ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

Podobne dokumenty
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Elektryczne własności ciał stałych

Przerwa energetyczna w germanie

Zaburzenia periodyczności sieci krystalicznej

ĆWICZENIE 6. Metale, półprzewodniki, izolatory

Czym jest prąd elektryczny

Pasmowa teoria przewodnictwa. Anna Pietnoczka

TEORIA PASMOWA CIAŁ STAŁYCH

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

STRUKTURA PASM ENERGETYCZNYCH

Elektryczne własności ciał stałych

Natężenie prądu elektrycznego

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

Ćwiczenie Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

P R A C O W N I A

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

Wykład IV. Półprzewodniki samoistne i domieszkowe

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE

Model elektronów swobodnych w metalu

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Teoria pasmowa. Anna Pietnoczka

PRAWO OHMA DLA PRĄDU STAŁEGO

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne

Wykład VI. Teoria pasmowa ciał stałych

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Różne dziwne przewodniki

Wykład III. Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych

Struktura pasmowa ciał stałych

Badanie charakterystyki diody

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

ZADANIE Co się dzieje z elektronami w atomie, a co w krysztale?

ELEKTRONIKA ELM001551W

EFEKT HALLA W PÓŁPRZEWODNIKACH.

Przejścia kwantowe w półprzewodnikach (kryształach)

Rozszczepienie poziomów atomowych

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

W1. Właściwości elektryczne ciał stałych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

LABORATORIUM Z FIZYKI

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Absorpcja związana z defektami kryształu

Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω.

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Właściwości kryształów

Pomiar przewodności cieplnej i elektrycznej metali

3.4 Badanie charakterystyk tranzystora(e17)

Przyrządy półprzewodnikowe

ELEKTRYCZNE METODY POMIARU TEMPERATURY 48

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

średnia droga swobodna L

Przejścia promieniste

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.

Przewodniki, półprzewodniki i izolatory

Elementy teorii powierzchni metali

F = e(v B) (2) F = evb (3)

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

Prąd elektryczny - przepływ ładunku

Przewodnictwo elektryczne ciał stałych

1 K A T E D R A F I ZYKI S T O S O W AN E J

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Podstawy fizyki sezon 2 3. Prąd elektryczny

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Podstawy krystalografii

Fizyka i technologia złącza PN. Adam Drózd r.

POMIAR KONDUKTYWNOŚCI ELEKTRYCZNEJ MATERIAŁÓW PRZEWODOWYCH

PRAWO OHMA DLA PRĄDU STAŁEGO

Przyrządy i układy półprzewodnikowe

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Stany skupienia materii

Elektryczne własności ciał stałych

Półprzewodniki samoistne. Struktura krystaliczna

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Dr inż. Zbigniew Szklarski

POMIAR PRZEWODNOŚCI CIEPLNEJ I ELEKTRYCZNEJ METALI

Cel ćwiczenia: Wyznaczenie współczynnika oporu platyny. Pomiar charakterystyki termopary miedź-konstantan.

Zjawisko Halla Referujący: Tomasz Winiarski

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka

Zjawisko termoelektryczne

Podstawy fizyki wykład 4

Pole przepływowe prądu stałego

Prawo Ohma. qnv. E ρ U I R U>0V. v u E +

Ładunki puszczamy w ruch. Wykład 12

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

Transkrypt:

