aboatoium Elektotechniki i elektoniki Temat ćwiczenia: BOTOM 06 OBODY ĄD SSODEGO omiay pądu, napięcia i mocy, wyznaczenie paametów modeli zastępczych cewki indukcyjnej, kondensatoa oaz oponika, chaakteystyki pądowo-napięciowe powadzenie Ćwiczenie ma za zadanie zapoznanie studentów z pomiaami w obwodach pądu sinusoidalnego w stanie ustalonym. e względu na dużą liczbę uządzeń elektycznych zasilanych napięciem sinusoidalnym o stałej okeślonej częstotliwości, znajomość pomiaów i obliczeń w tych obwodach jest dla inżyniea pożądana. atualnym sposobem opisu działania tych obwodów jest opis w dziedzinie czasu. Opis ten wymaga sfomułowania ównań óżniczkowo-całkowych ich ozwiązania oaz pzepowadzania óżnoodnych działań matematycznych na pzebiegach sinusoidalnie zmiennych o óżnych amplitudach, i óżnych pzesunięciach względem początku układu współzędnych, co jest stosunkowo czasochłonne. Oganiczenie ozważań do obwodów o źódłach sinusoidalnych o takiej samej częstotliwości oaz do stanu ustalonego, pozwala na zastosowanie metody liczb zespolonych (metoda symboliczna) tansfomującej ównania obwodu do postaci algebaicznej. owoduje to uposzczenie stosowanego apaatu matematycznego do działań na liczbach zespolonych i ich epezentacji gaficznej tzn. wskazach na płaszczyźnie zespolonej. asywne elementy tych obwodów, są taktowane jako elementy idealne chaakteyzujące się tylko jedną własnością: element [] (opó) zdolnością do zamiany enegii elektycznej na ciepło, element [H] (indukcyjność) zdolnością do gomadzenia enegii pola magnetycznego, element [F] (pojemność) zdolnością do gomadzenia enegii pola elektycznego. zeczywiste elementy obwodu elektycznego takie jak: ezystoy, cewki indukcyjne lub kondensatoy są modelowane odpowiednio dobanymi układami elementów,, w zależności od wymaganego stopnia dokładności opisu zjawiska, zakesu częstotliwości, itp. elem ćwiczenia jest wyznaczenie paametów zeczywistych elementów obwodu oaz nabycie umiejętności pomiau pądu napięcia i mocy w obwodach sinusoidalnych. ależności pądowo-napięciowe w dziedzinie zmiennej zespolonej dla impedancji dwójnika mpedancja zespolona dwójnika jx e; x m ezystancja dwójnika x eaktancja dwójnika; może być indukcyjna (x>0)lub pojemnościowa (x<0) +j mpedancja zespolona elementu ezystancja miezona w [] + mpedancja zespolona elementu jx X X eaktancja indukcyjna miezona w [] f częstotliwość [Hz] = f pulsacja [d/s] dmitancja zespolona dwójnika Y g jb g ey b my g konduktancja dwójnika b susceptancja dwójnika; może być indukcyjna (b<0) lub pojemnościowa (b>0) e j e j jx e ja e j mpedancja zespolona elementu jx X X eaktancja pojemnościowa miezona w [] f częstotliwość [Hz]
zebieg ćwiczenia estawiamy układy pomiaowe jak na schematach. astępnie pzy pomocy autotansfomatoa tak zmieniamy napięcie zasilające, aby ustawić odpowiednią watość pądu w obwodzie i dokonujemy pomiaów. yniki każdego z pomiaów notujemy w odpowiednich tabelach. waga: pzy łączeniu obwodów najpiew łączymy to pądowy pzewodami czewonymi a następnie podłączamy pzewody napięciowe kolou niebieskiego.. omiay cewki indukcyjnej uposzczonym opisie zjawisk fizycznych występujących pzy pzepływie pądu elektycznego pzez uzwojenia cewki indukcyjnej wyóżnić można zjawiska elektomagnetyczne i zjawiska cieplne (ozpaszanie enegii). iewsze z nich modelujemy za pomocą idealnej indukcyjności a dugie za pomocą opou. Stąd model zastępczy cewki indukcyjnej to szeegowe połączenie indukcyjności i opou. Badzo często dla cewki podaje się jej doboć Q definiowaną, jako stosunek eaktancji do ezystancji cewki. atość napięcia ustalamy tak, aby pąd zmieniał się od początkowe = 0 co = 00m do max =,0. ~ 30 ewka indukcyjna = +jx p. Tabela. omiay Schemat układu do pomiau paametów cewki indukcyjnej waga! omia ezystancji omomiezem wykonujemy pzy odłączonej cewce od obwodu zasilającego omia ezystancji uzwojeń cewki indukcyjnej omomiezem a podstawie pomiaów, kozystając z odpowiednich wzoów, obliczamy watości paametów szeegowego modelu zastępczego cewki indukcyjnej. yniki notujemy w tabeli i wykeślamy tójkąt impedancji dla cewki oaz wykeślamy chaakteystykę pądowo-napięciową dla badanej cewki indukcyjnej. Tabela. yniki pomiaów i obliczeń - model cewki indukcyjnej. astępczy model szeegowy cewki indukcyjnej; zoy: p. x ielkości miezone x tg [] s s x f Q ielkości obliczone x s [] [] [mh] [] s cos cos [ O ] atość śednia Odchylenie standad.
. omiay kondensatoa kondensatoze elektycznym występuje zjawisko gomadzenie ładunków elektycznych (enegii w polu elektycznym) oaz staty (ubytki zmagazynowanej enegii) związane z nie idealnym dielektykiem, sposobem wykonania kondensatoa itp. ole elektyczne kondensatoa modelujemy pzy pomocy idealnej pojemności a statność za pomocą ównolegle pzyłączonej oponości (konduktancji). atość stat wyaża się tangensem kąta statności okeślonego, jako stosunek mocy czynnej taconej w kondensatoze do mocy bienej dopowadzonej do kondensatoa pzy pądzie zmiennym o okeślonej częstotliwości. atość napięcia ustalamy tak, aby pąd zmieniał się od początkowe = 0 co = 00m do max =,0. ~ 30 Kondensato Y =g c +jb c Schemat układu do pomiau paametów kondensatoa p. Tabela 3 i 4. omiay omiay wykonujemy dla dwóch kondensatoów Jeden z nich chaakteyzuję się małymi statami w stosunku do dugiego, dlatego wskazania watomieza pzy jego pomiaach są badzo małe. a podstawie pomiaów, kozystając z odpowiednich wzoów, obliczamy watości paametów ównoległego modelu zastępczego kondensatoów. yniki notujemy w tabelach i wykeślamy tójkąty admitancji kondensatoa statnego oaz wykeślamy chaakteystyki pądowo-napięciowe dla badanych kondensatoów. Tabela 5 i 6. yniki pomiaów i obliczeń - model cewki indukcyjnej. astępczy model ównoległy kondensatoa; zoy: Y b g f b tg Y g ( ) actg b g p. ielkości miezone Y [ms] g [ms] g ielkości obliczone b cos [ms] [F] [ O ] tg atość śednia Odchylenie standad. 3
3. omiay oponika Opó elektyczny jest właściwością fizyczną mateii, pzejawiającą się w pzeciwstawianiu się pzepływowi pądu elektycznego. Może on w obwodzie elektycznym modelować zjawisko ozpaszania enegii elektycznej (zamiana na ciepło), lub zamianę enegii elektycznej na inną jej fomę np. na enegię mechaniczną. Jako opó w pomiaach należy zastosować oponicę suwakową pzy ustalonym położeniu suwaka. atość napięcia ustalamy tak, aby pąd zmieniał się od początkowe = 0 co = 00m do max =,0. ~ 30 Schemat układu do pomiau oponika waga! omia ezystancji oponika omomiezem Oponik = omia ezystancji omomiezem wykonujemy pzy odłączonej oponicy od obwodu zasilającego Tabela 7. omiay a podstawie pomiaów, kozystając z odpowiednich wzoów, obliczamy watości opou. yniki notujemy w tabeli, poównujemy je i pzedstawiamy wnioski. astępnie wykeślamy chaakteystykę pądowo-napięciową dla badanego oponika. atość śednią wyznaczoną z pomiaów poównujemy z watością zmiezoną omomiezem. Tabela 8. yniki pomiaów i obliczeń oponika. p. [] p. n 00% ś ś n i ielkości miezone [] ielkości obliczone [] [] i... pomiay haakteystyka pądowo-napięciowa oponika 4
4. haakteystyka pądowo- napięciowa źódła światła Obwód pomiaowy zestawiamy zgodnie ze schematem z ysunku. atość napięcia ustalamy w zakesie od początkowe = 0 co = 0 do max = watość znamionowa napięcia źódła światła. ~ 30 Źódło światła p.. Tabela 7. omiay i obliczenia =/ [] 4. a podstawie pomiaów, kozystając z odpowiednich wzoów, obliczamy watości opou. yniki notujemy w tabeli, poównujemy. ykeślamy chaakteystykę pądowo-napięciową =f() dla badanego źódła światła oaz zależność wyznaczonego opou od watości napięcia. Dla napięcia znamionowego badanego źódła światła obliczamy opó statyczny i dynamiczny. stat dyn d d 5