Metody analizy obwodów w stanie ustalonym

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody analizy obwodów w stanie ustalonym"

Transkrypt

1 Metody analizy obwodów w stanie ustalonym

2 Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią na wymuszenie sinusoidalne jest odpowiedź również sinusoidalna o tej samej częstotliwości choć o różnej amplitudzie i fazie początkowej. Odpowiednio odpowiedzią na wymuszenie stałe jest odpowiedź stała o innej wartości.

3 Metody analizy obwodów Metoda praw Kirchhoffa, która jest podstawą dla pozostałych metod Metoda transfiguracji, oparte na przekształceniach analizowanego obwodu na obwód równoważny Metoda superpozycji Metoda źródeł zastępczych - Thevenina-Nortona Metody sieciowe, które bazując na topologii obwodu w sposób zalgorytmizowany dokonują analizy obwodu: Metoda prądów oczkowych Metoda potencjałów węzłowych

4 Metoda równań praw Kirchhoffa W metodzie tej wykorzystuje się w bezpośredniej formie prawo prądowe i napięciowe Kirchhoffa uzupełnione o równania symboliczne opisujące poszczególne elementy obwodu. W efekcie zastosowania praw Kirchhoffa otrzymuje się układ równań algebraicznych. Jeśli założymy, że obwód posiada g gałęzi i w węzłów to w równaniach opisujących obwód wykorzystuje się (w-) równań pochodzących z prawa prądowego Kirchhoffa. Pozostałe (g-w+) równań wynika z prawa napięciowego Kirchhoffa dla dowolnie (g-w+) wybranych oczek niezależnych w obwodzie (oczka uważa się za niezależne, jeśli równania napięciowe opisujące je są od siebie niezależne).

5 Metoda transkonfiguracji W metodzie transkonfiguracji wykorzystuje się zależności i zasady: Zastępowanie impedancji (rezystancji) połączonych szeregowo jedną impedancją (rezystancją) równoważną (patrz poprzedni wykład) Zastępowanie impedancji (rezystancji połączonych równolegle jedną impedancją (rezystancją) równoważną Zastępowanie rzeczywistych źródeł napięcia (prądu) równoważnym rzeczywistym źródłem prądu (napięcia) Zastępowanie szeregowego połączenia rzeczywistych źródeł napięć jednym rzeczywistym źródłem napięcia Zastępowanie równoległego połączenia rzeczywistych źródeł prądu jednym rzeczywistym źródłem pradu Przekształcenia gwiazda-trojkąt i trójkąt-gwiazda dla trójników pasywnych

6 Układy zastępcze elementów aktywnych Dla układów połączeń źródeł, podobnie jak dla elementów pasywnych, można tworzyć układy zastępcze. Układ n szeregowo połączonych rzeczywistych źródeł napięcia o tej samej pulsacji można zastąpić zastępczym rzeczywistym źródłem napięcia, którego napięcie Ez jest równe sumie algebraicznej (tzn. z uwzględnieniem znaku jeżeli źródło ma zwrot zgodny z Ez, to występuje ze znakiem (+), a jeżeli przeciwny, to występuje ze znakiem ( )) n Ez = ( Ek ) k= a impedancja (rezystancja) wewnętrzna równa jest Zz = n k= Zk a) parametry zastępczego źródła przedstawionego na rysunku. b) E z = E E2 E3, Rys... Łączenie szeregowe rzeczywistych źródeł napięcia; a) układ wyjściowy, b) układ zastępczy. Z z = Z + Z 2 + Z 3

7 Układy zastępcze elementów aktywnych a) b) Rys..2. Łączenie równoległe rzeczywistych źródeł prądu; a) układ wyjściowy, b) układ zastępczy. Dla obwodu złożonego z równolegle połączonych rzeczywistych źródeł prądu (rys..2a) prąd źródła zastępczego ( rys..2b) jest równy Jz = a admitancja (konduktancja) Yz = n i= Ji n i= Yi Możliwe jest także przekształcenie aktywnego układu połączonego w gwiazdę na układ połączony w trójkąt, natomiast przekształcenie aktywnego układu połączonego w trójkąt na układ połączony w gwiazdę jest niejednoznaczne.

