Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne"

Transkrypt

1 Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne

2 Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może być ukorzenione (ang. rooted), to znaczy posiadać korzeń (ang. root) jeden wyróżniony wierzchołek.

3 Drzewa: BST, kopce Definicja drzewa W drzewie ukorzenionym możemy definiować relacje między wierzchołkami. Jeżeli na drodze z korzenia do jakiegoś wierzchołka u znajduje się przed v, to u jest przodkiem v, a v jest potomkiem u. Bezpośredni przodek to rodzic (ang. parent), a bezpośredni potomek to dziecko (ang. child). Wierzchołki posiadające wspólnego rodzica to bracia (ang. sibling). Wierzchołki nieposiadające dzieci nazywamy liśćmi (ang. leaf ).

4 Drzewa: BST, kopce Drzewa binarne Jeżeli w drzewie ukorzenionym każdy wierzchołek posiada co najwyżej 2 dzieci, to takie drzewo nazywamy binarnym (ang. binary tree).

5 Drzewa: BST, kopce Drzewa przeszukiwań binarnych Drzewo przeszukiwań binarnych (ang. binary search tree, BST ) jest strukturą danych, będącą specjalnym przypadkiem drzewa binarnego. Każdy z wierzchołków w takim drzewie posiada przypisaną wartość. Dodatkowo ułożenie tych wartości musi być zgodne z następującą regułą: Wszystkie wartości w lewym poddrzewie danego wierzchołka muszą być mniejsze od wartości tego wierzchołka. Podobnie wszystkie wartości w jego prawym poddrzewie muszą być od wartości tego wierzchołka większe.

6

7

8

9 Drzewa: BST, kopce Drzewa przeszukiwań binarnych Drzewa przeszukiwań binarnych mogą zostać użyte do zaimplementowania zbioru. Operacje Insert, Member? i Delete mają średnią złożoność obliczeniową O(log n), zaś pesymistyczną O(n).

10 Drzewa: BST, kopce Drzewa przeszukiwań binarnych procedure Insert(T, v) if v < T.value then if T.left = nil then T.left BST Node(v) else Insert(T.left, v) end if else if T.right = nil then T.right BST Node(v) else Insert(T.right, v) end if end if end procedure

11 Drzewa: BST, kopce Drzewa przeszukiwań binarnych procedure Member?(T, v) if T = nil then return false else if v = T.value then return true else if v < T.value then return Member?(T.left, v) else return Member?(T.right, v) end if end procedure

12 Drzewa: BST, kopce Kopiec binarny Kopiec binarny (ang. binary heap) to również struktura danych będąca specjalnym przypadkiem drzewa binarnego. Tak jak w przypadku BST, wszystkie wierzchołki posiadają przypisane wartości. Oprócz tego kopiec musi być drzewem prawie pełnym, a wartości w nim muszą spełniać regułę kopca, tj. wszyscy potomkowie danego wierzchołka muszą mieć wartości większe od niego.

13

14

15 Drzewa: BST, kopce Kopiec binarny Kopiec binarny może być użyty do zaimplementowania kolejki priorytetowej, w której operacje Insert, Extract-Minimum i Delete mają złożoność obliczeniową O(log n), a Top O(1).

16

17

18 Drzewa: BST, kopce Kopiec dwumianowy Kopiec dwumianowy (ang. binomial heap) jest strukturą danych opartą na lesie (ang. forest), czyli zbiorze drzew. Umożliwia implementację kolejki priorytetowej, w której operacje Insert, Extract-Minimum i Delete mają złożoność obliczeniową O(log n), Top O(1), a do tego złączenie dwóch kopców jest możliwe w czasie O(log n) (w odróżnieniu od kopca binarnego, gdzie ta operacja zajmuje czas liniowy).

19 Algorytmy i struktury danych Wyszukiwanie wzorca w tekście Letnie Warsztaty Matematyczno-Informatyczne

20 Wyszukiwanie wzorca w tekście Istota problemu Mamy dane dwa ciągi znaków: tekst T (ang. haystack) i wzorzec P (ang. needle). Oba z nich są tablicami. Istotą problemu jest znalezienie wszystkich indeksów w tekście takich, że od tego miejsca tekst jest identyczny ze wzorcem (do końca wzorca).

21 Wyszukiwanie wzorca w tekście Istota problemu Przykładowo, mając dany tekst: abrakadabra i wzorzec ra, wynikami będą 2 i 9 (pamiętaj, że indeksy zaczynają się od 0). Dla tekstu: aaaa i wzorca aa, wynikami będą 0, 1 i 2.

22 Wyszukiwanie wzorca w tekście Algorytm naiwny Mając dany indeks możemy łatwo sprawdzić, czy jest on poprawnym rozwiązaniem, porównując kolejne znaki w T ze znakami w P. Zajmuje to czas O( P ). Algorytm naiwny sprawdza w ten sposób każdy możliwy indeks (O( T ) sprawdzeń), dając całkowitą złożoność obliczeniową O( P T ). Algorytm ten można przyspieszyć, przerywając sprawdzanie w momencie pierwszego różniącego się znaku, jednak pesymistyczna złożoność obliczeniowa zostaje taka sama.

23 Wyszukiwanie wzorca w tekście Algorytm Rabina-Karpa Algorytm Rabina-Karpa również opiera się na sprawdzaniu możliwych indeksów, jak algorytm naiwny, jednak zmniejsza liczbę potencjalnych kandydatów, używając funkcji haszującej. Przed wykonaniem właściwego sprawdzenia obliczany jest hasz wzorca, a potem dla każdego indeksu obliczany jest hasz P następnych znaków. Właściwe sprawdzenie wykonywane jest tylko w momencie zgodności haszy.

24 Wyszukiwanie wzorca w tekście Algorytm Rabina-Karpa Wydawać by się mogło, że nie poprawia to złożoności obliczeniowej (koszt liczenia haszu również wynosi O( P )). Istota optymalizacji polega jednak na tym, że wykorzystujemy taką funkcję haszującą, której wartość w indeksie i można szybko obliczyć na podstawie wartości w indeksie i 1 (tzw. rolling hash).

25 Wyszukiwanie wzorca w tekście Automaty skończone Do rozwiązania problemu wyszukiwania wzorca w tekście można użyć również automatów skończonych. Automat skończony to graf skierowany, w którym krawędzie mają dodatkowo przypisane symbole (lub grupy symboli) i nazywa się je przejściami. Wierzchołki nazywamy stanami. Jeden ze stanów jest stanem początkowym, jeden jest stanem akceptującym.

26

27 Wyszukiwanie wzorca w tekście Automaty skończone Mamy dany tekst i automat skończony zbudowany na podstawie wzorca. Zaczynając od stanu początkowego, przechodzimy między stanami, wybierając przejścia zgodnie z kolejnymi znakami tekstu. Jeżeli znajdziemy się w stanie akceptującym oznacza to, że znajdujemy się w ostatnim znaku dopasowania.

28

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Algorytmy odkrywania binarnych reguł asocjacyjnych

Algorytmy odkrywania binarnych reguł asocjacyjnych Algorytmy odkrywania binarnych reguł asocjacyjnych A-priori FP-Growth Odkrywanie asocjacji wykład 2 Celem naszego wykładu jest zapoznanie się z dwoma podstawowymi algorytmami odkrywania binarnych reguł

Bardziej szczegółowo

Algorytmy funkcjonalne i struktury danych

Algorytmy funkcjonalne i struktury danych Algorytmy funkcjonalne i struktury danych Lista zadań nr 4 5 listopada 2009 Zadanie 1. Zaprogramuj strukturę Deque o sygnaturze signature DEQUE = sig type a Queue val empty : a Queue val isempty : a Queue

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Zadania przykładowe do kolokwium z AA2

Zadania przykładowe do kolokwium z AA2 1 Zadania przykładowe do kolokwium z AA2 Zadanie 1 Dla tekstu ALA MA KOTA ALE ON MA ALERGIĘ zilustruj działanie algorytmów: a) LZ77, b) LZ78, c) LZSS. Załóż, że maksymalna długość dopasowania to 4, rozmiar

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

Kiedy i czy konieczne?

Kiedy i czy konieczne? Bazy Danych Kiedy i czy konieczne? Zastanów się: czy często wykonujesz te same czynności? czy wielokrotnie musisz tworzyć i wypełniać dokumenty do siebie podobne (faktury, oferty, raporty itp.) czy ciągle

Bardziej szczegółowo

Przydatne sztuczki - sql. Na przykładzie postgres a.

Przydatne sztuczki - sql. Na przykładzie postgres a. Przydatne sztuczki - sql. Na przykładzie postgres a. M. Wiewiórko 05/2014 Plan Uwagi wstępne Przykład Rozwiązanie Tabela testowa Plan prezentacji: Kilka uwag wstępnych. Operacje na typach tekstowych. Korzystanie

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Kowalski Marcin 156439 Wrocław, dn. 3.06.2009 Jaśkiewicz Kamil 148592. Bazy Danych 1 Podstawy Projekt Temat: Baza danych do zarządzania projektami

Kowalski Marcin 156439 Wrocław, dn. 3.06.2009 Jaśkiewicz Kamil 148592. Bazy Danych 1 Podstawy Projekt Temat: Baza danych do zarządzania projektami Kowalski Marcin 156439 Wrocław, dn. 3.06.2009 Jaśkiewicz Kamil 148592 Bazy Danych 1 Podstawy Projekt Temat: Baza danych do zarządzania projektami Spis treści Założenia Projektowe...1 Schemat Bazy Danych...1

Bardziej szczegółowo

Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania

Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania Marcin Andrychowicz, Bolesław Kulbabiński, Tomasz Kulczyński, Jakub Łącki, Błażej Osiński, Wojciech Śmietanka

Bardziej szczegółowo

Wykład 5 Listy leniwe

Wykład 5 Listy leniwe Wykład 5 Listy leniwe Listy leniwe Funkcjonały dla list leniwych Przykład: generowanie liczb pierwszych metodą sita Eratostenesa Algorytmy przeszukiwania przestrzeni stanów Przykład: problem ośmiu hetmanów

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

6. Organizacja dostępu do danych przestrzennych

6. Organizacja dostępu do danych przestrzennych 6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Detekcja zakleszczenia (1)

Detekcja zakleszczenia (1) Detekcja zakleszczenia (1) Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Procesy aktywne i pasywne Definicja zakleszczenia Problem detekcji wystąpienia zakleszczenia Detekcja zakleszczenia

Bardziej szczegółowo

Model semistrukturalny

Model semistrukturalny Model semistrukturalny standaryzacja danych z różnych źródeł realizacja złożonej struktury zależności, wielokrotne zagnieżdżania zobrazowane przez grafy skierowane model samoopisujący się wielkości i typy

Bardziej szczegółowo

SQL, LIKE, IN, CASE, EXISTS. Marcin Orchel

SQL, LIKE, IN, CASE, EXISTS. Marcin Orchel SQL, LIKE, IN, CASE, EXISTS Marcin Orchel Spis treści 1 LIKE 2 2 BETWEEN 4 3 IN 5 4 EXISTS 6 5 WYRAŻENIA CASE 7 6 Zadania 9 1 Rozdział 1 LIKE Predykat LIKE jest testem dopasowującym wzorzec łańcucha. Składnia

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Wskaźniki w języku C i C++ dr inż. Piotr Kaczmarek Piotr.Kaczmarek@put.poznan.pl http://pk.cie.put.poznan.pl/wyklady.php Organizacja pamięci Pamięć ma organizację bajtową, liniową

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice

Bardziej szczegółowo

INSTRUKCJA PUSTA. Nie składa się z żadnych znaków i symboli, niczego nie robi. for i := 1 to 10 do {tu nic nie ma};

INSTRUKCJA PUSTA. Nie składa się z żadnych znaków i symboli, niczego nie robi. for i := 1 to 10 do {tu nic nie ma}; INSTRUKCJA PUSTA Nie składa się z żadnych znaków i symboli, niczego nie robi Przykłady: for i := 1 to 10 do {tu nic nie ma}; while a>0 do {tu nic nie ma}; if a = 0 then {tu nic nie ma}; INSTRUKCJA CASE

Bardziej szczegółowo

Efektywne wyszukiwanie wzorców w systemach automatycznej generacji sygnatur ataków sieciowych

Efektywne wyszukiwanie wzorców w systemach automatycznej generacji sygnatur ataków sieciowych Efektywne wyszukiwanie wzorców w systemach automatycznej generacji sygnatur ataków sieciowych Tomasz Joran Kruk NASK Dział Naukowy Cezary Rzewuski Politechnika Warszawska NASK/ PW Konferencja SECURE 2006,

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych

Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych Uniwersytet im. Adama Mickiewicza Wydział Matematyki i Informatyki Paweł Skórzewski nr albumu: 301654 Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych Praca magisterska na kierunku:

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ Wykład 3 Katedra Inżynierii Komputerowej Jakub Romanowski jakub.romanowski@kik.pcz.pl POBIERANIE DANYCH C/AL Poniższe funkcje używane są do operacji pobierania

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Czym jest wykrywanie kolizji. Elementarne metody detekcji kolizji. Trochę praktyki: Jak przygotować Visual Studio 2010 do pracy z XNA pod Windows

