładne informacje (raport o korkach) 3) niepewność działania akcji (złapanie gumy, etc.) 4) ogromna złożoność modelowania i przewidywania ruchu Stąd czysto logiczne podejście albo 1) ryzykuje fałszywość: A 25 pozwoli mi zdążyć na czas albo 2) prowadzi do wniosków zbyt słabych do podjęcia decyzji: A 25 pozwoli mi zdążyć na czas jeśli nie będzie wypadku na moście i nie będzi padać i nie złapię gumy itd. (A 1440 mogłoby być uznane że rozsądnie zapewnia, że zdąże na czas, ale nie chcę czekać całą noc na lotnisku...) Sieci bayessowskie 2

3 Podstawy prawdopodobienstwa Ω przestrzeń próbek np. 6 możliwych wyników rzutu kostką. ω Ω jest punktem próbkowym/dopuszczalnym stanem świata/ zdarzeniem atomowym Przestrzeń prawdopobieństwa lub model prawdopodobieństwa to przestrzeń próbek z przypisaniem P(ω) dla każdego ω Ω spełniającego warunki 0 P(ω) 1 Σ ω P(ω) = 1 np. P(1) =P(2) =P(3) =P(4) =P(5) = P(6) = 1/6. Zdarzenie A jest podzbiorem Ω P(A) = Σ {ω A} P(ω) Np. P(rzut kostką < 4) = 1/6 + 1/6 + 1/6 = 1/2 Sieci bayessowskie 3

4 Zmienne losowe Zmienna losowa jest funkcją z przestrzeni próbek w pewien zbiór wartości, np. rzeczywistych lub boolowskich np. Odd(1) = true. P indukuje rozkład prawdopodobieństwa dla dowolnej zm. los. X: P(X = x i ) = Σ {ω:x(ω) =xi }P(ω) np. P(Odd =true) = 1/6 + 1/6 + 1/6 = 1/2 Sieci bayessowskie 4

5 Zdania Zdania reprezentują pewne zdarzenia (podzbiory przestrzeni próbek) w których są prawdziwe Boolowskie zmienne losowe np. Cavity (czy jestem osłabiony?) Dyskretne zmienne losowe (skończone lub nieskończone) np. Weather ma jedną wartość z sunny, rain, cloudy, snow W eather = rain jest zdaniem Wartości muszą być kompletne i wzajemnie się wykluczać Ciągłe zmienne losowe (ograniczone lub nieograniczone) np. emp = 21.6; można także emp < Dowolne kombinacje boolowskie prostych zdań Sieci bayessowskie 5

6 Prawdopodobienstwo bezwarunkowe Bezwarunkowe prawdopodobieństwo zdań np. P(Cavity =true) = 0.1 i P(Weather =sunny) = 0.72 odpowiada przekonaniom przed dostarczeniem jakiejkolwiek (nowej) przesłanki Rozkład prawdopodobieństwa daje wartości dla wszystkich przypisań: P(W eather) = 0.72, 0.1, 0.08, 0.1 (znormalizowana: sumuje się do 1) Łączny rozkład prawdopodobieństwa dla zbioru zm. los. daje prawdopodobieństwa każdego zdarzenia atomowego na tych zm. los. (tzn. każdy punkt próbkowy) P(Weather, Cavity) = macierz wartości 4 2: W eather = sunny rain cloudy snow Cavity = true Cavity = f alse Każde pytanie o dziedzinę może być odpowiedziane przez łączny rozkład ponieważ każde zdarzenie jest sumą punktów próbkowych Sieci bayessowskie 6

7 Prawdopodobienstwo warunkowe Prawdopodobieństwo warunkowe lub a posteriori np. P(cavity toothache) = 0.8 tzn. zakładając, że toothache to to, o czym wiem NIE jeśli toothache to 80% szans na cavity Notacja rozkładów warunkowych: P(Cavity oothache) = 2-elementowy wektor 2-elementowych wektorów Jeśli wiemy więcej, np. cavity też jest dane, wtedy mamy P(cavity toothache, cavity) = 1 Uwaga: mniej specyficzne przekonania pozostają prawdziwe po dojściu nowych przesłanek, ale nie zawsze są użyteczne Nowe przesłanki mogą być nieistotne, umożliwiając upraszczanie, np. P(cavity toothache, 49ersW in) = P(cavity toothache) = 0.8 en rodzaj wnioskowania, uwarunkowany wiedzą dziedzinową, jest kluczowy Sieci bayessowskie 7