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma, mówiące, że stosunek wartości napięcia U między dwoma punktami przewodnika do natężenia prądu J płynącego przez ten przewodnik jest wielkością stałą. Wzór U = R J () stanowi definicję oporu elektrycznego (rezystancji) R danego odcinka przewodnika. Jednostką oporu elektrycznego jest om ( Ω). Ω = V/ A. Opór jednorodnego i izotropowego 2 przewodnika w kształcie walca o długości L i polu podstawy S jest równy L R = ρ (2) S Wielkość ρ nazywana jest oporem właściwym lub rezystywnością. Jest to parametr materiałowy, zależny od rodzaju materiału, z którego wykonany jest przewodnik i od temperatury. Odwrotność oporu elektrycznego /R nazywamy przewodnością elektryczną przewodnika, a jej jednostką jest simens [S]. Odwrotność oporu właściwego /ρ= σ jest nazywana przewodnością właściwą (konduktywnością) przewodnika. Wzór () określa związek pomiędzy wielkościami makroskopowymi elementów obwodu elektrycznego i posługuje się wielkościami skalarnymi. Prawo Ohma można też zapisać w postaci różniczkowej, a jednocześnie wektorowej j =σ E (3) W tym wzorze E jest wektorem natężenia pola elektrycznego w określonym punkcie przewodnika, j jest wektorem gęstości prądu w tym punkcie. Jest to wektor o kierunku zgodnym z kierunkiem ruchu ładunków dj dodatnich i o wartości j = gdzie dj jest elementarnym prądem przepływającym przez elementarną ds powierzchnię ds prostopadłą do kierunku ruchu ładunków. Przejście od różniczkowej postaci prawa Ohma ( wzór 3) do postaci danej wzorem () jest proste w przypadku przewodnika jednorodnego. Ponieważ natężenie pola E w jednorodnym przewodniku jest równe to U E = zaś J = j S L U E L E L L = = = = R J j S σ E S σ S (4) j S Poruszające się cząstki naładowane przenoszące prąd elektryczny nazywamy nośnikami prądu. Rozważmy jednorodny, izotropowy przewodnik, w którym znajdują się E Rys. nośniki tylko jednego rodzaju. Załóżmy, że każdy nośnik ma elementarny ładunek elektryczny oznaczany jako e, a koncentracja nośników (liczba nośników w jednostce objętości) wynosi n. W polu elektrycznym o natężeniu E nośniki o ładunku dodatnim uzyskują prędkość v w kierunku zgodnym z kierunkiem tego pola a nośniki ujemne w kierunku przeciwnym. Ładunek dq przenoszony w czasie dt przez powierzchnię S prostopadłą do kierunku pola elektrycznego (Rys ) wynosi: dq = ensvdt (5) Jednorodnym nazywa się taki ośrodek, którego własności są w każdym punkcie jednakowe. 2 Izotropowym nazywa się ośrodek, którego własności nie zależą od kierunku.

Zatem gęstość prądu j jest równa: 2 J dq j = = = env = enue (6) S S dt wielkość u=v/e nazywa się ruchliwością nośników prądu. Porównując wzory (3) i (6) znajdujemy związek pomiędzy przewodnością właściwą materiału σ a koncentracją nośników n i ich ruchliwością u: σ = enu (7) Jeśli w przewodniku jest kilka rodzajów nośników prądu, to przewodność właściwa tego materiału jest sumą przewodności właściwych wyznaczonych dla każdego rodzaju nośników według wzorów analogicznych do (7) W metalach koncentracja elektronów przewodnictwa nie zależy od temperatury, więc wpływ temperatury na przewodność właściwą metalu spowodowany jest tylko zmianami (zmniejszaniem się) ruchliwości. Natomiast w półprzewodnikach, co prawda ruchliwość nośników wraz ze wzrostem temperatury maleje (podobnie jak w metalach), ale ponieważ ich koncentracja zwiększa się znacznie szybciej, to w efekcie przewodność właściwa rośnie wraz z temperaturą (patrz I. 3.). I. 2. Zależność przewodnictwa elektrycznego metali od temperatury Metale w stanie stałym tworzą sieć krystaliczną zbudowaną z dodatnio naładowanych jonów metalu, zanurzonych w morzu swobodnie poruszających się elektronów. Te elektrony, to byłe elektrony walencyjne atomów, które zostały od nich odłączone i które utworzyły wspólny, ujemnie naładowany gaz elektronowy. Siły przyciągania pomiędzy elektronami i dodatnimi jonami utrzymują kryształ w równowadze. Ten typ wiązania elementów sieci nazywamy wiązaniem metalicznym. W krysztale metalu elektrony walencyjne, choć mogą poruszać się swobodnie wewnątrz kryształu, nie mogą z niego wyjść na zewnątrz, bez uzyskania dodatkowej energii. Elektrony zachowują się więc podobnie jak cząsteczki cieczy w głębokim naczyniu, np. cząsteczki H 2 O w studni: Mówimy, że elektrony w metalu znajdują się w studni potencjału elektrycznego. W wielu eksperymentach stwierdzono jednoznacznie, że prąd w metalach przenoszą wyłącznie elektrony. Teoria przewiduje, że gdyby sieć jonów była idealna, czyli gdyby potencjał elektryczny wewnątrz kryształu był doskonale periodyczny, to elektrony przepływałyby przez taki przewodnik bez oporu. Jednakże realne jony wykonują drgania wokół położeń równowagi, co zaburza periodyczność potencjału. Każdy jon oddziałuje ze swoimi sąsiadami siłami elektrycznymi, dlatego drgają jednocześnie wszystkie jony w sieci. Takie drgania sieci nazywamy fononami. Do opisu tych drgań, musimy zastosować prawa kwantowe (podobnie jak do elektronów przewodnictwa w metalu). Wynika z nich, że dozwolone energie drgań są skwantowane i że drgania atomów (lub jonów) nie zanikają w temperaturze zera kelwinów, lecz drgają one z tzw. energią zerową. Dla opisu procesu oddziaływania elektronów z fononami wprowadzono pojęcie tzw. przekroju czynnego na rozpraszanie. W tym modelu, drgający jon jest przeszkodą, która stoi na drodze poruszających się elektronów. Im większa jest amplituda drgań, tym większa jest powierzchnia przekroju R [Ω] tej przeszkody, i tym trudniej przelecieć elektronowi obok niej. Elektron zderzający się z nią zmienia kierunek ruchu i nie wnosi pełnego wkładu w uporządkowany ruch ładunków w kierunku pola elektrycznego. Obliczono, że wielkość przekroju czynnego na rozpraszanie elektronów, zależy liniowo od energii drgań sieci, a więc od temperatury metalu. Dlatego wartość oporu właściwego metalu w niezbyt niskich R r temperaturach, zależy liniowo od temperatury, co opisuje wzór 0 T [K] ρ =ρ0 ( + α t) (8) gdzie ρ jest oporem właściwym w temperaturze t, ρ 0 oporem właściwym Rys. 2. Zależność oporu od w temperaturze 0 0 C, zaś α jest współczynnikiem temperaturowym oporu 3. temperatury dla metali W niskich temperaturach (poniżej 20 K), przybliżenie liniowe nie jest wystarczające. Drugim czynnikiem odpowiedzialnym za opór elektryczny metali są niedoskonałości budowy sieci krystalicznej realnych próbek. Nie wszystkie jony znajdują się w położeniach węzłowych, lecz mogą być np. przesunięte w położenia międzywęzłowe. Część jonów macierzystych może być zastąpiona przez jony 33 Liniową zależność oporu elektrycznego od temperatury wykorzystuje się do budowy bardzo precyzyjnych termometrów platynowych

3 domieszek, np. przez jony innych metali. Rozpraszanie elektronów na defektach sieci krystalicznej i domieszkach prowadzi do zwiększenia oporu elektrycznego. Wpływ defektów jest niewielki i nieistotny w temperaturach wyższych, ale staje się dominujący w pobliżu zera bezwzględnego, gdzie energia drgań sieci jest bardzo mała. To zjawisko wykorzystuje się dla oznaczania stopnia zdefektowania i domieszkowania próbek metalicznych. Na Rys. 2. pokazano typową zależność oporu przewodnika metalowego od temperatury. W temperaturach wyższych jest to zależność liniowa, ale w pobliżu zera kelwinów przechodzi w odcinek poziomy, gdzie opór nie zależy od temperatury. Wartość oporu oznaczona jako R r, odpowiadająca odcinkowi poziomemu, i nazywana oporem resztkowym, zależy od stanu zdefektowania sieci krystalicznej i od zawartości domieszek w danej próbce. Pomiar stosunku wartości oporu próbki w temperaturze pokojowej R pok, do oporu w temperaturze bliskiej zera bezwzględnego R r jest stosowany jako czuła i dokładna metoda analityczna. Celem pomiarów wykonywanych w tej części ćwiczenia jest sprawdzenie wzoru (8) i wyznaczenie wartości współczynnika α dla miedzi i manganinu. I.3. Pasma energetyczne kryształów. Zależność przewodnictwa elektrycznego półprzewodników samoistnych od temperatury. Z badań eksperymentalnych a także z rozważań teoretycznych prowadzonych na gruncie fizyki kwantowej wynika, że w izolowanym atomie elektrony nie mogą mieć dowolnych wartości energii, lecz tylko wartości dyskretne, charakterystyczne dla danego typu atomów. W krysztale atomy znajdują się w bliskich odległościach od siebie, więc wzajemnie na siebie oddziałują. Najsilniejszych oddziaływań doznają elektrony najbardziej oddalone od jądra atomowego, decydujące o własnościach chemicznych atomu, nazywane elektronami walencyjnymi. Wskutek tych oddziaływań, każdy dyskretny poziom energetyczny izolowanego atomu rozszczepia się w dozwolone pasmo energetyczne składające się z tylu blisko siebie leżących poziomów, ile jest atomów w krysztale 4. Szerokość pasm dozwolonych utworzonych z wyższych poziomów energetycznych jest większa niż pasm utworzonych z poziomów niższych. Dozwolone pasma energetyczne są oddzielone od siebie. pasmami wzbronionymi, tj. przedziałami energii, których elektron, zgodnie z teorią kwantową, w idealnym krysztale nie może posiadać. Liczba elektronów w danym układzie kwantowym, mogących mieć jednocześnie tę samą wartość energii, jest ograniczona tak zwanym. zakazem Pauliego. Najbardziej stabilnym stanem każdego układu jest stan o najniższej dopuszczalnej dla tego układu energii. Nazywany on jest stanem podstawowym tego układu. Stan podstawowy w krysztale realizowany jest w taki sposób, że elektrony obsadzają całkowicie wszystkie kolejne poziomy energetyczne, począwszy od najniższego, aż do wyczerpania wszystkich elektronów w tym krysztale. Dlatego pasma leżące poniżej pasma zwanego walencyjnym (utworzonego z poziomu zajmowanego w izolowanym atomie przez elektrony walencyjne) są całkowicie zapełnione. Pasma leżące powyżej pasma walencyjnego są w temperaturze zera bezwzględnego puste Ilustruje to Rys.3, na którym pokazano tylko pasma o najwyższych energiach. Niższe pasma są węższe i całkowicie zapełnione. 4 W krysztale o objętości cm 3 jest to liczba rzędu 0 22-0 23.

4 E Metal Półprzewodnik Pasma dozwolone puste Pasma wzbronione E g Pasma walencyjne zapełnione częściowo całkowicie Rys. 3. Pasma energetyczne w metalu i półprzewodniku Przewodzenie prądu elektrycznego przez metal lub półprzewodnik jest związane ze zmianą energii elektronów (muszą one zostać przyspieszone przez pole elektryczne, a więc uzyskać energię kinetyczną). Taka zmiana energii jest możliwa tylko wtedy, gdy na poziomie, do którego ma nastąpić przejście elektronu znajduje się mniej elektronów niż zezwala zakaz Pauliego. W metalach pasmo walencyjne jest tylko częściowo zapełnione. Poziomy zapełnione sąsiadują tak blisko z wyższymi poziomami pustymi (różnice energii poziomów w paśmie walencyjnym są rzędu 0 22 ev ) 5, że do wzbudzenia na wyższy poziom wystarczy energia, jaką elektrony mogą uzyskać (na odcinku drogi między kolejnymi zderzeniami) od pola elektrycznego przyłożonego do kryształu. Zatem nawet w najniższych temperaturach pole elektryczne może przyspieszać elektrony i nadawać im dodatkową prędkość. Nośnikami prądu w metalach są elektrony z pasma walencyjnego. Tak więc, pasmo walencyjne w metalach można też nazwać pasmem przewodnictwa. Przyczyny zależności przewodności właściwej od temperatury dla metali podano w I. 2. W półprzewodnikach pasmo walencyjne jest całkowicie zapełnione elektronami, nad nim znajduje się pasmo wzbronione, a jeszcze wyżej dozwolone pasmo energii, które jest puste. Dlatego półprzewodniki nie mogą przewodzić prądu w taki sam sposób jak metale. Jeśli szerokość pasma wzbronionego E g jest większa od ok. 2 ev, to substancje takie są izolatorami, a gdy jest ona mniejsza od tej umownej granicy, to są półprzewodnikami. Umowną granicę 2 ev wyznacza możliwość detekcji prądu przepływającego przez kryształ w temperaturze pokojowej. Przy mniejszej szerokości pasma wzbronionego, część elektronów z pasma walencyjnego może w wyniku wzbudzeń termicznych przedostać się do wyższego, pustego pasma dozwolonego nawet w temperaturze pokojowej. W paśmie tym, które w półprzewodnikach nazywane jest pasmem przewodnictwa, elektrony mogą być przyspieszane polem elektrycznym, czyli mogą stać się nośnikami prądu. Dzięki zwolnieniu niektórych poziomów w górnej części pasma walencyjnego, elektrony pozostałe w tym paśmie także uzyskują możliwość brania udziału w przewodzeniu prądu. Przewodnictwo związane z ruchem elektronów w prawie całkowicie zapełnionym paśmie walencyjnym, nosi nazwę przewodnictwa dziurowego. Taki ruch charakteryzuje się inną (zwykle mniejszą) ruchliwością niż przewodnictwo elektronów w paśmie przewodnictwa. Przy podwyższaniu temperatury półprzewodnika rośnie eksponencjalnie prawdopodobieństwo termicznego wzbudzenia elektronów do pasma przewodnictwa, a wraz z nim koncentracja nośników prądu. Ponieważ przy wzroście temperatury ruchliwość u nośników prądu maleje znacznie wolniej niż wzrasta ich koncentracja, to w rezultacie, przy podwyższaniu temperatury opór elektryczny półprzewodnika maleje (odwrotnie niż to miało miejsce w przypadku metali). Zależność przewodności właściwej σ półprzewodnika od temperatury bezwzględnej T opisuje wzór: E σ = Aexp 2k g B T (9) 5 Elektronowolt (ev) jest jednostką energii równą tej, jaką uzyskuje swobodny elektron przyspieszony polem elektrycznym, po przebyciu różnicy potencjałów jednego wolta ev=,6 0 9 J

5 gdzie A jest stałą, E g oznacza energię aktywacji termicznej nośników prądu, która dla chemicznie czystych półprzewodników jest równa szerokości przerwy wzbronionej, zaś k B jest stałą Boltzmanna. Wykresem wzoru y (9) we współrzędnych x =, y =lnσ jest linia prosta, której współczynnik kierunkowy ( ) jest T x Eg równy. Przykład takiego wykresu dla germanu i krzemu pokazano na Rys. 4. Na górnej skali 2k B zaznaczono wartości temperatur, a na dolnej wartości /T. Biorąc pod uwagę nachylenia obu prostych obliczono, że wartość E g dla germanu wynosi 0,72 ev, a dla krzemu,2 ev. Ponieważ w tym ćwiczeniu wyznaczamy temperaturową zależność oporu elektrycznego R próbki, a nie Przewodność właściwa [Ω - m - ] 00000 0000 000 00 000 500 333 250 T [K] 0, 0,00 0,002 0,003 0,004 0,005 /T [K - ] Rys. 4. Zależność przewodności właściwej krzemu i germanu od temperatury. jej przewodności właściwej, to wzór (9) musimy zastąpić wzorem: 0 Ge Si E R = Bexp 2k gdzie B jest stałą. Po zlogarytmowaniu otrzymujemy wzór: g B T (9a) E ln R = ln B + g (0) 2kB T Jeżeli zrobimy wykres tej zależności w układzie współrzędnych lnr = f(/t), to otrzymamy prostą o współczynniku kierunkowym równym E g /2k B. Znając wartość tego współczynnika oraz wartość k B = 8.62 0-5 ev/k, możemy obliczyć E g. Opisany powyżej uproszczony mechanizm przewodzenia prądu w półprzewodnikach dotyczy przewodnictwa samoistnego, występującego w temperaturach dostatecznie wysokich. Przewodzenie prądu elektrycznego także w niższych temperaturach, przy których przejścia między-pasmowe są mało prawdopodobne, możliwe jest pod warunkiem wprowadzenia do półprzewodnika domieszek obcych atomów. Takie półprzewodniki nazywamy domieszkowanymi, a ich przewodnictwo przewodnictwem niesamoistnym. Mechanizm ich działania jest bardziej skomplikowany i nie będzie tu omawiany. Celem tej części doświadczenia jest pomiar zależności oporu elektrycznego R próbki od odwrotności temperatury, oraz wyznaczenie wartości przerwy energetycznej E g. na podstawie wzorów (9a) i (0). Układ pomiarowy składa się termometru elektronicznego, z czujnikiem typu Pt 00 oraz z trzech omomierzy mierzących opór badanych próbek. Próbki i czujnik znajdują się wewnątrz grzejnika elektrycznego, zasilanego prądem z zasilacza typu AC 45. Należy wyznaczyć zależność oporu elektrycznego każdej z próbek od temperatury i po analizie danych określić charakter przewodnictwa (metaliczny lub półprzewodnikowy). Uwaga! Wykres dla próbki półprzewodnikowej musi być wykonany przy zastosowaniu skali Kelwina a nie Celsiusza.