Zastosowanie testu CAPM do nieprecyzyjnego określenia efektywności papieru wartościowego



Podobne dokumenty
Trójwymiarowy obraz ryzyka

Obraz ryzyka w rozmytych przestrzeniach probabilistycznych

Stopa zwrotu obarczona ryzykiem nieprecyzji

O sposobie nieprecyzyjnego określenia rozkładu stopy zwrotu Problem badawczy

Zbiory intuicyjne w prognozowaniu rynku finansowego

ZORIENTOWANA BEHAWIORALNA WARTOŚĆ BIEŻĄCA PORTFELA DWUSKŁADNIKOWEGO STUDIUM PRZYPADKU

NIEPRECYZYJNY OPIS PORZĄDKU ZATRZYMANIA STRATY

Postawy wobec ryzyka

PORTFEL DWUSKŁADNIKOWY PRZYPADEK WARTOŚCI BIEŻĄCEJ DANEJ JAKO TRÓJKĄTNA LICZBA ROZMYTA

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

O STOPIE ZWROTU OSZACOWANEJ PRZEZ INTUICYJNY ROZMYTY ZBIÓR PROBABILISTYCZNY 1

Wartość przyszła, wartość bieżąca, synergia kapitału. arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób

Wprowadzenie do analizy korelacji i regresji

Aksjomat synergii w arytmetyce finansowej

SZTUCZNA INTELIGENCJA

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

3. Modele tendencji czasowej w prognozowaniu

RODZINA EFEKTYWNYCH INSTRUMENTÓW FINANSOWYCH DANA JAKO INTUICYJNY ZBIÓR ROZMYTY 1

Prawa wielkich liczb, centralne twierdzenia graniczne

Teoria portfelowa H. Markowitza

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

Spis treści 3 SPIS TREŚCI

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Podstawowe definicje dotyczące zarządzania portfelowego

Zarządzanie ryzykiem projektów inwestycyjnych

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Interwałowe zbiory rozmyte

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

166 Wstęp do statystyki matematycznej

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

5. WNIOSKOWANIE PSYCHOMETRYCZNE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Prawdopodobieństwo i statystyka

Technologie i systemy oparte na logice rozmytej

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH

ZASTOSOWANIE ZBIORÓW ROZMYTYCH W OCENIE OSIĄGNIĘCIA EFEKTÓW KSZTAŁCENIA

Matematyka ubezpieczeń majątkowych r.

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Y = α 1 Z α k Z k + e. (1) (k 1)[ktrA2 (tra) 2 ] (4) d = 1 k. (por. np. Kolupa, 2006). Wówczas jak to wynika ze wzorów (2) i (3) mamy:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Zmienne zależne i niezależne

Rozkład Gaussa i test χ2

Rodzina efektywnych instrumentów finansowych dana, jako intuicyjny zbiór rozmyty

Inteligencja obliczeniowa

Biostatystyka, # 3 /Weterynaria I/

Metodologia badań psychologicznych

Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling

Matematyka ubezpieczeń majątkowych r.

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

MATRYCA EFEKTÓW KSZTAŁCENIA

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

dr hab. Renata Karkowska 1

Statystyka i eksploracja danych

Proces badawczy schemat i zasady realizacji

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Proces badawczy schemat i zasady realizacji

F t+ := s>t. F s = F t.

Opisy przedmiotów do wyboru

Statystyka matematyczna dla leśników

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Finanse behawioralne. Finanse

Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Rozmyte zbiory probabilistyczne w rachunku aktuarialnym Wstęp Określenie właściwych relacji

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

LOGIKA I TEORIA ZBIORÓW

Rozdział 8. Regresja. Definiowanie modelu

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Modelowanie rynków finansowych

Matematyka bankowa 1 1 wykład

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych. Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Streszczenie rozprawy doktorskiej. mgr Aleksandry Rutkowskiej. Optymalizacja portfela papierów wartościowych w świetle teorii wiarygodności Liu

Analiza zdarzeń Event studies

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

7.4 Automatyczne stawianie prognoz

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Etapy modelowania ekonometrycznego

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

MODELE LINIOWE. Dr Wioleta Drobik

7. Zastosowanie wybranych modeli nieliniowych w badaniach ekonomicznych. 14. Decyzje produkcyjne i cenowe na rynku konkurencji doskonałej i monopolu

Opis przedmiotu: Probabilistyka I

Analiza wielokryterialna wstęp do zagadnienia

Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Transkrypt:

1 Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Zastosowanie testu CAPM do nieprecyzyjnego określenia ektywności papieru wartościowego Problem badawczy W klasycznym ujęciu instrument finansowy nazywamy ektywnym, jeśli oczekiwana stopa zwrotu z tego instrumentu jest maksymalną stopą zwrotu możliwą do osiągnięcia przy zadanym poziomie ryzyka. Oczywistym jest, że racjonalnie zachowujący się inwestorzy powinni inwestować jedynie w ektywne instrumenty finansowe. W praktyce jednak tak nie jest. Inwestorzy inwestują wielokrotnie w takie instrumenty finansowe, które są jedynie zbliżone do ektywnych. W [KP5] wskazano, że wyjaśnieniem takiej sytuacji może być nieprecyzyjne określenie samego pojęcia ektywności instrumentu finansowego. Do opisu tej nieprecyzji zasugerowano tam zastosować teorię podzbiorów rozmytych. Sugestia ta została uzasadniona w oparciu o przesłanki formalne. Następnie w [KP6] zaproponowaną pewną ekonometryczną metodę wyznaczania funkcji przynależności rozmytego podzbioru ektywnych instrumentów finansowych. Wykorzystano tam adaptację pochodzącej od Markowitz a klasycznej dinicji ektywnego instrumentu finansowego. W niniejszej pracy zostanie zaproponowana kolejna ekonometryczna metoda wyznaczania rozmytego podzbioru ektywnych instrumentów finansowych. Tym razem wykorzystana zostanie znana relacja pomiędzy ektywnością instrumentu finansowego, a faktem istnienia modelu CAPM opisującego zmienność oczekiwanej stopy zwrotu z tego instrumentu. 1. Wybrane pojęcia teorii zbiorów rozmytych. pojęcia Rozważania nasze ograniczymy do rodziny 0,1 R wszystkich podzbiorów rozmytych w przestrzeni liczb rozmytych. Dowolny rozmyty podzbiór A ~ 0, 1 R reprezentować będziemy przy pomocy jego funkcji przynależności A : R 0,1. W całej pracy zakładać będziemy, że działania sumy, iloczynu i dopełnienia zbiorów rozmytych zostały określone w sposób zaproponowany pierwotnie przez L. A. Zadeha.

2 Liczbą rozmytą (Dubois, Prade, 1979) nazywamy każdy podzbiór ~ rozmyty M 0, 1 R spełniający dodatkowo warunki, (1) x, z R : y min x, z y. (2) M Niech będzie dana ustalona przestrzeń probabilistyczna,, P. Wtedy dowolny probabilistyczny zbiór (Hirota, 1981) liczb rzeczywistych Ĥ jest dany jako rodzina zbiorów rozmytych ~ R H 0,1 : indeksowana przez zdarzenia elementarne. H ~ przynależności Każdy zbiór rozmyty jest reprezentowany przy pomocy funkcji, : R 0,1. Oznacza to, że zbiór probabilistyczny H Ĥ jest reprezentowany jednoznacznie przez indeksowaną rodzinę funkcji, : R 0,1. Stopień przynależenia dowolnej przynależności H liczby rzeczywistej do zbioru probabilistycznego Ĥ określamy wtedy jako funkcję H x, : 0,1. Dodatkowo zakładamy tutaj, że stopień przynależenia dowolnej liczby rzeczywistej do zbioru probabilistycznego jest zmienną losową na ciele zdarzeń losowych. W szczególnym przypadku także dowolną zmienną losowej : R na możemy jednoznacznie opisać przy pomocy zbioru probabilistycznego reprezentowanego przez poniższą rodzinę funkcji przynależności M 1 x, : x, (3) 0 x. Oczekiwaniami zbioru probabilistycznego Ĥ nazywamy zbiór ~ Hˆ 0, 1 reprezentowany w jednoznaczny sposób przez : R 0,1 określoną przy pomocy rozmyty R funkcję przynależności tożsamości H, dp (4) H x H x M

3 i nazywaną dalej rozkładem oczekiwań. Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową : R, to wtedy rozkład jego oczekiwań jest identyczny z funkcją gęstości rozkładu zmiennej losowej. Założenie, że zbiór probabilistyczny Ĥ jest reprezentowany przez indeksowaną rodzinę liczb rozmytych nie jest warunkiem dostatecznym na to, aby oczekiwania ~ H były liczbą rozmytą. Dla dowolnego podzbioru rozmytego A ~ 0, 1 R wprowadzamy pojęcie wartości przeciętnej A ~ zdiniowanej w następujący sposób ~ A x R A x dx. (5) Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową ~ : R, to wtedy wartość przeciętna jego oczekiwań ˆ jest identyczna z wartością oczekiwaną zmiennej losowej. Stanowi to przesłankę do uogólnienia pojęcia wartości oczekiwanej do przypadku dowolnego probabilistycznego zbioru Ĥ liczb rzeczywistych. Wartością oczekiwaną probabilistycznego zbioru Ĥ liczb rzeczywistych daną przy pomocy zależności nazywamy liczbę Ĥ ~ H H ˆ x x, ˆ dpdx. (6) R H Przyjęcie powyższej dinicji oznacza, że wartość oczekiwaną identyfikujemy z wartością przeciętną oczekiwań. Posługiwanie się wartością oczekiwaną zamiast posługiwaniem się oczekiwaniami jest co prawda prostsze, ale oznacza rezygnację z dużej części dostępnej wiedzy. Dlatego wartym zalecenia jest zawsze poszerzenie analizy opartej na wartościach oczekiwanych o analizę opartą o rozkłady oczekiwań. 2.Model reprezentacji instrumentu finansowego Niech będzie dany zbiór elementarnych stanów rynku finansowego obejmujących też stany wiedzy ekspertów i inwestorów o tymże rynku finansowym. Dla pewnego ciała zdarzeń losowych

4 2 znany jest rozkład prawdopodobieństwa P : 0,1. Jeśli posiadane informacje o rynku finansowym nie pozwalają na sprecyzowanie takiego rozkładu, to wtedy możemy się posłużyć zasadą totalnej ignorancji Walda. Rozważamy ekty zainwestowania w pewien ustalony instrument finansowy na zadany okres czasu. Każdemu elementarnemu stanowi przypisujemy elementarną prognozę stopy zwrotu z tego instrumentu daną jako liczba rozmyta r~ reprezentowana przez funkcję przynależności, : R 0,1. W ten sposób otrzymujemy probabilistyczny zbiór R ˆ ~ r : nazywany dalej prognozą stopy zwrotu. Zakładamy tutaj, że dla dowolnej liczby rzeczywistej R x, przynależności do prognozy stopy x jej stopień zwrotu Rˆ jest zmienna losową. Korzystają teraz kolejno z (4) i (6) wyznaczamy rozkład oczekiwań stopy zwrotu : R 0,1 dany przy pomocy tożsamości x x, dp, (7) oraz oczekiwaną stopę zwrotu r R x x, dpdx. (8) Każdą z wartości rozkładu oczekiwań x interpretujemy jako ocenianą w ujęciu logiki wielowartościowej wartość logiczną zdania Stopa zwrotu osiągnie wartość x. Zauważmy tutaj, że zastąpienie porównywania oczekiwanych stóp zwrotu poprzez porównywanie rozkładów oczekiwań prowadzi do uogólnienia kryterium dominacji stochastycznej (Bava,1975) do przypadku rozmytej relacji określonej na zbiorze stóp zwrotu prognozowanych przy pomocy zbiorów probabilistycznych. Korzystanie z prognozy stopy zwrotu przy zarządzaniu inwestycjami finansowymi jest między innymi obarczone ryzykiem niepewności wynikającym z niewiedzy na temat przyszłego stanu 0 świata finansowego. Cechy tego ryzyka zwyczajowo określa się przy pomocy analizy właściwości kwadratu różnicy pomiędzy poszczególnymi prognozami stopy zwrotu a oczekiwana stopą zwrotu. W

5 przypadku prognoz stopy zwrotu danych jako liczby rozmyte, dla dowolnego stanu kwadrat różnicy elementarnej rozmytej prognozy stopy zwrotu r~ i oczekiwanej stopy zwrotu r jest liczbą rozmyta opisaną przy pomocy funkcji przynależności max r x,, r x, x, x 0, (9) 0 x 0. W ten sposób kwadrat różnicy prognozy stopy zwrotu Rˆ i oczekiwanej stopy zwrotu r został przedstawiony jako probabilistyczny zbiór ˆ jednoznacznie określony przez rodzinę funkcji przynależności (9) nazywany dalej kwadratem residuum stopy zwrotu. W [KP5] pokazano, że w przypadku rozpatrywania stopy zwrotu danej jako zbiór 2 probabilistyczny Rˆ, wariancja stopy zwrotu jest zdiniowana jako oczekiwany kwadrat residuum stopy zwrotu wyznaczany za pomocą zależności R 2 x x, dpdx. (10) 2 Wyznaczona w ten sposób wariancja może być wykorzystana jako ocena ryzyka niepewności. W ten sposób dowolny portfel dopuszczalny 2 w teorii Markowitza może być reprezentowany przez parę r, R lub przez parę, 0, 1 R R. W przypadku pierwszej pary zbiór portfeli ektywnych jest górna gałęzią krzywej Markowitza. Rodzi to pewne trudności aplikacyjne, gdyż inwestorzy inwestują na ogół w portfele lezące poniżej gałęzi portfeli ektywnych, a więc z punktu widzenia tej teorii w portfele nieektywne. Natomiast w przypadku, kiedy stopa zwrotu jest opisana przy pomocy swego rozkładu, zbiór portfeli ektywnych staje się podzbiorem rozmytym o nośniku rozpiętym nad zbiorem wszystkich portfeli niezdominowanych. W praktyce oznacza to, ze prawie każdy dostępny na rynku portfel dopuszczalny jest w pewnym stopniu portfelem ektywnym. Opis taki może służyć wyjaśnieniu sposobu działania inwestorów, którzy zawsze działają w mniej lub bardziej ektywny sposób. Oznacza to, że oparcie teorii Markowitza na

6 parze, 0, 1 R R pozwala stworzyć modele formalne bliższych realiom rynku finansowego. 3.Nieprecyjnie określony zbiór ektywnych instrumentów finansowych model normatywny Symbolem oznaczmy zbiór wszystkich dopuszczalnych instrumentów finansowych. Dowolny dopuszczalny instrument finansowy R 1 jest reprezentowany przez parę, 0, R. Niech będzie dana 0, 1 R opisująca rozkład oczekiwań stopy 0, 0 ustalona para R zwrotu i wariancję instrumentu finansowego 0 W przypadku klasycznej teorii Markowitz a, zbiór dopuszczalnych instrumentów finansowych ograniczany jest do zbioru zawierającego wszystkie dopuszczalne instrumenty finansowe reprezentowane przez pary. Wtedy zbiór instrumentów ektywnych diniujemy jako zbiór instrumentów finansowych o maksymalnej stopie zwrotu dla danej wariancji i opisujemy jako krzywą r, : r max r :,. (11). Zbiór ten jest identyczny z krzywą wyznaczoną przez tożsamość (12) Korzystając z zasady rozszerzenia Zadeha, dla przypadku zbioru dopuszczalnych instrumentów finansowych, zbiór ektywnych instrumentów finansowych zapisujemy jako parametryzowaną wartościami odchylenia standardowego rodzinę podzbiorów rozmytych opisanych przy pomocy : R 0,1 danej w następujący sposób funkcji przynależności z min max x: z x:,. (13) x Jeśli wartość z R opisuje precyzyjne oszacowanie stopy zwrotu z dopuszczalnego instrumentu finansowego z,, to wartość z jest

7 interpretowana jako stopień, w jakim ten portfel jest ektywny. Takie pojmowanie ektywności pozwoli wyjaśniać zachowania inwestorów, którzy werbalnie deklarując zamiar ektywnego inwestowania nie inwestują w portfele dopuszczalne lezące na krzywej portfeli ektywnych. Obiektywne przyczyny takiego stanu rzeczy opisuje liczna literatura przedmiotu. Wtedy jednak kryterium ektywności inwestowania możemy opisać, jako kryterium maksymalizacji stopnia ektywności inwestycji. Wartym podkreślenia jest fakt, że ostateczny kształt kryterium maksymalizacji stopnia ektywności portfela : R 0,1 jest zależny od postaci zbiorów probabilistycznych Hiroto opisujących stopy zwrotu z poszczególnych dopuszczalnych instrumentów finansowych. W ten naturalny sposób metodę optymalizacji inwestycji uzależniliśmy od precyzji postrzegania instrumentów finansowych składających się na rynek finansowy. Ze względu na formalne przesłanki leżące u podstaw konstrukcji tego modelu ektywności portfela, nazywamy go modelem normatywnym. Z drugiej strony nie sposób pominąć tutaj problemu złożoności obliczeniowej modelu normatywnego. Jest to cena, jaka płacimy za brak założeń szczegółowych specyfikujących model stopy zwrotu, to jest za niską złożoność logiczną tego modelu. Niska złożoność logiczna jest jednak zaletą tego modelu i z tej przyczyny model normatywny wydaje się być wart dalszych studiów. Tej wysokiej złożoności obliczeniowej przeciwstawiamy odmienny modele ektywności portfela oparte na przesłankach ekonometrycznych. 4. Nieprecyzyjnie określony zbiór ektywnych instrumentów finansowych modele ekonometryczne W [KP5] zaproponowano określenie stopnia ektywności dopuszczalnego instrumentu finansowego z, jako stopień podobieństwa tego instrumentu do ektywnego instrumentu postaci r,. Zgodnie z klasyczną ekonometryczną metodologią stopień podobieństwa pomiędzy dwoma instrumentami finansowymi będzie wzrastał wraz ze zmniejszaniem się odległości pomiędzy tymi portfelami. Do oszacowania tej odległości w [KP5] wykorzystano unormowana metrykę wyznaczoną przez metrykę Euklidesa. : R 0,1 zbioru ektywnych Dzięki temu funkcję przynależności instrumentów finansowych została określona przez tożsamość z 1 r 1. (14) z

8 W [KP6] do skonstruowania funkcji przynależności zbioru podstawowych wykorzystano koncepcję dyskretnego modelu Markowitz a. Niech będzie dany skończony zbiór dopuszczalnych instrumentów finansowych (15) Każdy dopuszczalny instrument finansowy stopę zwrotu ex post a j a rˆ i wariancję ex ante 2 j był tam reprezentowany przez. Informacje te są dostępne w momencie zainwestowania w dany instrument. Koszt zainwestowania w instrument finansowy identyfikujemy z ryzykiem obciążającym ten instrument. Postulat zgodnego z kryterium minimalizacji kosztów wyboru instrumentu finansowego prowadzi do określenia na zbiorze instrumentów finansowych preporządku zdiniowanego za pomocą zależności M j M k a 2 a 2 j k j. (16) Ponadto, po pewnym czasie od zainwestowania, każdemu dopuszczalnemu instrumentowi finansowemu przypisujemy stopę zwrotu ex post. Zysk uzyskany z instrumentu finansowego identyfikujemy ze stopą zwrotu ex post. Postulat zgodnego z kryterium maksymalizacji zysku wyboru instrumentu finansowego prowadzi do określenia na zbiorze instrumentów preporządku zdiniowanego za pomocą zależności r M j M rˆ rˆ (17) r k p j p k W tej sytuacji zadanie wyznaczania ektywnych instrumentów finansowych jest równoważne zadaniu równoczesnej minimalizacji kosztu i maksymalizacji zysku. Prowadzi nas to do uznania instrumentu finansowego za ektywny wtedy, jeśli jest on elementem optimum Pareto wyznaczonego przez porównanie wielokryterialne r. Jedynie wielokrotne wyznaczanie optimum Pareto w różnych momentach historii rynku kapitałowego może pozwolić na wyłonienie takich instrumentów finansowych, które możemy uznać za trwale ektywne. Studium przypadku przeprowadzone w [KP6} wykazało jednak niemożność zastosowania tutaj zasady generalizacji historycznej. Powstaje oczywiście

9 naturalne pytanie, czy specyfika rynku kapitałowego pozwoli w ogóle na taka aplikację zasady generalizacji historycznej. W tej sytuacji wyróżniamy ciąg momentów czasowych obserwacji. Każdej parze przypisujemy parę stopy zwrotu ex post i odchylenia standardowego ex ante reprezentujące w momencie czasowym dopuszczalny instrument finansowy. Następnie, stosując preporządki (16) i (17), dla każdego momentu czasowego wyznaczamy optimum Pareto. Stopień, w jakim instrument finansowy jest uważany za ektywny, identyfikujemy z częstotliwością zaliczania tego instrumentu do ciągu wyznaczanych kolejno optimum Pareto. W ten sposób w zbiorze instrumentów finansowych wyróżniamy podzbiór rozmyty ektywnych instrumentów : 0,1 danej w finansowych opisanych przez funkcję przynależności następujący sposób. (18) Wyróżniony w ten sposób zbiór ektywnych instrumentów finansowych ma jednak charakter względny, gdyż wyróżnione instrumenty finansowe są ektywne jedynie wobec zbioru rozpatrywanych instrumentów finansowych. Może to być zarówno wada, jak i zaletą zaproponowanej metody nieprecyzyjnego określania ektywności. W tej sytuacji jednak, w pierwszym rzędzie należy jednak zbudować uniwersalną metodę wyróżniania ektywnych instrumentów finansowych. Formalną podstawą takiej metody może być uniwersalne twierdzenie: Jeśli instrument finansowy jest ektywny, to istnieje model CAPM opisujący zmienność stopy zwrotu z tego instrumentu ( porównaj na przykład [KP str.332]. Rozważmy dowolny instrument finansowy. Każdemu momentowi czasowemu przypisujemy szeregi czasowe obserwowanych stopy zwrotu z badanego instrumentu finansowego, rynkowej stopy zwrotu i stopy zwrotu wolnej od ryzyka. Szeregi te służą nam do weryfikacji hipotezy zerowej Różnica nie jest skorelowana liniowo z różnicą której przeciwstawiamy hipotezę alternatywną:

10 Różnica nie jest skorelowana liniowo z różnicą Każdorazowy brak podstaw do odrzucenie hipotezy zerowej na rzecz hipotezy alternatywnej jest identyczne ze stwierdzeniem, że nie istnieje model CAPM. W tej sytuacji stopień, w jakim instrument finansowy jest uważany za ektywny, identyfikujemy z częstotliwością odrzucania hipotezy zerowej na rzecz hipotezy alternatywnej. W ten sposób w zbiorze wszystkich dopuszczalnych instrumentów finansowych wyróżniamy podzbiór rozmyty ektywnych instrumentów finansowych opisanych przez : 0,1 danej w następujący sposób funkcję przynależności. (19) Jakości informacji reprezentowanych przez rozmyty podzbiór ektywnych instrumentów finansowych oceniać będziemy z punktu widzenia jej nieprecyzji. W obrazie nieprecyzji pojedynczej informacji wyróżnia się niewyrazistość informacji oraz niejednoznaczność informacji. Niewyrazistość informacji interpretujemy, jako brak jednoznacznego rozróżnienia pomiędzy daną informacją i jej zaprzeczeniem. Oceniamy ją za pomocą miary entropowej [3] tutaj danej przez zależność. (20) Niejednoznaczność informacji interpretujemy, jako brak jednoznacznego wyróżnienia pomiędzy wieloma wskazanymi alternatywami jednej rekomendowanej alternatywy. Oceniamy je za pomocą miary energetycznej [10] tutaj danej przez zależność. (21) Pożądanym jest korzystanie z informacji o możliwie niskiej entropii i możliwie niskiej energii. Zastosowanie tych kryteriów pozwoli na wybór zbioru ektywnych instrumentów finansowych uzyskanych za pomocą różnych wariantów zbiorów danych wykorzystywanych w analizie ekonometrycznej..

11 Każdy model ekonometryczny może być wykorzystany, jako funkcjonał w kryterium maksymalizacji stopnia ektywności. 5. Studium przypadku Bibliografia 1. Buckley I.J., The fuzzy mathematics of finance, Fuzzy Sets and Systems 1987, Nr 21. 2. Calzi M.L. (1990), Towards a general setting for the fuzzy mathematics of finance, Fuzzy Sets and Systems 1990, Nr35. Czogała E., Gottwald S., Pedrycz W., On the concepts of measures of fuzziness and their application in decision making, 8 th Trenniol World Congress IFAC, Kyoto. 3. Hirota K., Concepts of probabilistic sets, Fuzzy Sets and Systems 1981, Nr.5. 5. Piasecki K., Trójwymiarowy obraz ryzyka, [w:] Metody ilościowe w ekonomii, red. Hozer J., Zeszyty Naukowe Uniwersytetu Szczecińskiego Nr 450, Szczecin 2007,. 6. Piasecki K., Obraz ryzyka w rozmytych przestrzeniach probabilistycznych, [w:] Matematyczne i ekonometryczne metody oceny ryzyka finansowego, red. Chrzan P., Prace Naukowe Akademii Ekonomicznej w Katowicach, Katowice 2007. Piasecki K. Modele matematyki finansowej. Instrumenty podstawowe, Wydawnictwo Naukowe PWN, Warszawa 2007. Piasecki K., Tomasik E., O sposobie nieprecyzyjnego określenia rozkładu stopy zwrotu [w:] Rynek kapitałowy, skuteczne inwestowanie, red. Tarczyński W. Uniwersytet Szczeciński, Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania nr 9, Szczecin 2008. 4. Dubois J., Prade H., Fuzzy real algebra: some results, Fuzzy Sets and Systems 1979, Nr2. 9. Klir G.J. (1993), Developments in uncertainty-based information, [w:] Advances in Computers 36, red. Yovits M.1993,.

12 10. de Luca A., Termini S., Entropy and energy measures of fuzzy sets, [w:] Advances in Fuzzy Set Theory and Application Gupta M.M., Ragade R.K., Yager R.R. (red.): 1987, North Holand Amsterdam. KP5 Piasecki K., Rozmyta ektywność portfela [w;] Innowacje w finansach i ubezpieczeniach. Metody matematyczne, ekonometryczne i informatyczne 2006, Chrzan P. red. (praca przyjęta do druku) KP6 Piasecki K., O sposobie poszukiwania dobrej metody inwestowania na giełdzie, [w;] Innowacje w finansach i ubezpieczeniach. Metody matematyczne, ekonometryczne i informatyczne 2007, Chrzan P. red. (praca przyjęta do druku) Bawa V.(1975), Optimal rules for ordering uncertain prospects, Journal of Financial Economics 2, s.95-121. Buckley I.J.(1987), The fuzzy mathematics of finance, Fuzzy Sets and Systems 21, s. 257-273. Podsumowanie W pracy zwrócono uwagę na możliwości tkwiące w braku precyzji w określeniu portfela ektywnego. Stworzenie obrazu tej nieprecyzji na gruncie teorii podzbiorów rozmytych wprzęga aparat formalny tej teorii do analizy rynku kapitałowego. Zaprezentowane wyniki należy rozumieć jedynie jako sygnał o możliwościach tkwiących w zastosowaniu teorii podzbiorów rozmytych w matematyce finansowej czy też finansometrii. Sygnał ten rodzi też doniosłe pytania o teoretyczne przesłanki rozmytych modeli finansów skwantyfikowanych. Naturalnym jest tutaj pytanie o dobór logiki wielowartościowej właściwej do opisu mechanizmów rynku finansowego. Na odpowiedź oczekuje też pytanie o minimalne zestawy dodatkowych założeń specyfikujących ogólny model normatywny postaci (11). Wprowadzenie nieprecyzyjnie określonej krzywej portfeli ektywnych pociąga za sobą problem nieprecyzyjnego określenia linii rynku kapitałowego oraz wyznaczenia modelu CAPM adekwatnego do wspomnianej krzywej. Rozwiązanie tego ostatniego problemu może stworzyć teoretyczne przesłanki do przypisania modelu CAPM dowolnemu portfelowi dopuszczalnemu charakteryzującemu się przecież zawsze pewnym stopniem ektywności. Tak więc obszar rozmytej matematyki finansowej i rozmytej finansometrii można uznać za obiecujący obszar badawczy. Skupienie badań na tym obszarze powinno prędzej, czy później przynieść dla praktyki analizy rynku finansowego określone ekty pozytywne.

13 Streszczenie Artykuł jest poświęcony problemowi nieprecyzyjnego określenia pojęcia ektywności papieru wartościowego. Wykorzystywane jest tutaj twierdzenie głoszące, że jeśli dany papier wartościowy jest ektywnym instrumentem finansowym, to istnieje model CAPM opisujący zmienność stopy zwrotu z tego instrumentu. Zastosowano tutaj podejście ekonometryczne. Istnienie takiego modelu CAPM weryfikowano przy pomocy testu statystycznego wyznaczonego przez współczynnik korelacji. Stopień, w jakim dany papier wartościowy jest ektywny identyfikowano z częstotliwością, z jaką była odrzucana hipoteza zerowa zakładająca wartość współczynnika korelacji równą zero. W ten sposób, w zbiorze rozpatrywanych akcji wyznacza się rozmyty podzbiór ektywnych papierów wartościowych. Zaproponowaną metodę zilustrowano obszernym studium przypadku związanym z Warszawską Giełdą Papierów Wartościowych. Application of CAPM test for imprecise description of stock fectiveness Summary There is studied the problem of imprecision qualification considered securities as fective. There is used the thesis that if given securities are an fective financial instrument, then there exists CAPM model describing variability of its return rate. An econometric attempt was applied. The existence of such a CAPM model is verified by means of the statistical test delimited by the coficient of correlation. The degree, in which given securities are fective was being identified with the frequency, with which there was rejected null hypothesis assuming correlation coficient value equal to zero. In this way, the fuzzy subset of fective securities is distinguish in the space of all considered one. The suggested method is illustrated with comprehensive case study related with the Warsaw Stock Exchange.

14 1. Tekst artykułu należy przesłać w formie elektronicznej na adres metody2008@ae.katowice.pl w terminie do 19.11.2008, ponadto wersję wydrukowaną należy przekazać organizatorom w momencie przybycia na należy unikać nadmiernych wyróżnień w tekście, Tabele 1. Tabele powinny być zamieszczone w tekście jak najbliżej miejsca powołania się na nie. 2. Przy każdej cytowanej tabeli należy podać źródło lub informację opracowanie na podstawie". 3. W tabelach należy stosować czcionkę Times New Roman, wielkość 9p. 4. Tabele należy ponumerować (wyrównać do prawej) 5. Tytuł tabeli należy wyśrodkować Przykład: Tabela 1 Stopy zwrotu dla utworzonych portfeli Źródło: Opracowanie własne