8 Prawdopodobienstwo warunkowe Definicja prawdopobieństwa warunkowego: P(a b) = P(a b) P(b) if P(b) 0 Reguła produkcji daje sformułowanie alternatywne: P(a b) = P(a b)p(b) = p(b a)p(a) Ogólna wersja zachodzi dla całych rozkładów, np. P(W eather, Cavity) = P(W eather Cavity)P(Cavity) (jako zbiór 4 2 równań, nie mnożenie macierzy) Reguła łańcuchowa otrzymywana przez kolejne zastosowania reguły produkcji: P(X 1,..., X n ) = P(X 1,..., X n 1 ) P(X n X 1,..., X n 1 ) = P(X 1,..., X n 2 ) P(X n1 X 1,..., X n 2 ) P(X n X 1,..., X n 1 ) =... = Π n i = 1P(X i X 1,..., X i 1 ) Sieci bayessowskie 8

9 Wnioskowanie przez wyliczanie Zazwyczaj interesuje nas rozkład warunkowy zadanych zmiennych Y przy danych specyficznych wartościach e dla zmiennych-przesłanek E Zmienne ukryte H = X Y E Ogólny pomysł: ustalamy zmienne-przesłanki i sumujemy prawdopodobieństwa po wartościach zmiennych ukrytych: P(Y E =e) = αp(y,e=e) = ασ h P(Y,E=e,H=h) Wyrażenia w sumowania są wartościami łącznego rozkładu ponieważ Y, E i H razem wyczerpują cały zbiór zmiennych losowych Problemy: 1) Złożoność czasowa O(d n ) gdzie d jest maks. liczbą wartości zmiennej 2) Złożoność pamięciowa O(d n ), żeby pamiętać łączny rozkład 3) Jak zbudować słownik wartości prawdopodobieństw dla O(d n ) punktów próbkowych??? Sieci bayessowskie 9

10 Niezaleznosc A i B są niezależne wtw P(A B) = P(A) lub P(B A) = P(B) lub P(A, B) = P(A)P(B) oothache Cavity Weather Catch decomposes into P( oothache, Catch, Cavity, W eather) = P( oothache, Catch, Cavity)P(W eather) Cavity oothache Catch Weather 32 wartości prawdopodobieństw zredukowane do 12; dla n niezależnych rzutów monetą 2 n n Pełna niezależność zmiennych jest bardzo efektywna, ale bardzo rzadka Sieci bayessowskie 10

11 Niezaleznosc warunkowa P(oothache, Cavity, Catch) wymaga = 7 niezależnych wartości Jeśli mam osłabienie, prawdopodobieństwo, że złapię wtedy przeziębienie jest niezależne od tego, czy mam ból zęba: (1) P(catch toothache, cavity) = P(catch cavity) a sama niezależność pozostaje, jeśli nie mam osłabienia: (2) P(catch toothache, cavity) = P(catch cavity) Catch jest warunkowo niezależne od oothache przy danym Cavity: P(Catch oothache, Cavity) = P(Catch Cavity) Równoważne zdania: P( oothache Catch, Cavity) = P( oothache Cavity) P( oothache, Catch Cavity) = P( oothache Cavity)P(Catch Cavity) Sieci bayessowskie 11

12 Niezaleznosc warunkowa Używając pełnego łącznego rozkładu i reguły łańcuchowej: P( oothache, Catch, Cavity) = P( oothache Catch, Cavity)P(Catch, Cavity) = P( oothache Catch, Cavity)P(Catch Cavity)P(Cavity) = P( oothache Cavity)P(Catch Cavity)P(Cavity) zn = 5 niezależnych wartości (równania 1 i 2 usuwają 2) W większości przypadków użycie prawdopodobieństwa warunkowego redukuje rozmiar reprezentacji łącznego rozkładu z wykładniczego od n do linowego od n. Niezależność warunkowa jest najbardziej podstawową i efektywną formą wiedzy o niepewnym środowisku. Sieci bayessowskie 12

