na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

Podobne dokumenty
Przygotowanie do poprawki klasa 1li

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Ostatnia aktualizacja: 30 stycznia 2015 r.

I. Funkcja kwadratowa

I. Funkcja kwadratowa

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

2 cos α 4. 2 h) g) tgx. i) ctgx

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Tematy: zadania tematyczne

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

Zadania do samodzielnego rozwiązania zestaw 11

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

ARKUSZ X

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

ARKUSZ II

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII

Równania prostych i krzywych; współrzędne punktu

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

Arkusz I Próbny Egzamin Maturalny z Matematyki

Repetytorium z matematyki ćwiczenia

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

MATURA probna listopad 2010

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

2 5 C). Bok rombu ma długość: 8 6

Zestaw zadań przygotowujących do egzaminu maturalnego z matematyki Poziom podstawowy

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

Planimetria VII. Wymagania egzaminacyjne:

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY

Geometria analityczna

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

Indukcja matematyczna

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

LUBELSKA PRÓBA PRZED MATURA

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY

Zestaw zadań powtórzeniowych dla maturzystów

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

Matura próbna 2014 z matematyki-poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Przykłady zadań do standardów.

LUBELSKA PRÓBA PRZED MATUR 2016

KURS MATURA PODSTAWOWA Część 2

(a b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

Czas pracy 170 minut

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

Zadania otwarte. 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd:

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów.

Wielokąty i Okręgi- zagadnienia

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

PRÓBNY EGZAMIN MATURALNY

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Transkrypt:

Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5. Liczby - i są miejscami zerowymi funkcji kwadratowej ( ), a do wykresu funkcji należy punkt ( ) Podaj wzór funkcji w postaci ogólnej.. Dana jest funkcja f x x 5x a) Wyznacz współrzędne punktów przecięcia wykresu tej funkcji z osiami układu współrzędnych oraz współrzędne wierzchołka, b) Narysuj jej wykres. 4. Wyznacz najmniejszą i największą wartość funkcji f ( x) x w przedziale 1;.. 1 5. Dla jakich wartości współczynnika m funkcja y x x m ma dwa miejsca zerowe? 6. 7. 8. 9. Rozwiąż równania: a) x 6 b) x 5x 6 c) x 8x d) x 5x 10. Rozwiąż nierówności: a) 7x x b) x x c) x 49 d) x 4x 1 e) x 9x f) x 7x

11. W trójkącie prostokątnym jedna z przyprostokątnych jest o 7 cm dłuższa od drugiej. Obwód trójkąta jest równy 0 cm. Oblicz długości boków tego trójkąta. 1. Różnica kwadratów dwóch liczb wynosi 105. Większa liczba jest o 1 większa od potrojonej mniejszej liczby. Podaj te liczby W trójkącie prostokątnym jedna z przyprostokątnych jest o 7 cm dłuższa od drugiej. Obwód trójkąta jest równy 0 cm. Oblicz długości boków tego trójkąta. 1. 14. Na podstawie wykresu funkcji y= ax +bx+c określ znaki parametrów: a, b, c,, x 1, x, p, q (p, q współrzędne wierzchołka). a) b) c) d) 15. Oblicz wartości: sin cos tg

16. Oblicz wartości x i y korzystając z podanych na rysunku informacji 17. Oblicz wartości funkcji trygonometrycznych kąta, jeśli na jego ramieniu końcowym leży punkt o współrzędnych (- 4; ). 18. Drabina jest oparta o ścianę i nachylona do podłoża pod kątem 60 o. Punkt podparcia drabiny jest odległy od ściany o 1,m. Oblicz długość drabiny. 19. W trójkącie ABC dane są: IBCI=1 i IAMI=6, gdzie M leży na boku BC i jest oddalony od B o 8. Kąt AMC ma miarę 0 o. Oblicz pole trójkąta ABC. 0. Oblicz wartości pozostałych funkcji trygonometrycznych kąta, gdzie 0 o < <180 o, wiedząc, że 7 cos 9 1. Oblicz wartości pozostałych funkcji trygonometrycznych kąta, gdzie 0 o < <180 o 5, wiedząc, że sin. 9. Wyznacz tangens kąta, jaki tworzy prosta przechodząca przez punkty A=(-, 4) i B =(5, - ) z osią x.. Jaka jest wysokość drzewa? 4. Oblicz 5. Oblicz 4cos 0 sin 45 tg 15 tg0 6. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 7. Wyznacz kąty x i y. Odpowiedź uzasadnij. 8. Dwa okręgi o środkach A i C są styczne zewnętrznie. Trzeci okrąg o środku B jest styczny do tych dwóch okręgów wewnętrznie, a punkty A, B, C są współliniowe. Oblicz promienie tych okręgów, jeśli IABI=6 i IACI=8.

9. Proste PA i PB są stycznymi do okręgu o(o,r). Prosta ED jest styczną do tego okręgu w punkcie C. Wiedząc, że IPAI=15cm oblicz obwód trójkąta PDE. 0. 1... Wyznacz długości odcinków AD i BC 4. Wyznacz długości odcinków OB i DC 5. Długość promienia okręgu wpisanego w trójkąt równoboczny wynosi cm. Oblicz długość boku trójkąta 6. Oblicz promień okręgu wpisanego w trójkąt równoboczny boku 1. 7. Znajdź promień okręgu wpisanego w trójkąt prostokątny, którego przyprostokątne mają długość 7cm i 4cm. 8. Oblicz wysokość i pole trójkąta równobocznego na którym opisano okrąg o promieniu 8 9. Jaką długość może mieć środkowa w trójkącie prostokątnym o bokach 7, 5,?

40. 41. Podaj długość trzeciego boku trójkąta prostokątnego, jeśli długości dwóch boków mają i. Czy jest tylko jedna odpowiedź? 4. W trójkąt prostokątny o przyprostokątnych długości 9 oraz 1 wpisano okrąg. Uzasadnij, że długość promienia tego okręgu jest równa. 4. W trójkąt równoboczny o boku długości 6 cm wpisano okrąg. Oblicz długość tego okręgu. 44. Dany jest trójkąt równoramienny ABC, w którym długość podstawy AB wynosi 1 cm, a ramiona BC i AC mają po 10 cm długości. Na trójkącie ABC opisano okrąg. Oblicz odległość środka tego okręgu od prostej AB. Wykonaj odpowiedni rysunek. 45. Dla jakich wartości m prosta położona w odległości m+1 od środka okręgu o(o, ) jest sieczną okręgu? 46. Uporządkuj wielomian, określ jego stopień a następnie oblicz wartość wielomianu dla x 1. W ( x) x x 4 x x x 10x 47. Dane są wielomiany: W ( x ) x x 4, P ( x ) x x, Q ( x ) 5x. Wykonaj wskazane działania i zapisz w uporządkowanej postaci: a) W ( x ) P( x ) b) W ( x ) P( x ) c) P ( x ) Q( x ) 48. Wielomiany ( ) oraz ( ) ( ) są równe. Podaj wartość a i b. 49. Podaj wzór i dziedzinę funkcji y=v(x) opisującej objętość prostopadłościanu przedstawionego na rysunku. Dla 1 jakiej wartości x objętość tego prostopadłościanu jest równa 1? 50. Rozłóż wielomian na czynniki. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) f) ( ) 51. Dane są wielomiany: w ( x) x x 4 i p ( x) x 1. Podaj stopień i wyraz wolny wielomianu v( x) w( x) p( x).