Czym jest wykrywanie kolizji. Elementarne metody detekcji kolizji. Trochę praktyki: Jak przygotować Visual Studio 2010 do pracy z XNA pod Windows Czym jest wykrywanie kolizji. Elementarne metody detekcji kolizji. Trochę praktyki: Jak przygotować Visual Studio 2010 do pracy z XNA pod Windows Phone 7. Skąd i jakie paczki pobrać. Coś napiszemy :-)

Bardziej szczegółowo

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP Spotkania z Pythonem Cz ± 1 - podstawy - rozwi zania zada«michaª Alichniewicz Studenckie Koªo Automatyków SKALP Gda«sk 2014 Dzi kuj za uwag! Na licencji Creative Commons Attribution-NonCommercial-ShareAlike

Bardziej szczegółowo

Fakultet Informatyczny Algorytmy i ProgramowanIe (API)

Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Program autorski fakultetu informatycznego dla uczniów gimnazjum do realizacji na zajęcia pozalekcyjne z komputerem w klasach II Autor: mgr Rafał

Bardziej szczegółowo

DECLARE VARIABLE zmienna1 typ danych; BEGIN

DECLARE VARIABLE zmienna1 typ danych; BEGIN Procedury zapamiętane w Interbase - samodzielne programy napisane w specjalnym języku (właściwym dla serwera baz danych Interbase), który umożliwia tworzenie zapytań, pętli, instrukcji warunkowych itp.;

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program

Bardziej szczegółowo

DECLARE typ [( )] [ NOT NULL ] [ { := DEFAULT } ];

DECLARE <nazwa_zmiennej> typ [(<rozmiar> )] [ NOT NULL ] [ { := DEFAULT } <wartość> ]; Braki w SQL obsługi zdarzeń i sytuacji wyjątkowych funkcji i procedur użytkownika definiowania złożonych ograniczeń integralnościowych Proceduralny SQL Transact- SQL używany przez Microsoft SQL Server

Bardziej szczegółowo

Technologie Internetowe Raport z wykonanego projektu Temat: Internetowy sklep elektroniczny

Technologie Internetowe Raport z wykonanego projektu Temat: Internetowy sklep elektroniczny Technologie Internetowe Raport z wykonanego projektu Temat: Internetowy sklep elektroniczny AiRIII gr. 2TI sekcja 1 Autorzy: Tomasz Bizon Józef Wawrzyczek 2 1. Wstęp Celem projektu było stworzenie sklepu

Bardziej szczegółowo

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych 1/12 Opracowała Kozłowska Ewa ekozbelferek@poczta.onet.pl nauczyciel przedmiotów informatycznych Zespół Szkół Technicznych Mielec, ul. Jagiellończyka 3 Znajdowanie największego i najmniejszego elementu

Bardziej szczegółowo

SQL :: Data Definition Language

SQL :: Data Definition Language SQL :: Data Definition Language 1. Zaproponuj wydajną strukturę danych tabela) do przechowywania macierzy o dowolnych wymiarach w bazie danych. Propozycja struktury powinna zostać zapisana z wykorzystaniem

Bardziej szczegółowo

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2 Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/ kuszner/arir/ Wykład

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/ kuszner/arir/ Wykład

Bardziej szczegółowo

Drzewa decyzyjne. 1. Wprowadzenie.

Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne są graficzną metodą wspomagania procesu decyzyjnego. Jest to jedna z najczęściej wykorzystywanych technik analizy danych. Drzewo składają się z korzenia

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

1 Wskaźniki i listy jednokierunkowe

1 Wskaźniki i listy jednokierunkowe 1 Wskaźniki i listy jednokierunkowe 1.1 Model pamięci komputera Pamięć komputera możemy wyobrażać sobie tak, jak na rysunku: Zawartość:... 01001011 01101010 11100101 00111001 00100010 01110011... adresy:

Bardziej szczegółowo

Implementacja struktur hierarchicznych w relacyjnym modelu danych

Implementacja struktur hierarchicznych w relacyjnym modelu danych Rozdział 22 Implementacja struktur hierarchicznych w relacyjnym modelu danych Streszczenie. Problem reprezentacji danych hierarchicznych w modelu relacyjnym istnieje od momentu powstania tego modelu. Pomimo

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 8 XI 2 1 Sposoby przekazywania argumentów Powiedzmy, że chcemy napisać funkcję, która zamieni miejscami wartość dwóch

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

AKD Metody słownikowe

AKD Metody słownikowe AKD Metody słownikowe Algorytmy kompresji danych Sebastian Deorowicz 2009 03 19 Sebastian Deorowicz () AKD Metody słownikowe 2009 03 19 1 / 38 Plan wykładu 1 Istota metod słownikowych 2 Algorytm Ziva Lempela

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika Programowanie w SQL procedury i funkcje UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika 1. Funkcje o wartościach skalarnych ang. scalar valued

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

Windows Commander (WinCmd)

Windows Commander (WinCmd) Windows Commander (WinCmd) Windows Commander jest wygodnym i funkcjonalne narzędziem do zarządzania plikami. Stanowi on pewną konkurencję do Eksploratora Windows. Okno główne programu WinCmd składa się

Bardziej szczegółowo

Wyszukiwanie wyrazów w pliku tekstowym

Wyszukiwanie wyrazów w pliku tekstowym Wyszukiwanie wyrazów w pliku tekstowym Celem ćwiczenia jest: 1. Poznanie i realizacja praktyczna procedur operacji wejścia/ wyjścia na plikach danych 2. Przegląd algorytmów wyszukiwania wyrazów w plikach

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 26 października 2014 a d c k e b g j i f h Adwokat Autor zadania: Jakub Łącki Zgłoszenia: 118 z 857 (13%) Zaakceptowane

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

Rysunkowy tutorial Możesz swobodnie dystrybuować ten plik jeśli pozostawisz go w nietkniętym stanie. Możesz także cytować jego fragmenty umieszczając w tekście odnośnik http://mbartyzel.blogspot.com Jak

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@kaims.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Wykład VI. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik

Wykład VI. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik Wykład VI Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Operacje na plikach Operacje na plikach Aby móc korzystać z pliku należy go otworzyć w odpowiednim

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Należy ściągnąć oprogramowanie Apache na platformę

Należy ściągnąć oprogramowanie Apache na platformę Programowanie Internetowe Język PHP - wprowadzenie 1. Instalacja Oracle+Apache+PHP Instalacja Apache, PHP, Oracle Programy i ich lokalizacja Oracle Database 10g Express Edition10.2 http://www.oracle.com/technology/products/database/

Bardziej szczegółowo

Zasady budowania algorytmów z klocków Początek pracy Klocki Podstawowe

Zasady budowania algorytmów z klocków Początek pracy Klocki Podstawowe Zasady budowania algorytmów z klocków Początek pracy Otwieramy nowy projekt Plik/Nowy projekt, a następnie planszę Plik/Plansza/Nowa, na której będziemy budowali algorytmy. Po lewej stronie widzimy paletę

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

LABORATORIUM 5 WSTĘP DO SIECI TELEINFORMATYCZNYCH WPROWADZENIE DO XML I XSLT

LABORATORIUM 5 WSTĘP DO SIECI TELEINFORMATYCZNYCH WPROWADZENIE DO XML I XSLT LABORATORIUM 5 WSTĘP DO SIECI TELEINFORMATYCZNYCH WPROWADZENIE DO XML I XSLT 1. Wstęp XML (Extensible Markup Language Rozszerzalny Język Znaczników) to język formalny przeznaczony do reprezentowania danych

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Wzorce logiki dziedziny

Wzorce logiki dziedziny Wzorce logiki dziedziny 1. Wzorce logiki dziedziny skrypt transakcji (Transaction Script), brama tabeli (Table Data Gateway), model dziedziny (Domain model), strategia (Strategy), moduł tabeli (Table Module),

Bardziej szczegółowo

Zacznijmy więc pracę z repozytorium. Pierwsza konieczna rzecz do rozpoczęcia pracy z repozytorium, to zalogowanie się w serwisie:

Zacznijmy więc pracę z repozytorium. Pierwsza konieczna rzecz do rozpoczęcia pracy z repozytorium, to zalogowanie się w serwisie: Repozytorium służy do przechowywania plików powstających przy pracy nad projektami we w miarę usystematyzowany sposób. Sam mechanizm repozytorium jest zbliżony do działania systemu plików, czyli składa

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

Procesy ETL. 10maja2009. Paweł Szołtysek

Procesy ETL. 10maja2009. Paweł Szołtysek Procesy 10maja2009 Paweł Szołtysek 1/12 w praktyce w praktyce 2/12 Zagadnienie Business Inteligence w praktyce 3/12 Czym jest proces? w praktyce Dane: dowolny zbiór danych ze źródeł zewnętrznych. Szukane:

Bardziej szczegółowo