13 Regula Bayessa Reguła produkcytjna P(a b) = P(a b)p(b) = P(b a)p(a) reguła Bayessa P(a b) = P(b a)p(a) P(b) lub dla rozkładów P(Y X) = P(X Y )P(Y ) P(X) = αp(x Y )P(Y ) Użyteczne przy szacowaniu prawdopodobieństwa diagnostycznego na podstawie prawdopodobieństwa przyczynowego: P(Cause Effect) = P(Effect Cause)P(Cause) P(Effect) Np. M dolegliwość meningitis, S sztywnienie szyji: P(m s) = P(s m)p(m) P(s) = = Sieci bayessowskie 13

14 Regula Bayessa i niezaleznosc warunkowa P(Cavity toothache catch) = α P(toothache catch Cavity)P(Cavity) = α P(toothache Cavity)P(catch Cavity)P(Cavity) Model wnioskowania naiwny Bayessowski (zakłada niezależność obserwacji): P(Cause, Effect 1,..., Effect n ) = P(Cause)Π i P(Effect i Cause) Cavity Cause oothache Catch Effect 1 Effect n Całkowita liczba parametrów liniowa od n Sieci bayessowskie 14

15 Sieci bayessowskie Prosta, grafowa notacja do reprezentacji stwierdzeń o niezależności warunkowej i do zwartej specyfikacji pełnych rozkładów wielu zmiennych losowych Składnia: zbiór węzłów, jeden dla każdej zmiennej losowej skierowany graf acykliczny (strzałka bezpośrednio wpływa na ) dla każdego węzła rozkład warunkowy na podstawie rodziców: P(X i Parents(X i )) W najprostszym przypadku rozkład warunkowy reprezentowany jest jako tablica prawdopodobieństwa warunkowego (PW) dająca rozkład X i dla każdej kombinacji wartości rodziców Sieci bayessowskie 15

16 Sieci bayessowskie: przyklad opologia sieci koduje stwierdzenie o warunkowej niezależności: Weather Cavity oothache Catch Weather jest niezależna od innych zmiennnych oothache i Catch są warunkowo niezależne przy danym Cavity Sieci bayessowskie 16

17 Sieci bayessowskie: przyklad Jestem w pracy, sąsiad John dzwoni do mnie, mówiąc mi, że mój alarm domowy się włączył, ale sąsiadka Mary nie dzwoni. Czasami alarm włącza się przy drobnych trzęsieniach ziemi. Czy to jest włamanie? Zmienne: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls opologia sieci odzwierciedla wiedzę przyczynowo-skutkową : Włamywacz może uruchomić alarm rzęsienie ziemi może uruchomić alarm Uruchomiony alarm może spowodować, że Mary zadzwoni Uruchomiony alarm może spowodować, że John zadzwoni Sieci bayessowskie 17

18 Sieci bayessowskie: przyklad Burglary P(B).001 Earthquake P(E).002 B E P(A B,E) Alarm JohnCalls A P(J A) MaryCalls A P(M A) Sieci bayessowskie 18

19 Zwartosc reprezentacji sieci z k boolowskimi zmiennymi-rodzicami B E PW dla boolowskiej zmiennej X i ma 2 k wierszy będących kombinacjami wartości zmiennych-rodziców A Każdy wiersz PW wymaga jednej wartości prawd. p dla X i = true (prawdopodobieństwo dla X i =false jest 1 p) J M Jeśli każda zmienna ma co najwyżej k rodziców, to pełna sieć wymaga O(n 2 k ) wartości prawdopodobieństw zn. rośnie liniowo z n, vs. O(2 n ) dla pełnego rozkładu łącznego Dla sieci z włamaniem, = 10 wartości prawdopodobieństw (vs = 31) Sieci bayessowskie 19

20 Globalna semantyka Globalna semantyka definiuje pełny rozkład łączny jako produkt lokalnych rozkładów warunkowych: P(X 1,..., X n ) = Π n i = 1P(X i Parents(X i )) np. P(j m a b e) = B J A E M Sieci bayessowskie 20

21 Globalna semantyka Globalna semantyka definiuje pełny rozkład łączny jako produkt lokalnych rozkładów warunkowych: P(X 1,..., X n ) = Π n i = 1P(X i Parents(X i )) np. P(j m a b e) = P(j a)p(m a)p(a b, e)p( b)p( e) B J A E M Sieci bayessowskie 21