8 Równoważność rzeczywistych źródeł Rzeczywiste źródło napięcia może być zastąpione równoważnym źródłem prądu i na odwrót. E = IZR W IZ = E R W

9 Przykład zastosowania transkonfiguracji Wyznaczyć wartości prądów J, J, J2, J3, J4 dla obwodu o znanych parametrach: Zastępujemy sieć oporników rezystancją zastępczą

10 Przykład zastosowania transkonfiguracji Zastępujemy rzeczywiste źródła napięcia Rzeczywistymi źródłami prądu

11 Przykład... Zastępujemy rzeczywiste źródła prądu połączone równolegle Jednym rzeczywistym źródłem prądu

12 Przykład Zastępujemy rzeczywiste źródła prądu równoważnym rzeczywistym źródłem napięcia

13 Przykład... Pozostałe prądy wyznaczamy z pierwotnej postaci obwodu

14 Twierdzenie o kompensacji Rozpływ prądów w obwodzie nie ulegnie zmianie, jeżeli dowolną impedancję Z (także rezystancję) zastąpi się idealnym źródłem napięcia E równym co do wartości, częstotliwości i fazy spadkowi napięcia na danej impedancji o zwrocie przeciwnym do zwrotu prądu I płynącego przez tę impedancję. E=U =IZ

15 Twierdzenie o włączaniu dodatkowych źródeł W obwodzie rozgałęzionym rozpływ prądów nie ulegnie zmianie, jeżeli do wszystkich gałęzi należących do tego samego węzła włączyć po jednym idealnym źródle napięcia o tej samej wartości skutecznej, częstotliwości, fazie początkowej i tym samym zwrocie w stosunku do rozpatrywanego węzła. Twierdzenie o włączaniu dodatkowych idealnych źródeł napięcia nazywane również: twierdzeniem o przenoszeniu idealnego źródła napięcia.

16 Twierdzenie o włączaniu dodatkowych źródeł W obwodzie rozgałęzionym rozkład napięć nie ulegnie zmianie, jeżeli równolegle do każdej gałęzi wybranego oczka włączyć po jednym idealnym źródle prądu o tej samej wartości skutecznej, częstotliwości, fazie początkowej i tym samym zwrocie w stosunku do przyjętego obiegu oczka. Twierdzenie o włączaniu dodatkowych idealnych źródeł napięcia nazywane również: twierdzeniem o przenoszeniu idealnego źródła prądu.

17 Twierdzenia o wzajemności W obwodach, w których występuje tylko jedno źródło energii (napięciowe lub prądowe) może być zastosowane tzw. twierdzenie o wzajemności. Twierdzenie to można sformułować w dwóch odmianach: oczkowej (dotyczącej źródła napięcia) i węzłowej (dotyczącej źródła prądu). Twierdzenie o wzajemności oczkowej Jeżeli w obwodzie liniowym rozgałęzionym, jedyne źródło napięcia znajdujące się w gałęzi k tej wywołuje w gałęzi l tej tego obwodu prąd I, to po przeniesieniu tego źródła do gałęzi l tej, w gałęzi k tej popłynie również prąd I. Ilustracja twierdzenia o wzajemności oczkowej.

18 Twierdzenia o wzajemności Twierdzenie o wzajemności węzłowej Jeżeli w obwodzie liniowym rozgałęzionym, jedyne źródło prądu znajdujące się między węzłami k i l wywołuje między węzłami m i n napięcie U, to po przeniesieniu gałęzi z tym źródłem między węzły m i n, napięcie między węzłami k i l będzie również równe U. Ilustracja twierdzenia o wzajemności węzłowej. Powyższe własności wynikają z symetrii macierzy impedancji i admitancji własnych i wzajemnych. Przy stosowaniu twierdzeń o wzajemności należy zwrócić uwagę na zachowanie zwrotów źródeł oraz odpowiednich napięć i prądów. Twierdzenia te są ważne również w obwodach ze sprzężeniami magnetycznymi oraz przy dowolnym charakterze zmienności źródeł (ale z zerowymi warunkami początkowymi).

19 Zasada superpozycji Odpowiedź czasowa obwodu elektrycznego liniowego przy warunkach początkowych zerowych jest równa sumie odpowiedzi czasowych na każde wymuszenie z osobna. Zasada ta odnosi się do układów: W stanie ustalonym jak i nieustalonym Dla źródeł zmiennych o różnych częstotliwościach

20 Zasada superpozycji Tworzymy tyle układów ile jest źródeł napięciowych i prądowych w obwodzie W każdym układzie zostawiamy kolejno jedno źródło prądowe lub napięciowe, pozostałe źródła usuwamy wstawiając w jego miejsce: Dla źródła napięciowego zwarcie Dla źródła prądowego przerwę (co łączy się z usunięciem całej gałęzi zawierającej to źródło) Dla każdego obwodu wyznaczamy prąd lub napięcie Sumujemy prądy lub napięcia składowe z każdego obwodu

21 Przykład wykorzystania zasady superpozycji ) 2)

22 Przykład wykorzystania zasady superpozycji )

23 Przykład wykorzystania zasady superpozycji

24 Twierdzenie Thevenina Twierdzenie o zastępczym źródle napięcia (tw. Thevenina): Dowolny aktywny obwód liniowy można od strony wybranych zacisków AB zastąpić obwodem równoważnym, złożonym z szeregowo połączonego jednego idealnego źródła napięcia, równego napięciu między zaciskami AB w stanie jałowym oraz jednej impedancji równej impedancji zastępczej obwodu pasywnego, widzianego od strony zacisków AB.

25 Twierdzenie Thevenina Twierdzenie ma zastosowanie przy wyznaczaniu prądu w jednej wybranej gałęzi (oznaczmy ją jako gałąź między węzłami AB). Sposób postępowania jest następujący: Wyłączamy gałąź AB i dla takiego obwodu wykonujemy następujące obliczenia: Obliczamy impedancję (rezystancję) zastępczą widzianą z zacisków AB, zastępując: Źródła napięcia zwarciem Źródła prądu przerwą Wyznaczamy napięcie jałowe panujące na zaciskach AB (węzły A i B są rozwarte) Korzystając ze schematu zastępczego twierdzenia obliczamy prąd i napięcie w gałęzi AB

26 Twierdzenie Nortona Twierdzenie o zastępczym źródle prądu (tw. Nortona): Dowolny aktywny obwód liniowy można od strony wybranych zacisków AB zastąpić obwodem równoważnym, złożonym z równolegle połączonego jednego idealnego źródła prądu, o prądzie źródłowym równym prądowi w gałęzi AB, przy zwarciu zacisków AB oraz jednej admitancji równej admitancji zastępczej obwodu pasywnego, widzianego od strony zacisków AB.

27 Twierdzenie Nortona Twierdzenie ma zastosowanie przy wyznaczaniu napięcia w jednej wybranej gałęzi (oznaczmy ją jako gałąź między węzłami AB). Sposób postępowania jest następujący: Wyłączamy gałąź AB i dla takiego obwodu wykonujemy następujące obliczenia: Obliczamy admitancję (konduktancję) zastępczą widzianą z zacisków AB, zastępując: Źródła napięcia zwarciem Źródła prądu przerwą Wyznaczamy prąd zwarcia między zaciskami zaciskami AB (węzły należy zewrzeć) Korzystając ze schematu zastępczego twierdzenia obliczamy napięcie w gałęzi AB

28 Przykład zastosowania twierdzenia Thevenina Rozwiązanie

29 Przykład zastosowania twierdzenia Thevenina

30 Przykład zastosowania twierdzenia Thevenina

31 Przykład zastosowania twierdzenia Nortona Stosując metodą zastępczego źródła prądu wyznaczyć spadek napięcia na R4 Rozwiązanie. Odłączamy gałąź AB z R4 i obliczamy prąd zwarciowy AB (zwieramy węzły AB) E =3 A R R 6 R 3 2 R 3 R2 E R I R3 I z =0 I= E R I 3 I z= = A=0,75 A R3 4

32 Przykład zastosowania twierdzenia Nortona 2. Przy odłączonej gałęzi AB wyznaczamy konduktancję zastępczą widzianą z zacisków AB przy zwartym źródle napięcia E R R 2 R AB =R 3 =20 R R 2 G AB = = =0,05 R AB Do zastępczego źródła prądu o wyznaczonych parametrach dołączamy gałąź AB i obliczamy napięcie na R4. = =0, R 4 0 I z =U AB G AB G 4 Iz 0,75 A U AB= = =5 V G AB G 4 0,05 0, G 4=

33 Metoda prądów oczkowych Metoda ta może być stosowan tylko dla obwodów liniowych i pozwala na zredukowanie liczby równań w stosunku do metody praw Kirchhoffa. Dla obwodu zawierającego g gałęzi i w węzłów liczba równań wynosi: n=g w Metoda posługuje się pojęciem prądu oczkowego, zwanego także prądem cyklicznym, który jest wirtualnym prądem przepływającym w niezależnym oczku obwodu. Związek miedzy prądem oczkowym a rzeczywistymi prądami określony jest I prawem Kirchhoffa.

34 Metoda oczkowa Wyznaczamy liczbę niezależnych oczek obwodu na podstawie równania n= g w Wybieramy oczka niezależne w obwodzie i oznaczamy kierunek przepływu prądów oczkowych (zwroty prądów możemy przyjąć dowolne) Dla każdego z niezależnych oczek zapisujemy zmodyfikowane dla prądów oczkowych napięciowe prawo Kirchhoffa Rozwiązujemy układ n równań względem niewiadomych prądów oczkowych Prądy rzeczywiste wyznaczamy na podstawie prądów oczkowych i I prawa Kirchhoffa

35 Metoda oczkowa Bilans napięciowy w metodzie oczkowej ma postać: n I 'k Z kk l = n liczba oczek sąsiednich (g w), I 'k prąd oczkowy bieżącego oczka, Zkk n I l' Z kl = ( E kk ) impedancja własna oczka (suma impedancji wszystkich gałęzi wchodzących w skład oczka k) I l' Z kl suma iloczynów prądu oczkowego oczka sąsiadującego z oczkiem k i impedancji wzajemnej oczka k i oczka l, l = (Ekk) algebraiczna suma napięć źródłowych w oczku k (źródła o napięciach skierowanych zgodnie z kierunkiem prądu oczkowego mają znak "+" a przeciwne znak " ")

36 Przykład zastosowania metody oczkowej liczba gałęzi g =6 liczba węzłów w=4 liczba niezależnych oczek n= g w =6 4 =3 Wybieramy oczka, oznaczamy prądy oczkowe, określamy zwroty prądów oczkowych

37 Przykład zastosowania metody oczkowej Zapisujemy dla każdego oczka bilans napięć dla oczka I I I R R5 R4 I II R5 I III R4 =U 0 U 05 dla oczka II I II R5 R2 R3 I I R5 I III R3 = U 05 Napięcia źródłowe mają znak plus jeśli ich zwrot jest zgodny ze zwrotem prądu oczkowego rozpatrywanego oczka dla oczka III I III R4 R3 R6 I I R4 I II R3=U 06 Prąd oczkowy mnożymy przez sumę wszystkich impedancji (rezystancji) w oczku Odejmujemy wpływ prądów sąsiednich oczek odejmując iloczyny prądu sąsiedniego oczka i impedancji (rezystancji) gałęzi wspólnej. UWAGA!!! Jeśli zwrot w gałęzi wspólnej obu prądów jest zgodny to zmieniamy znak z na +

38 Przykład... Otrzymany układ równań można rozwiązać dowolną metodą np. macierzową. Po uporządkowaniu otrzymamy: I I R R5 R4 I II R5 I III R4 =U 0 U 05 I I R5 I II R5 R2 R3 I III R3 = U 05 I I R 4 I II R3 I III R 4 R3 R6 =U 06 [ ][ ] [ ] R R 4 R 5 R5 R 4 II U 0 U 05 I II = U 05 R5 R 2 R 3 R 5 R 3 R 4 R3 R 3 R4 R 6 I II U 06 R I x =U 0 I x = R U 0

39 Przykład Mając wyznaczone prądy oczkowe na schemacie zaznaczamy rzeczywiste prądy w gałęziach W gałęziach, które należą tylko do jednego oczka rzeczywisty prąd jest określony przez prąd oczkowy z uwzględnieniem znaku (uwaga na zwroty prądów). I = I I I 2 = I II I 6 = I III I 5 = I I I II = I I 2 I 3 = I II I III = I 2 I 6 I 4 =I I I III = I I 6 W gałęziach wspólnych prądy wyznaczamy z I prawa Kirchhoffa

40 Metoda potencjałów węzłowych W metodzie potencjałów węzłowych liczba równań wynika z liczby węzłów obwodu: m=w Metoda ta wykorzystuje I twierdzenie Kirchhoffa. Dla każdego niezależnego węzła zapisuje się bilans prądów. W bilansie po jednej stronie równania zapisuje się prądy wypływające z węzła, którymi są prądy pobierane przez odbiorniki (konduktancje, admitancje), znajdujące się w gałęziach dochodzących do danego węzła. Po drugiej stronie równania znajdują się prądy pochodzące od źródeł energii.

41 Metoda potencjałów węzłowych Analizę obwodu metoda potencjałów węzłowych należy wykonać wg poniższego schematu:

42 Metoda potencjałów węzłowych

43 Metoda potencjałów węzłowych

44 Metoda potencjałów węzłowych

45 Metoda potencjałów węzłowych

46 Metoda potencjałów węzłowych

47 Metoda potencjałów węzłowych W gałęziach zawierających rzeczywiste źródła napięcia należy dokonać zamiany tego źródła na równoważne rzeczywiste źródło prądu: E = IZR W IZ = czyli prąd źródłowy i-tej gałęzi to: E R W Ei I źi = Ri Ei I źi = Zi lub G i= Ri lub Y i = Zi Konduktancja lub admitancja i-tej gałęzi:

48 Metoda potencjałów węzłowych Jeśli w gałęzi znajduje się jedynie idealne źródło napięcia to najkorzystniej jest uziemić jeden z węzłów tej gałęzi. Powoduje to automatyczne uzyskanie jednego potencjału węzłowego i redukuje o liczbę równań w metodzie potencjałów węzłowych:

49 Przykład

50 Przykładu

51 Przykład E 4 E V V2 V3 = Z2 Z4 Z Z2 Z Z4 Z V2 V = I Źr3 Z2 Z5 Z2 E6 E V3 V = I Źr3 Z Z6 Z Z 6 Z

52 Przykład V=E 4 V3 V2=E 3 V2 E 4 = I E3 Z2 Z5 Z2 E 6 E V3 E 4 =I E3 Z6 Z Z Z6 Z Po dodaniu stronami ostatnich dwóch równań E 6 E V3 E 4 V2 E 4 = I E3 I E3 Z6 Z Z Z2 Z5 Z2 Z6 Z Ostatecznie: E 6 E V3 E 4 V2 E 4 = Z6 Z Z Z2 Z5 Z2 Z6 Z 2

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy

Bardziej szczegółowo

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Obwody elektryczne prądu stałego

Obwody elektryczne prądu stałego Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych

Bardziej szczegółowo

Własności i charakterystyki czwórników

Własności i charakterystyki czwórników Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe

Bardziej szczegółowo

Obwody rozgałęzione. Prawa Kirchhoffa

Obwody rozgałęzione. Prawa Kirchhoffa Obwody rozgałęzione. Prawa Kirchhoffa Węzeł Oczko - * - * * 4-4 * 4 Pierwsze prawo Kirchhoffa. Suma natęŝeń prądów wchodzących do węzła sieci elektrycznej jest równa sumie natęŝeń prądów wychodzących z

Bardziej szczegółowo

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia

Bardziej szczegółowo

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

Metoda superpozycji - rozwiązanie obwodu elektrycznego.

Metoda superpozycji - rozwiązanie obwodu elektrycznego. Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty

Bardziej szczegółowo

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa.

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Prawo Ohma NatęŜenie prądu zaleŝy wprost proporcjonalnie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

Lekcja 14. Obliczanie rozpływu prądów w obwodzie Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

Układ liniowy. Przypomnienie

Układ liniowy. Przypomnienie Układ liniowy. Przypomnienie y(t)=t [a 1 x 1 (t)+a 2 x 2 (t)]=a 1 T [ x 1 (t )]+a 2 T [ x 2 (t)]=a 1 y 1 (t )+a 2 y 2 (t) Demonstracja: Z C (ω)= 1 jω C Jak wygląda u we i u wy? Z R =R Z R =R w.4, p.1 Moc

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina Twierdzenie Thevenina można sformułować w następujący cytując: "Podstawy Elektrotechniki", R.Kurdziel, wyd II, WNT Warszawa 1972: Prąd płynący przez odbiornik rezystancyjny R, przyłączony do dwóch zacisków

Bardziej szczegółowo

PODSTAWY ELEKTOTECHNIKI LABORATORIUM

PODSTAWY ELEKTOTECHNIKI LABORATORIUM PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii

Bardziej szczegółowo

Podstawy Teorii Obwodów

Podstawy Teorii Obwodów Podstawy Teorii Obwodów 203 Model obwodowy... 2 Klasyfikacjaobwodów.... 3 Założenia.... 4 Opis obwodów...... 5 Topologiaobwodu........ 6 Rodzaje elementówobwodów.... 7 Konwencje oznaczeńelementówobwodów....

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

dr inż. Krzysztof Stawicki

dr inż. Krzysztof Stawicki Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 2 emat: Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie hevenina SPIS REŚCI Spis treści...2

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa

Bardziej szczegółowo

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015 IMI Zadania zaliczenie wykładu lektrotechnika i elektronika MD 2015 Dla t < 0 obwód w stanie ustalonym. chwili t = 0 zamknięto wyłącznik. Sformułuj równanie różniczkowe obwodu w dziedzinie czasu, z którego

Bardziej szczegółowo

Ćw. 8 Weryfikacja praw Kirchhoffa

Ćw. 8 Weryfikacja praw Kirchhoffa Ćw. 8 Weryfikacja praw Kirchhoffa. Cel ćwiczenia Wyznaczenie całkowitej rezystancji rezystorów połączonych równolegle oraz szeregowo, poprzez pomiar prądu i napięcia. Weryfikacja praw Kirchhoffa. 2. Zagadnienia

Bardziej szczegółowo

PODSTAWY ELEKTROTECHNIKI I

PODSTAWY ELEKTROTECHNIKI I PODSTAWY ELEKTROTECHNIKI I mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 26 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia ĆWCZENE 6 OBWODY NELNOWE RĄD STAŁEGO Cel ćwiczenia: poznanie podstawowych zjawisk zachodzących w nieliniowych obwodach elektrycznych oraz pomiar parametrów charakteryzujących te zjawiska. 6.1. odstawy

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 02 Analiza obwodów prądu stałego Źródło napięciowe Idealne źródło napięciowe jest dwójnikiem, na którego zaciskach

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów

Bardziej szczegółowo

Prowadzący zajęcia. dr inŝ. Ryszard MAŃCZAK

Prowadzący zajęcia. dr inŝ. Ryszard MAŃCZAK Elektrotechnika Prowadzący zajęcia dr inŝ. yszard MAŃCZAK POLITECHNIKA POZNAŃSKA Wydział Maszyn oboczych i Transportu Instytut Maszyn oboczych i Pojazdów Samochodowych Zakład Pojazdów Samochodowych i Transportu

Bardziej szczegółowo

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe . Czas trwania: h lementy elektroniczne i przyrządy pomiarowe. Cele ćwiczenia Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem itp. Nabycie umiejętności

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Układ liniowy. Przypomnienie

Układ liniowy. Przypomnienie Układ liniowy. Przypomnienie y (t)=t [a1 x 1 (t)+a 2 x 2 (t)]=a 1 T [ x 1 (t )]+a2 T [ x 2 (t)]=a1 y 1 (t )+a 2 y 2 (t) Demonstracja: 1 Z C (ω)= jω C Jak wygląda uwe i uwy? Z R =R w.4, p.1 Z R =R Dwójnik

Bardziej szczegółowo

INDEKS ALFABETYCZNY CEI:2002

INDEKS ALFABETYCZNY CEI:2002 185 60050-131 CEI:2002 INDEKS ALFABETYCZNY A admitancja admitancja... 131-12-51 admitancja obciążenia... 131-14-06 admitancja pozorna... 131-12-52 admitancja robocza... 131-14-03 admitancja wejściowa...

Bardziej szczegółowo

Opracowała Ewa Szota. Wymagania edukacyjne. Pole elektryczne

Opracowała Ewa Szota. Wymagania edukacyjne. Pole elektryczne Opracowała Ewa Szota Wymagania edukacyjne dla klasy I Technikum Elektrycznego i Technikum Elektronicznego Z S Nr 1 w Olkuszu na podstawie programu nauczania dla zawodu technik elektryk [311303] oraz technik

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie Zał. nr 4 do ZW 33/0 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI POLITECHNIKI WROCŁAWSKIEJ / FIZYKA TECHNICZNA KARTA PRZEDMIOTU Nazwa w języku polskim Obwody Elektryczne Nazwa w języku angielskim Electric

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROTECHNIKA 2. Kod przedmiotu: Eef 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka

Bardziej szczegółowo

1. Obwody prądu stałego

1. Obwody prądu stałego Obwody prądu stałego 3 1. Obwody prądu stałego 1.1. Źródła napięcia i źródła prądu. Symbol źródła pokazuje rys. 1.1. Pokazane źródła są źródłami idealnymi bezrezystancyjnymi i charakteryzują się jedynie

Bardziej szczegółowo

AiR_E_1/1 Elektrotechnika Electrical Engineering

AiR_E_1/1 Elektrotechnika Electrical Engineering Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

POSTULATY TEORII OBWODÓW

POSTULATY TEORII OBWODÓW 1.0 Wiadomości wstępne Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna Skalarna Wielkość Fizyczna Wektorowa Międzynarodowy Układ Jednostek - układ SI Jednostki wtórne SI Wybrane Stałe Fizyczne

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

Co było na ostatnim wykładzie?

Co było na ostatnim wykładzie? Co było na ostatnim wykładzie? Rzeczywiste źródło napięcia: Demonstracja: u u s (t) R u= us R + RW Zależy od prądu i (czyli obciążenia) w.2, p.1 Podłączamy różne obciążenia (różne R). Co dzieje się z u?

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Wykład IV ROZWIĄZYWANIE UKŁADÓW NIELINIOWYCH PRĄDU STAŁEGO

Wykład IV ROZWIĄZYWANIE UKŁADÓW NIELINIOWYCH PRĄDU STAŁEGO Wykład IV ROZWIĄZYWANIE UKŁADÓW NIELINIOWYCH PRĄDU STAŁEGO UKŁADY NIELINIOWE 1. Układy nieliniowe są to układy, które nie spełniają zasady superpozycji; są to układy z elementami nieliniowymi. Wystarczy

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE Parametry sygnału sinusoidalnego Sygnały sinusoidalne zwane również harmonicznymi są opisane w dziedzinie czasu następującym wzorem (w opisie przyjęto oznaczenie sygnału napięciowego) : Wielkości występujące

Bardziej szczegółowo

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh, EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2010/2011 Zadania dla grupy elektronicznej na zawody II. stopnia (okręgowe) 1 Na rysunku przedstawiono przebieg prądu

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

Podstawy elektroniki

Podstawy elektroniki dr hab. inż. Michał K. Urbański, prof. nzw. Wydział Fizyki Politechniki Warszawskiej Zakład V Badań strukturalnych Gmach Fizyki pok 127B, murba@if.pw.edu.pl, strona http: //www.if.pw.edu.pl/ murba/ tekst

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

KARTA PRZEDMIOTU Rok akademicki: 2010/11

KARTA PRZEDMIOTU Rok akademicki: 2010/11 KARTA PRZEDMIOTU Rok akademicki: 2010/11 Nazwa przedmiotu: Podstawy elektrotechniki Rodzaj i tryb studiów: stacjonarne I stopnia Kierunek: Górnictwo i geologia Specjalność: Automatyka i energoelektryka

Bardziej szczegółowo

Energetyka I stopień ogólnoakademicki stacjonarne. kierunkowy. obowiązkowy. polski semestr 1 semestr zimowy

Energetyka I stopień ogólnoakademicki stacjonarne. kierunkowy. obowiązkowy. polski semestr 1 semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Elektrotechnika 1 Nazwa modułu w języku angielskim Electrical engineering

Bardziej szczegółowo

Elektrotechnika Skrypt Podstawy elektrotechniki

Elektrotechnika Skrypt Podstawy elektrotechniki UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:

Bardziej szczegółowo

9. OBWODY ROZGAŁĘZIONE - METODY I TWIERDZENIA

9. OBWODY ROZGAŁĘZIONE - METODY I TWIERDZENIA 9. OBWODY ROZGAŁĘZONE - METODY TWERDZENA Podobnie ak w przypadku obwodów prądu stałego analiza złożonych obwodów prądu sinusoidalnie zmiennego opiera się o tworzenie ich schematów zastępczych. Zestawiane

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy elektrotechniki i elektroniki I 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej

Bardziej szczegółowo

Podstawy elektroniki

Podstawy elektroniki dr hab. inż. Michał K. Urbański, prof. nzw. Wydział Fizyki Politechniki Warszawskiej Zakład V Badań strukturalnych Gmach Fizyki pok 18 GF i 713 Gmach Mechatroniki, murba@if.pw.edu.pl, strona http: //www.if.pw.edu.pl/

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

Technika analogowa 2. Wykład 5 Analiza obwodów nieliniowych

Technika analogowa 2. Wykład 5 Analiza obwodów nieliniowych Technika analogowa Wykład 5 Analiza obwodów nieliniowych 1 Plan wykładu Wprowadzenie Charakterystyki parametry dwójników nieliniowych odzaje charakterystyk elementów nieliniowych Obwody z nieliniowymi

Bardziej szczegółowo

Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka

Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka 1 Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka I. Obwody elektryczne prądu stałego 1. Pojęcie terminów: wielkość, wartość, jednostka wielkości Wielkością fizyczną nazywamy cechę zjawiska fizycznego.

Bardziej szczegółowo

Od fizyki do elektrotechniki

Od fizyki do elektrotechniki Od fizyki do elektrotechniki Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 21 listopada 2015 Plan wykładu: 1. Wielkości fizyczne skalarne i wektorowe

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości Spis treści Spis treści Oznaczenia... 11 1. Wiadomości ogólne... 15 1.1. Wprowadzenie... 15 1.2. Przyczyny i skutki zwarć... 15 1.3. Cele obliczeń zwarciowych... 20 1.4. Zagadnienia zwarciowe w statystyce...

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć:

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć: Metoda symboliczna ad.. naleźć zespolone wartości skuteczne następujących prądów i napięć: 7 a) ut ( ) sin 5t V, b) it () 5 cos5t, 4 c) ut ( ) sin t cost V, d) it () 5sint 4cost. 4 Wynik: 7 j a) e V, 5rad/s,

Bardziej szczegółowo

Prąd elektryczny w obwodzie rozgałęzionym dochodzenie. do praw Kirchhoffa.

Prąd elektryczny w obwodzie rozgałęzionym dochodzenie. do praw Kirchhoffa. 1 Prąd elektryczny w obwodzie rozgałęzionym dochodzenie do praw Kirchhoffa. Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo