Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
|
|
- Mieczysław Krajewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację tego zbioru należy wykonać n 2 kroków: 1. losujemy liczbę k 0,..., n 1 i przestawiamy elementy p[k] i p[n 1]. 2. losujemy liczbę k 0,..., n 2 i przestawiamy elementy p[k] i p[n 2]. (n 2). losujemy liczbę k 0, 1 i zamieniamy elementy p[k] i p[1]. Algorytm: Permutacja losowa Dane: n - długość permutacji. Wynik: tablica p zawierająca liczby 0,..., n 1 w przypadkowej kolejności Begin Randomize for k = 0 to n 1 do p[k] = k Begin l = Random (k) Zamien (p[l], p[k 1]) End Write(p) End Jak wygenerować wszystkie permutacje zbioru zawierającego n elementów. W algorytmie wykorzystamy fakt, iż każdą liczbę n można przedstawić w postaci sumy: n = c 1 + c c c = s i=1 c i i! Ponadto 0 c i i. Np. 75 = 1 1! + 1 2! + 0 3! + 3 4!
2 Algorytm: Permutacje 1 Dane: n - długość permutacji Wynik: ciąg zawierający wszystkie permutacje liczb 0,..., n 1 N = n! 1 for l = 0 to N do m = l m zmienna pomocnicza for k = 2 to n do c[k 2] = m mod k c ma n 1 elementów m = m dir k for k = 0 to n 1 do p[k] = k ciąg wyjściowy w nat. kolejności for k = n downto 2 do j = c[k 2] Zamien (p[j], p[k 1]) Write (p) Kolejny algorytm generuje wszystkie permutacje zbioru liczb 1,..., n w porządku antyleksykograficznym. Algorytm: Permutacje 2 Dane: n - długość permutacji (tablica p zawiera liczby 1,..., n) Wynik: ciąg permutacji w porządku antyleksykograficznym function odwroc (m) i = 1, j = m while (i < j) Zamien (p[i], p[j]) i = i + 1, j = j 1
3 function antylex (m) if m = 1 then Write (p) else for i = 1 to m do antylex (m 1) if i < m then Zamien (p[i], p[m]) ; odwroc (m 1) B. Wariacje z powtórzeniami Niech dany będzie zbiór złożony z n elementów i niech długość wariacji wynosi k. Wówczas jeśli m jest pewną k-elementową wariacją z powtórzeniami zbioru n-elementowego, to m [0, n k 1]. W algorytmie wykorzystamy fakt, iż rozwinięcie liczby m przy podstawie n jest k-elementową wariacją z powtórzeniami zbioru 0,..., n 1. Gdy X = 0, 1 i k = 3 mamy następujące wariacje z powtórzeniami: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) Załóżmy, że (a 1,..., a k ) jest wariacją o numerze m. Jeżeli przyjmiemy, że m = 2 i l (l - liczba nieparzysta), to wariacja o numerze m + 1 ma postać (a 1,..., a i+1 1,..., a k ), gdzie oznacza dodawanie mod 2 Definicja 9.1 Indeksem liczby m przy podstawie n nazywamy taką liczbę naturalną i, że m = n i l, (n l). Indeks oznaczamy następująco: i = ind n m Algorytm: Wariacje Dane: k - długość wariacji, n - liczność zbioru Wynik: ciąg zawierający wszystkie wariacje z powtórzeniami w[k] - tablica złożona z k liczb, reprezentacja pojedynczej wariacji, stan początkowy w = (0,..., 0). skok[k] - tablica k elementów, stan początkowy skok = (1,..., 1)
4 function index (m) i = 0 while (m mod n = 0) i = i + 1, m = m dir n index = i function wariacja for i = 1 to k do skok[i] = 1 m = 0 repeat Write (w) m = m + 1 i = index (m) + 1 if i k then w[i] = w[i] + skok[i] if w[i] = 0 then skok[i] = 1 if w[i] = n 1 then skok[i] = 1 until i k C. Podzbiory zbioru k-elementowego Niech A będzie k-elementowym podzbiorem zbioru n-elementowego. A więc A X = x 1,..., x n. Aby wygenerować wszystkie podzbiory wykorzystamy funkcję charakterystyczną podzbioru A: χ A = (ε 1,..., ε n ), ε i 0, 1. Algorytm: Podzbiory 1 Rozwinięcia binarne liczb z przedziału [0, 2 k 1] są funkcjami charakterystycznymi wszystkich podzbiorów zbioru X. Dane: n - liczba elementów w zbiorze Wynik: ciąg wszystkich podzbiorów zbioru 1,..., n S[n] - reprezentacja pojedynczego podzbioru (funkcja charakterystyczna)