22 Lokala semantyka Lokalna semantyka: każdy węzeł jest warunkowo niezależny przy danych rodzicach od pozostałych węzłów nie będących jego potomkami U 1... U m Z 1j X Z nj Y 1... Y n wierdzenie: Lokalna semantyka globalna semantyka Sieci bayessowskie 22

23 Konstruowanie sieci bayessowskiej Wymaga metody takiej, że ciąg lokalnie testowalnych zależności warunkowych nadaje znaczenie globalne 1. Wybierz uporządkowanie zmiennych los. X 1,..., X n 2. Dla każdego i = 1 do n dodaj X i do sieci wybierz rodziców X 1,..., X i 1 takich, że P(X i Parents(X i )) = P(X i X 1,..., X i 1 ) Wybór rodziców gwarantuje znaczenie globalne: P(X 1,..., X n ) = Π n i = 1P(X i X 1,..., X i 1 ) (reguła łańcuchowa) = Π n i = 1P(X i Parents(X i )) (przez konstrukcję) Sieci bayessowskie 23

24 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls P(J M) = P(J)? Sieci bayessowskie 24

25 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? Sieci bayessowskie 25

26 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? P(B A, J,M) = P(B)? Nie Sieci bayessowskie 26

27 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary Earthquake P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? ak P(B A, J,M) = P(B)? Nie P(E B,A, J,M) = P(E A)? P(E B,A, J,M) = P(E A, B)? Nie Sieci bayessowskie 27

28 Konstruowanie sieci bayessowskiej: przyklad Załóżmy, że wybieramy M, J, A, B, E MaryCalls JohnCalls Alarm Burglary Earthquake P(J M) = P(J)? Nie P(A J, M) = P(A J)? P(A J, M) = P(A)? P(B A, J,M) = P(B A)? ak P(B A, J,M) = P(B)? Nie P(E B,A, J,M) = P(E A)? Nie P(E B,A, J,M) = P(E A, B)? ak Nie Sieci bayessowskie 28

29 Konstruowanie sieci bayessowskiej: przyklad MaryCalls JohnCalls Alarm Burglary Earthquake Rozpoznawanie warunkowych niezależności i oszacowanie prawdopodobieństw warunkowych jest trudne dla ludzi w nie przyczynowo-skutkowych kierunkach Sieć jest mniej zwarta: = 13 wartości prawdopodobieństw jest potrzebne Sieci bayessowskie 29

30 Siec bayessowska: diagnoza samochodu Początkowa przesłanka: samochód nie zapala Zmienne testowalne (zielone), zmienne zepsute, napraw to (pomarańczowe), zmienne ukryte (szare) rozrzedzają strukturę, redukują parametry battery age alternator broken fanbelt broken battery dead no charging battery meter battery flat no oil no gas fuel line blocked starter broken lights oil light gas gauge car won t start dipstick Sieci bayessowskie 30

31 Siec bayessowska: ubezpieczenie samochodu Age GoodStudent RiskAversion Seniorrain SocioEcon Mileage VehicleYear ExtraCar DrivingSkill MakeModel DrivingHist Antilock DrivQuality Airbag CarValue HomeBase Antiheft Ruggedness Accident OwnDamage heft Cushioning OtherCost OwnCost MedicalCost LiabilityCost PropertyCost Sieci bayessowskie 31

32 Wnioskowanie w sieci bayesowskiej Wnioskowanie dokładne Przez wyliczanie wartości Przez eliminację zmiennych Wnioskowanie aproksymacyjne Przez symulację stochastyczną metodą Monte Carlo z łancucha Markowa Sieci bayessowskie 32

33 Wnioskowanie przez wyliczanie wartosci Sumowanie iloczynów z prawdopodobieństw brzegowych bez faktycznego konstruowania ich jawnej reprezentacji, przy użyciu prawdopodobieństw warunkowych z sieci bayessowskiej Proste zapytanie w sieci z alarmem domowym: P(B j, m) = P(B, j, m)/p(j, m) = αp(b, j, m) = ασ e Σ a P(B,e, a, j, m) B J A E M Przechodząc po zmiennych w kolejności zgodnej z siecią (np. B,E, A, J, M) wyciągamy sumowanie po kolejnych zmiennych na zewnąrz wyrażenia i używamy wartości prawdopodobieństw z tablic PW: P(B j, m) = ασ e Σ a P(B)P(e)P(a B,e)P(j a)p(m a) = αp(b)σ e P(e)Σ a P(a B,e)P(j a)p(m a) Sieci bayessowskie 33

34 Wyliczanie wartosci: algorytm function Enumeration-Ask(X,e,bn) returns a distribution over X inputs: X, the query variable e, observed values for variables E bn, a Bayesian network with variables {X} E Y Q(X ) a distribution over X, initially empty for each value x i of X do extend e with value x i for X Q(x i ) Enumerate-All(Vars[bn],e) return Normalize(Q(X)) function Enumerate-All(vars,e) returns a real number if Empty?(vars) then return 1.0 Y irst(vars) if Y has value y in e then return P(y P arent(y )) Enumerate-All(Rest(vars), e) else return Σ y P(y Parent(Y )) Enumerate-All(Rest(vars),e y ) where e y is e extended with Y = y Sieci bayessowskie 34

35 Wyliczanie wartosci: dzialanie P(b).001 P(e).002 P( e).998 P(a b,e) P( a b,e) P(a b, e) P( a b, e) P(j a).90 P(j a).05 P(j a).90 P(j a).05 P(m a) P(m a) P(m a) P(m a) Rekurencyjne wyliczanie zmiennych w głąb sieci: O(n) pamięci, O(d n ) czasu Sieci bayessowskie 35

36 Wyliczanie wartosci: dzialanie P(b).001 P(e).002 P( e).998 P(a b,e) P( a b,e) P(a b, e) P( a b, e) P(j a).90 P(j a).05 P(j a).90 P(j a).05 P(m a) P(m a) P(m a) P(m a) Wyliczanie jest nieefektywne: powtarza obliczenia np. liczy P(j a)p(m a) dla każdej wartości e Sieci bayessowskie 36

37 Wnioskowanie przez eliminacje zmiennych Eliminacja zmiennych: wykonuje sumowanie z prawej do lewej, pamięta wyniki pośrednie (czynniki) w celu uniknięcia powtórzeń P(B j, m) = αp(b) } {{ } B f M (A) = Σ e P(e) } {{ } E Σ a P(a B,e) } {{ } A P(j a) } {{ } J = αp(b)σ e P(e)Σ a P(a B, e)p(j a)f M (a) = αp(b)σ e P(e)Σ a P(a B, e)f JM (a) = αp(b)σ e P(e)f ĀJM (b, e) = αp(b)f ĒĀJM (b) = αf B (b) f ĒĀJM (b) P(m a) P(m a) P(m a) } {{ } M, f JM (A) = f J (A) f M (A) = f A (A, B,E) jest macierzą dla wszystkich wartości A, B, E f ĀJM (B, E) = f A (a, B, E) f JM (a) + f A ( a, B, E) f JM ( a) f ĒĀJM (B, E) = f E (e) f ĀJM (B, e) + f E ( e) f ĀJM (B, e) P(j a)p(m a) P(j a)p(m a) Sieci bayessowskie 37

38 Eliminacja zmiennych: algorytm function Elimination-Ask(X,e,bn) returns a distribution over X inputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution P(X 1,..., X n ) factors [ ]; vars Reverse(Vars[bn]) for each var in vars do factors [Make-actor(var, e) factors] if var is a hidden variable then factors Sum-Out(var, factors) return Normalize(Pointwise-Product(factors)) Sieci bayessowskie 38

39 Eliminacja zmiennych: zmienne nieistotne Rozważmy zapytanie P(JohnCalls Burglary = true) P(J b) = αp(b)σ e P(e)Σ a P(a b,e)p(j a)σ m P(m a) Suma po m jest równa 1; M jest nieistotne dla zapytania Można pominąć sumowanie po zmiennych nieistotnych B J A E M w 1: Y jest nieistotne jeśli Y Ancestors({X} E) utaj X = JohnCalls, E = {Burglary}, i Ancestors({X} E) = {Alarm, Earthquake} więc M jest nieistotne Sieci bayessowskie 39