5 function Podzbiory for m = 0 to 2 n 1 t = m for i = 0 to n S[i] = t mod 2, t = t dir 2 Write (S) Algorytm: Podzbiory 2 Modyfikacja algorytmu Wariacje - należy przyjąć n = 2. Otrzymamy wszystkie k-elementowe funkcje charakterystyczne zbioru X. Dane: n - liczba elementów w zbiorze Wynik: ciąg wszystkich podzbiorów zbioru 1,..., n, taki że następny różni się od poprzedniego jednym elementem. S[n] - reprezentacja pojedynczego podzbioru (funkcja charakterystyczna) function index (m) i = 0 while (m mod 2 = 0) i = i + 1, m = m dir 2 index = i function Podzbiory2 for i = 1 to n S[i] = 0 m = 0 repeat Write (S) m = m + 1 i = index (m) + 1 if i n then S[i] = 1 S[i] until i n
6 D. Problem plecakowy Dane są przedmioty o wagach: c 1,..., c k. Pytanie 1: Czy istnieje taki zestaw przedmiotów, których łączna waga jest równa s. Pytanie 2: Które przedmioty należy zapakować do plecaka, aby ich łączna waga była największa, ale nie przekraczała s. Algorytm: Rozpatrzenie wszystkich podzbiorów zbioru przedmiotów i sprawdzenie, które z tych podzbiorów spełniają warunki zadania. E. Kombinacje k-elementowe. Algorytm: Kombinacje Dane: k - długość kombinacji, n - liczność zbioru Wynik: ciąg k-elementowych kombinacji w porządku leksykograficznym. A[k] - reprezentacja pojedynczej kombinacji. Stan początkowy A = (1,..., k) function kombinacje p = k while p 1 Write (A) if (A[k] = n) then p = p 1 else p = k if (p 1) then for i = k downto p A[i] = A[p] + i p + 1
7 F. Podziały liczby - partycje Algorytm: Partycje Dane: n - liczba naturalna Wynik: ciąg wszystkich podziałów liczby n. P [n] - reprezentacja podziału zawierająca składniki podziału function partycje (n, k, r) if n = 0 then Write (P ) else for j = r downto 1 P [k] = j partycje (n j, k + 1, min(n j, j)) function main partycje (n, 1, n)
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoKOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)
MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania
Bardziej szczegółowoOptymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Bardziej szczegółowoWybrane algorytmy tablicowe
Wybrane algorytmy tablicowe Algorytmy i struktury danych Wykład 2. Rok akademicki: 2009/2010 Sortowanie przez wybieranie for (int i = 0; i < liczby.length - 1; i++) k = i; for (int j = i; j < liczby.length;
Bardziej szczegółowoINSTRUKCJA PUSTA. Nie składa się z żadnych znaków i symboli, niczego nie robi. for i := 1 to 10 do {tu nic nie ma};
INSTRUKCJA PUSTA Nie składa się z żadnych znaków i symboli, niczego nie robi Przykłady: for i := 1 to 10 do {tu nic nie ma}; while a>0 do {tu nic nie ma}; if a = 0 then {tu nic nie ma}; INSTRUKCJA CASE
Bardziej szczegółowoProgramowanie w Turbo Pascal
Skróty: ALT + F9 Kompilacja CTRL + F9 Uruchomienie Struktura programu: Programowanie w Turbo Pascal Program nazwa; - nagłówek programu - blok deklaracji (tu znajduje się VAR lub CONST) - blok instrukcji
Bardziej szczegółowoWykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe
Podstawy programowania Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe 1 I. Składnia Składnia programu Program nazwa; Uses biblioteki; Var deklaracje zmiennych;
Bardziej szczegółowoSortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Bardziej szczegółowoInstrukcje podsumowanie. Proste: - przypisania - wejścia-wyjścia (read, readln, write, writeln) - pusta - po prostu ; (średnik) Strukturalne:
Instrukcje podsumowanie Proste: - przypisania - wejścia-wyjścia (read, readln, write, writeln) - pusta - po prostu ; (średnik) Strukturalne: - grupująca end - warunkowa if
Bardziej szczegółowoMatematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
Bardziej szczegółowoData Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu
Data Mining Wykład 3 Algorytmy odkrywania binarnych reguł asocjacyjnych Plan wykładu Algorytm Apriori Funkcja apriori_gen(ck) Generacja zbiorów kandydujących Generacja reguł Efektywności działania Własności
Bardziej szczegółowoprocesów Współbieżność i synchronizacja procesów Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak
Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Abstrakcja programowania współbieżnego Instrukcje atomowe i ich przeplot Istota synchronizacji Kryteria poprawności programów współbieżnych
Bardziej szczegółowoPodstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoPlanowanie eksperymentu 2 (k p) w 2 r blokach. Stanisław Jaworski, Wojciech Zieliński
Planowanie eksperymentu 2 (k p) w 2 r blokach Stanisław Jaworski, Wojciech Zieliński 1. Wstęp W praktyce często możemy spotkać się z sytuacją, kiedy nie jest możliwe wykonanie pełnego eksperymentu czynnikowego
Bardziej szczegółowoWykład III PASCAL - iteracja cz, 2, - liczby losowe, - tablice
Podstawy programowania Wykład III PASCAL - iteracja cz, 2, - liczby losowe, - tablice 1 Podstawy programowania Iteracja 2 III. Iteracja Iteracja o nieznanej liczbie powtórzeń while warunek do instrukcja_do_wykonania;
Bardziej szczegółowoKombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowo2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych
2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:
Bardziej szczegółowoInformatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
Bardziej szczegółowoTemat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Bardziej szczegółowoTechnologie Informatyczne Wykład VII
Technologie Informatyczne Wykład VII A. Matuszak (1) 22 listopada 2007 A. Matuszak (1) Technologie Informatyczne Wykład VII A. Matuszak (2) Technologie Informatyczne Wykład VII (Rekursja) albo rekursja
Bardziej szczegółowoProgramowanie Proceduralne
Programowanie Proceduralne Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 1 / 59 Cel wykładów z programowania
Bardziej szczegółowoMatematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać
Bardziej szczegółowo2:8,7 3:9,4 / \ / \ / \ / \ 4:7,3 5:8 6:9,2 7:4
Wykład: Sortowanie III Drzewa Turniejowe 1:9,8 2:8,7 3:9,4 4:7,3 5:8 6:9,2 7:4 8: 3 9:7 12:9 13:2 Insert(x,S) 1) tworzymy dwa nowe liście na ostatnim poziomie, 2) do jednego wstawiamy x a do drugiego wartość
Bardziej szczegółowoDIAGRAMY SYNTAKTYCZNE JĘZYKA TURBO PASCAL 6.0
Uwaga: DIAGRAMY SYNTAKTYCZNE JĘZYKA TURBO PASCAL 6.0 1. Zostały pominięte diagramy: CYFRA, CYFRA SZESNASTKOWA, ZNAK i LITERA. Nie została uwzględniona możliwość posługiwania się komentarzami. 2. Brakuje
Bardziej szczegółowoPoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Bardziej szczegółowoWykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Bardziej szczegółowoAlgorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Bardziej szczegółowoPrzeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Bardziej szczegółowoWykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Bardziej szczegółowoInformatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa
Informatyka 1 Wykład III Wyrażenia i instrukcje, złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: składnia wyrażeń, drzewa rozbioru gramatycznego i wyliczenia wartości wyrażeń, operatory
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
Bardziej szczegółowoWYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński
WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka
Bardziej szczegółowoWykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Bardziej szczegółowoPoszukiwanie liniowe wśród liczb naturalnych
Poszukiwanie liniowe wśród liczb naturalnych Wiele problemów, dotyczących liczb naturalnych, można rozwiązać idąc w góręodzera(lubczasemodinnejliczby)isprawdzając,czyjuż. Przykład: (zadane reszty z dzielenia)
Bardziej szczegółowoWstęp do programowania. Różne różności
Wstęp do programowania Różne różności Typy danych Typ danych określa dwie rzeczy: Jak wartości danego typu są określane w pamięci Jakie operacje są dozwolone na obiektach danego typu 2 Rodzaje typów Proste
Bardziej szczegółowoPascal. 1. Pliki tekstowe. Przykład 1.1. Zapis do pliku tekstowego
Pascal 1. Pliki tekstowe Przykład 1.1. Zapis do pliku tekstowego {deklaracja zmiennej tekstowej 'plik'} plik: text; {skojarzenie zmiennej plikowej 'plik' z plikiem na dysku (podajemy lokalizacje)} {tworzenie
Bardziej szczegółowoSortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoWymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
Bardziej szczegółowoProgramowanie strukturalne. Opis ogólny programu w Turbo Pascalu
Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji
Bardziej szczegółowoSieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 4 część I 2 Kombinatoryka Wariacje z powtórzeniami Permutacje Wariacje bez powtórzeń Kombinacje Łączenie
Bardziej szczegółowoSztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Bardziej szczegółowoGenerowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
Bardziej szczegółowoOptymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Bardziej szczegółowoWprowadzenie komentarzy do programu
Wprowadzenie komentarzy do programu W programach mogą wystąpić objaśnienia, uwagi zamykane w klamrach { } lub nawiasach z gwiazdką (* *). Komentarze ułatwiają zrozumienie programów. Przyjmijmy, że komentarze
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowo1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Bardziej szczegółowoZłożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Bardziej szczegółowoHyper-resolution. Śmieciarki w Manncheim
Hyper-resolution Hyper-resolution Algorytm repeat NGi NGi NGj NGi nowe Nogoods, które da się wywieść z NGi if NGi then NGi NGi NGi roześlij NGi do wszystkich sąsiadów if NGi then stop end until NGi nie
Bardziej szczegółowoPodstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Bardziej szczegółowoKontrola przebiegu programu
Kontrola przebiegu programu Wykład 9 Instrukcje sterujące: pętle rozgałęzienia skoki PRZYPOMINAJKA Zadanie : Zaprojektuj rekurencyjny przepis na wyznaczenie największej takiej liczby m, że 2 m jest podzielnikiem
Bardziej szczegółowoInformatyka 1. Przetwarzanie tekstów
Informatyka 1 Wykład IX Przetwarzanie tekstów Robert Muszyński ZPCiR ICT PWr Zagadnienia: reprezentacja napisów znakowych, zmienne napisowe w Sun Pascalu, zgodność typów, operowanie na napisach: testowanie
Bardziej szczegółowoPętle instrukcje powtórzeo
Pętle instrukcje powtórzeo Pętle - zbiór instrukcji, które należy wykonad wielokrotnie. Program dyktuje: - ile razy pętla ta wykona zawarty w niej blok instrukcji - jakie mają byd warunki zakooczenia jej
Bardziej szczegółowoRównoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowo1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania
1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja nie ma parametru i zwraca wartość na zewnątrz. nie ma parametru i nie zwraca wartości na zewnątrz. ma parametr o nazwie void i zwraca
Bardziej szczegółowoJęzyk programowania PASCAL
Język programowania PASCAL (wersja podstawowa - standard) Literatura: dowolny podręcznik do języka PASCAL (na laboratoriach Borland) Iglewski, Madey, Matwin PASCAL STANDARD, PASCAL 360 Marciniak TURBO
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoPodstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoMacierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Bardziej szczegółowoSpotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
Bardziej szczegółowoWIADOMOŚCI WSTĘPNE WPROWADZENIE DO JĘZYKA TURBO PASCAL. Klawisze skrótów. {to jest właśnie komentarz, moŝna tu umieścić dowolny opis}
1 WIADOMOŚCI WSTĘPNE Programowanie komputerów najogólniej mówiąc polega na zapisaniu pewniej listy poleceń do wykonania przez komputer w pewnym umownym języku Taką listę poleceń nazywamy programem Program
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich
Bardziej szczegółowoINSTRUKCJA ITERACYJNA REPEAT. repeat Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE
INSTRUKCJA ITERACYJNA REPEAT Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE while wyr do Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; M.P. «PASCAL» (P04) 1
Bardziej szczegółowoWykład 6. Wyszukiwanie wzorca w tekście
Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie
Bardziej szczegółowoMatematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Bardziej szczegółowoTechnologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Bardziej szczegółowoSztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Bardziej szczegółowoWrocław, dn. 19 kwietnia 2006 roku. Anna Kaleta Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące nr 10 we Wrocławiu
Anna Kaleta Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące nr 10 we Wrocławiu Wrocław, dn 19 kwietnia 2006 roku Czas trwania zajęć: 90 minut, przedmiot: informatyka Temat lekcji:
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania wykład 4 Piotr Cybula Wydział Matematyki i Informatyki UŁ 2012/2013 http://www.math.uni.lodz.pl/~cybula Instrukcje pętli Pętle służą do iteracyjnego wykonywania pewnych kroków Zazwyczaj
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Bardziej szczegółowoFUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;
Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana
Bardziej szczegółowo2.Sprawdzanie czy podana liczba naturalna jest pierwsza Liczba pierwsza to liczba podzielna tylko przez 1 i przez siebie.
CZEŚĆ A. Przykłady, cd. 1.Obliczanie wartości pierwiastka kwadratowego - algorytm Newtona-Raphsona http://pl.wikipedia.org/wiki/metoda_newtona (pierwszy przykład na stronach Wiki) Dane: Liczba a (a>0)
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoProgramowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Bardziej szczegółowoB jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Bardziej szczegółowoUwagi dotyczące notacji kodu! Moduły. Struktura modułu. Procedury. Opcje modułu (niektóre)
Uwagi dotyczące notacji kodu! Wyrazy drukiem prostym -- słowami języka VBA. Wyrazy drukiem pochyłym -- inne fragmenty kodu. Wyrazy w [nawiasach kwadratowych] opcjonalne fragmenty kodu (mogą być, ale nie
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2014 1 / 38 Przypomnienie Programowanie imperatywne Program
Bardziej szczegółowoZapis algorytmów: schematy blokowe i pseudokod 1
Zapis algorytmów: schematy blokowe i pseudokod 1 Przed przystąpieniem do napisania kodu programu należy ten program najpierw zaprojektować. Projekt tworzącego go algorytmu może być zapisany w formie schematu
Bardziej szczegółowo1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
Bardziej szczegółowoElementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Bardziej szczegółowoGrafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Bardziej szczegółowoKOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
Bardziej szczegółowoAlgorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
Bardziej szczegółowo