40 Eliminacja zmiennych: zmienne nieistotne Def: moralny graf sieci bayessowskiej (nieskierowany): zawiera krawędzie z oryginalnej sieci bez kierunku oraz krawędzie pomiędzy każdą parą rodziców mającą wspólne dziecko Def: A jest m-odseparowane od B przez C wtw gdy jest odseparowane przez C w grafie moralnym w 2: Y jest nieistotne jeśli jest m-odseparowane od X przez E B E Dla P(JohnCalls Alarm = true), obie Burglary i Earthquake są nieistotne J A M Sieci bayessowskie 40

41 L L L L Zlozonosc dokladnego wnioskowania Sieci pojedynczych połączeń (polidrzewa): każde dwa wierzchołki połączone są co najwyżej jedną ścieżką złożoność czasowa i pamięciowa algorytmu eliminacji zmiennych O(d k n) Sieci wielokrotnych połączeń: można zredukować 3SA do dokładnego wnioskowania NP-trudne równoważne zliczaniu modeli 3SA #P-zupełne A B C D 1. A v B v C 2. C v D v A B v C v D AND Sieci bayessowskie 41

42 Wnioskowanie przez symulacje stochastyczna Podstawowy pomysł: 1) Losuj N próbek z rozkładem próbkowym S 2) Oblicz aproksymacyjne prawdopodobieństwo wynikowe ˆP 3) Udowodnij zbieżność do prawdopodobieństwa faktycznego P Wnioskowanie stochastyczne bezwarunkowe (bez przesłanek): Próbkowanie bezpośrednie 0.5 Coin Wnioskowanie stochastyczne warunkowe (z przesłankami): Próbkowanie z odrzucaniem: odrzuca próbki niezgodne z przesłankami Ważenie prawdopodobieństwa próbek: używa przesłanek do ważenia prawdopodobieństwa próbek Monte Carlo z łancucha Markowa (MCMC): próbkuje z procesu stochastycznego, w którym proawdopodobieństo stacjonarne jest rzeczywistym prawdopodobieństwem warunkowym Sieci bayessowskie 42

43 Probkowanie bezposrednie function Direct-Sampling(X, bn, N) returns an estimate of P(X) local variables: N, a vector of counts over X, initially zero for j = 1 to N do x Prior-Sample(bn) N[x] N[x]+1 where x is the value of X in x return Normalize(N[X]) function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X 1,..., X n ) x an event with n elements for i = 1 to n do x i a random sample from P(X i Parents(X i )) return x Sieci bayessowskie 43

44 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 44

45 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 45

46 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 46

47 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 47

48 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 48

49 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 49

50 Probkowanie bezposrednie: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) Sieci bayessowskie 50

51 Probkowanie bezposrednie: wlasnosci Prawdopodobieństwo, że PriorSample generuje dane zdarzenie S PS (x 1... x n ) = Π n i = 1P(x i Parents(X i )) = P(x 1... x n ) to odpowiada prawdopodobieństwu faktycznemu tego zdarzenia Np. S PS (t, f, t, t) = = = P(t, f, t, t) N PS (x 1... x n ) liczbą próbek wygenerowanych dla zdarzenia x 1,..., x n Wtedy lim N ˆP(x 1,..., x n ) = lim N N PS(x 1,..., x n )/N = S PS (x 1,..., x n ) = P(x 1... x n ) Powyższą własność algorytmu DirectSampling nazywamy spójnością Notacja: ˆP(x1,..., x n ) P(x 1... x n ) Sieci bayessowskie 51

52 Probkowanie z odrzucaniem ˆP(X e) szacowane z próbek zgodnych z przesłankami e function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X e) local variables: N, a vector of counts over X, initially zero for j = 1 to N do x Prior-Sample(bn) if x is consistent with e then N[x] N[x]+1 where x is the value of X in x return Normalize(N[X]) Np. oszacowanie P(Rain Sprinkler = true) przy użyciu 100 próbek 27 próbek ma Sprinkler = true Z tego, 8 ma Rain =true i 19 ma Rain =false. ˆP(Rain Sprinkler = true) = Normalize( 8, 19 ) = 0.296, Sieci bayessowskie 52

53 Probkowanie z odrzucaniem: wlasnosci ˆP(X e) = αn PS (X,e) (wynik algorytmu RejectionSampling) = N PS (X,e)/N PS (e) (normalizowane przez N PS (e)) P(X, e)/p(e) (własność PriorSample) = P(X e) (prawdopodobieństwo faktyczne) Zatem próbkowanie z odrzucaniem ma własność spójności tzn. oszacowanie zbiega do faktycznego prawdopodobieństwa warunkowego Problem: bardzo kosztowne jeśli P(e) jest małe P(e) rozpada się wykładniczo wraz z liczbą zmiennych! Sieci bayessowskie 53

54 Wazenie prawdopodobienstwa probek Pomysł: ustala zmienne z przesłanek, próbkuje tylko zmienna spoza przesłanek, i waży prawdopodobieństwo każdej próbki stosownie do przesłanek function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X e) local variables: W, a vector of weighted counts over X, initially zero for j = 1 to N do x, w Weighted-Sample(bn) W[x] W[x] + w where x is the value of X in x return Normalize(W[X ]) function Weighted-Sample(bn,e) returns an event and a weight x an event with n elements; w 1 for i = 1 to n do if X i has a value x i in e then w w P(X i = x i Parents(X i )) else x i a random sample from P(X i Parents(X i )) return x, w Sieci bayessowskie 54

55 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 55

56 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 56

57 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = 1.0 Sieci bayessowskie 57

58 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 58

59 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 59

60 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = Sieci bayessowskie 60

61 Wazenie prawdopodobienstwa probek: przyklad P(C).50 Cloudy C P(S C) Sprinkler Rain C P(R C) S R Wet Grass P(W S,R) w = = Sieci bayessowskie 61

62 Wazenie prawdopodobienstwa probek: wlasnosci Prawdopodobieństwo próbki ważonej WeightedSample wynosi S WS (z,e) = Π l i = 1P(z i Parents(Z i )) Uwaga: S WS uwzględnia tylko przesłanki z przodków z i daje prawdopodobieństwo pośrednie pomiędzy prawdopodobieństwem a priori i a posteriori Sprinkler Cloudy Rain Waga dla danej próbki z,e wynosi w(z,e) = Π m i = 1P(e i Parents(E i )) Wet Grass Ważone prawdopodobieństwo próbkowe: S WS (z,e)w(z,e) = Π l i = 1P(z i Parents(Z i )) Π m i = 1P(e i Parents(E i )) = P(z,e) (ze standardowej, globalnej semantyki sieci) Stąd ważenie prawdopodobieństwa też ma własność spójności ale efektywność nadal maleje przy dużej liczbie przesłanek ponieważ bardzo mało próbek ma dużą wagę Sieci bayessowskie 62

63 Monte Carlo dla lancucha Markowa Stan sieci: bieżące przypisanie wszystkich zmiennych Łańcuch Markowa: ciąg stanów sieci, następny stan jest generowany poprzez próbkowanie jednej zmiennej nie będącej przesłanką na podstawie jej koca Markowa function MCMC-Ask(X, e, bn, N) returns an estimate of P(X e) local variables: N[X ], a vector of counts over X, initially zero Z, the nonevidence variables in bn x, the current state of the network, initially copied from e initialize x with random values for the variables in Y for j = 1 to N do N[x] N[x] + 1 where x is the value of X in x for each Z i in Z do sample the value of Z i in x from P(Z i MB(Z i )) given the values of MB(Z i ) in x return Normalize(N[X ]) Sieci bayessowskie 63

64 Koc Markowa Każdy węzeł jest warunkowo niezależny od wszystkich pozostałych przy danym jego kocu Markowa: rodzice + dzieci + inni rodzice dzieci U 1... U m Z 1j X Z nj Y 1... Y n Sieci bayessowskie 64

65 Koc Markowa: przyklad Koc Markowa dla Cloudy: Sprinkler i Rain Koc Markowa dla Rain: Cloudy, Sprinkler i WetGrass Sprinkler Cloudy Wet Grass Prawdopodobieństwo warunkowe przy danym kocu Markowa: P(x i MB(X i )) = P(x i Parents(X i ))Π Zj Children(X i )P(z j Parents(Z j )) Rain Sieci bayessowskie 65

66 Lancuch Markowa Przy przesłankach Sprinkler = true, W etgrass = true łancuch Markowa zawiera 4 stany: Cloudy Cloudy Sprinkler Rain Sprinkler Rain Wet Grass Wet Grass Cloudy Cloudy Sprinkler Rain Sprinkler Rain Wet Grass Wet Grass Sieci bayessowskie 66

67 Monte Carlo dla lancucha Markowa: przyklad Szacowanie P(Rain Sprinkler = true, W etgrass = true) Algorytm powtarza próbkowanie zmiennych Cloudy i Rain na podstawie ich koca Markowa. Zlicza, ile razy Rain było true i false w kolejnych stanach sieci. Np. odwiedza 100 stanów 31 ma Rain = true, 69 ma Rain =false ˆP(Rain Sprinkler = true, W etgrass = true) = Normalize( 31, 69 ) = 0.31, 0.69 Sieci bayessowskie 67

68 Monte Carlo dla lancucha Markowa: wlasnosci wierdzenie: łańcuch zbiega do rozkładu stacjonarnego ( spójność): proporcja czasu spędzonego w danym stanie w czasie długiego działania sieci jest dokładnie propocjonalna do faktycznego prawdopodobieństwa warunkowego Zalety Metoda nie jest wrażliwa na topologię sieci Można stosować do zmiennych dyskretnych i ciągłych Wady Zbieżność może być wolna rudno określić moment, w którym algorytm daje już bliskie rozwiązanie Może być czasowo rozrzutny, jeśli występują duże koce Markowa: P(X i MB(X i )) nie zmienia się dużo (Prawo Wielkich Liczb) a jest liczone za każdym razem Sieci bayessowskie 68

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Sieci bayessowskie 1 Sieci bayessowskie 1 1 Niepewnosc Niech akcja A t = wyjedź na lotnisko t minut przed odlotem Czy A t pozwoli mi zdążyć na czas? Problemy: 1)

Bardziej szczegółowo

SID Wykład XI Sieci Bayesowskie

SID Wykład XI Sieci Bayesowskie SID Wykład XI Sieci Bayesowskie Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Niepewność Niech akcja A t = wyjedź na lotnisko t minut przed odlotem. Czy A t pozwoli mi zdażyć na czas?

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna Motywacja Wiedza o świecie jaka posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedze kompletna i pewna, może to być niepraktyczne. W sztucznej

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

Niepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk

Niepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk Zarządzanie wiedzą Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka Joanna Kołodziejczyk 13 maj 2011 Plan wykładu 1 Niepewność 2 Belief Networks 3 SE Pochodzenie niepewności

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 7 teoria kolejek prawo Little a systemy jedno- i wielokolejkowe 1/75 System kolejkowy System kolejkowy to układ złożony

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Gdzie: N zbiór wierzchołków grafu, E zbiór krawędzi grafu, Cp zbiór prawdopodobieostw warunkowych.

Gdzie: N zbiór wierzchołków grafu, E zbiór krawędzi grafu, Cp zbiór prawdopodobieostw warunkowych. Laboratorium z przedmiotu Sztuczna inteligencja Temat: Sieci Bayesa, Wnioskowanie probabilistyczne, GeNIe Laboratorium nr 1 Sied Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności. Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Wyk lad 8: Leniwe metody klasyfikacji

Wyk lad 8: Leniwe metody klasyfikacji Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Teorioinformacyjne twierdzenie Gödla,

Teorioinformacyjne twierdzenie Gödla, Teorioinformacyjne twierdzenie Gödla, czyli co ma logika do statystyki? Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN Temat referatu Twierdzenie, o którym opowiem, jest pomysłem

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Jak tworzyd filtry? W jaki sposób odbywa się filtrowanie w systemie pokaż/ukryj pytania?

Jak tworzyd filtry? W jaki sposób odbywa się filtrowanie w systemie pokaż/ukryj pytania? Jak tworzyd filtry? Spis treści O czym warto pamiętad przed stworzeniem pytania filtrującego:... 1 Warunki badawcze... 2 Definicja elementów filtru... 3 Tworzenie filtrów dla pytao prostych... 4 Tworzenie

Bardziej szczegółowo

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Wstęp do programowania 2

Wstęp do programowania 2 Wstęp do programowania 2 wykład 1 rekordy z wyróżnikami Agata Półrola Wydział Matematyki UŁ 2005/2006 Egzamin z I roku - problemy Problemy z wczytywaniem danych: skip_line Problemy z obliczeniami: zerowanie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Wnioskowanie przez abdukcję Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2013/2014 Marcin Szczuka (MIMUW) Logika stosowana

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo