Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW Cel lekcji: kształcenie wyobraźni przestrzennej Przypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami prostopadłościanów. 1. Prostopadłościan jest graniastosłupem o podstawie prostokątnej. Jeżeli podstawa jest kwadratem, to taki prostopadłościan jest graniastosłupem prawidłowym czworokątnym. Sześcian, to graniastosłup prawidłowy czworokątny o wszystkich ścianach równych.. Sposób wyznaczania kąta dwuściennego: aby z kąta dwuściennego uzyskać kąt płaski prowadzimy płaszczyznę prostopadłą do krawędzi przecięcia obu płaszczyzn; należy tylko wybrać dobre miejsce. 3. Aby rozgryźć przekrój, należy wykonać dobry rysunek: najpierw całej bryły, potem na poszczególnych płaszczyznach.. Każda prosta l leżąca w płaszczyźnie prostopadłej do prostej k jest prostopadła do k 5. Potrzebne też będą funkcje trygonometryczne, podobieństwo trójkątów, twierdzenie Pitagorasa, własności trójkątów (równoramienny, prostokątny, pole zapisane na dwa sposoby) Zadanie 1. Trzy równe drewniane klocki o wymiarach 6 dcm 8 dcm 10 dcm przecięto płaszczyzną przechodzącą przez przekątne dwóch przeciwległych ścian: każdy z nich wzdłuż innej pary przekątnych. a) Dla którego cięcia suma pól powierzchni całkowitych obu otrzymanych graniastosłupów trójkątnych jest najmniejsza, a dla którego największa? b) Jaki jest stosunek objętości obu graniastosłupów trójkątnych w każdym przypadku? c) Przyjmując, że przekątne wzdłuż których tniemy klocek leżą zawsze na ścianach bocznych, oblicz sinus kąta jaki tworzy płaszczyzna cięcia z płaszczyzna podstawy. Rozwiązanie. Ad a). Suma powierzchni obu graniastosłupów będzie największa, gdy największa jest powierzchnia tnąca. Wszystkie pozostałe ściany stanowią łącznie powierzchnię całkowitą klocka. Powierzchnia tnąca w każdym przypadku jest tu prostokątem.
Gdy cięcia są wzdłuż przekątnych AH i BG, to pole powierzchni tnącej jest równe 8 6 10 8 136 8 3 16 3 Analogicznie mamy dla pozostałych par równoległych przekątnych: AC i EG: 10 6 8 10 100 1010 100 AF i DG: 6 10 8 6 16 6 1 1 1 Trzy otrzymane pola są dodatnie, więc łatwiej będzie porównać ich kwadraty: 100 10000, 16 3 563 870, 1 1 11 590, 590 87010000 Zatem największą powierzchnie uzyskamy tnąc po przekątnych najmniejszej ściany. Ad b) Stosunek wynosi 1, ponieważ otrzymane graniastosłupy trójkątne SA w każdym przypadku bryłami przystającymi. Ad c) sindah DH AH 10 136 10 3 5 3 3 Zadanie. Dany jest graniastosłup prawidłowy czworokątny ABCDEFGH o krawędzi podstawy długości oraz krawędzi bocznej równej 8. Graniastosłup przecięto płaszczyzną przechodzącą przez środki krawędzi AD i DC oraz przez wierzchołek H (H leży nad D). Oblicz pole otrzymanego przekroju.
Rozwiązanie. Niech P oznacza środek krawędzi AD; Q środek krawędzi DC, a R środek odcinka PQ. Przekrój jest trójkątem równoramiennym PQH, gdzie PH QH oraz HR jest wysokością poprowadzoną z wierzchołka H. Przekątna AC podstawy ABCD graniastosłupa ma długość 8. Z podobieństwa trójkątów ADC i PDQ o skali wynika, że PQ. Wysokość HR wyznaczymy z twierdzenia Pitagorasa dla trójkąta 1 prostokątnego RDH, gdzie DR DB, DH 8, 1 HR HD DR 6 68, HR 17, P PQH PQ HR 17. Zadanie 3 (było na maturze). Sześcian przecięto płaszczyzną przechodzącą przez przekątną dolnej podstawy i środki dwóch krawędzi górnej podstawy. Pole otrzymanego przekroju jest równe 0,5 cm. Oblicz objętość tego sześcianu.
3 Rozwiązanie. Objętość sześcianu o krawędzi a wyraża się wzorem V a. Musimy znaleźć a na podstawie danych z zadania. Przekrój o podanym polu jest trapezem. Oznaczmy jego wysokość h PR. Zgodnie z oznaczeniami na rysunku DB PQ a P PR 0,5. Łatwo ustalić, że DB a, PQ, więc a a 3a h 0,5, tzn. h 0, 5 ; 3 ah 16, ah 5. Zauważmy a jeszcze, że P' R i PP' a. Z twierdzenia Pitagorasa otrzymujemy RP' równań P' P RP, czyli a a h, stąd 9a 8h. Rozwiązujemy układ ah 5. Ponieważ a 0 h, to drugie równanie możemy zapisać w postaci 9a 8h ah 5 3a 3a h i układ przyjmie postać 3a. Stąd a 5, 3a 108, h 3 3 a 36, a 6, V a 16 cm. Odpowiedź. Objętość sześcianu jest równa 16 cm 3. Zadanie. Przekrojem sześcianu ABCDEFGH jest sześciokąt foremny, którego wierzchołki są środkami krawędzi: AB, BC, CG, GH, HE, EA. Pole tego sześciokąta jest równe 3 1. Oblicz długość krawędzi sześcianu. Rozwiązanie. Oznaczmy kolejno wierzchołki sześciokąta przez P, Q, R, S, T, U, gdzie P jest środkiem krawędzi AB, U środkiem krawędzi EA. Niech a będzie szukaną krawędzią sześcianu; b długością boku sześciokąta.
Każdy bok sześciokąta leży na innej ścianie sześcianu i jego długość jest równa połowie a przekątnej ściany, tzn. b, czyli a b. Pole sześciokąta jest równe sumie pół 3 sześciu trójkątów równobocznych o boku b, czyli 6 b 1 3, stąd b 8, b, a b. Zadanie 5. Graniastosłup prawidłowy czworokątny ABCDEFGH o krawędzi podstawy długości 5 oraz krawędzi bocznej długości 5 6 przecięto płaszczyzną przechodzącą przez wierzchołek A oraz punkty L, J leżące na przeciwległych krawędziach bocznych (odpowiednio DH, BF) w równych odległościach od dolnej podstawy. Otrzymany przekrój jest czworokątem AJKL, którego przekątna AK tworzy z płaszczyzna podstawy kąt. Zapisz pole tego przekroju w zależności od kata. Jakie wartości przyjmuje? Rozwiązanie. Przekrój jest czworokątem AJKL gdy punkt K leży na odcinku CG (łącznie z punktami granicznymi C i G). Gdy K ucieknie powyżej punktu G, przekrój staje się pięciokątem, a następnie trójkątem (proszę rozstrzygnąć w którym momencie!). Zatem kąt może przyjmować wartości od momentu, gdy AK AC do momentu, gdy AK AG. Gdy CG 5 6 AK AC, to 0. Dla AK AG mamy tg 3, więc 60. AC 5 Ostatecznie 0, 60 Niech S i O oznaczają punkty przecięcia przekątnych odpowiednio: przekroju AJKL i podstawy ABCD. Punkty L i J są położone na tej samej wysokości w stosunku do podstawy na przeciwległych krawędziach, skąd wynika, że LJ DB oraz LJ DB. Punkt O jest rzutem punktu S na podstawę, czyli SO KC i AOS ~ ACK (trójkąty prostokątne o wspólnym kącie ostrym przy wierzchołku A). Z tego podobieństwa (lub AO AS twierdzenia Talesa) mamy proporcję:, AS SK (można to było zauważyć OC SK wcześniej wykazując, że LJ jest osią symetrii czworokąta AJKL). Ponadto ponieważ AK leży w płaszczyźnie ACGE prostopadłej do DB. AK LJ,
Przekątne czworokąta AJKL dzielą się na połowy i są prostopadłe, więc ten czworokąt jest AC 5 rombem. W trójkącie ACK mamy cos, AC 5, więc AK. AK cos Ponadto LJ 5, więc pole przekroju jest równe P 1 AK LJ 1 5 5 5 cos cos Zadanie 6 (Informator CKE). Dany jest sześcian ABCDEFGH (zobacz rysunek), którego krawędź ma długość 15. Punkty Q i R dzielą krawędzie HG i FG w stosunku :1, tzn. HQ FR 10. Płaszczyzna AQR przecina krawędzie DH i BF odpowiednio w punktach P i S. Oblicz pole przekroju APQRS.
Rozwiązanie. Zauważmy, że na pewno odcinki AQ i AR nie przecinają krawędzi odp. HD i BF. W tym celu wystarczy zrzutować AQR na podstawę ABCD. Przekrój jest pięciokątem mającym oś symetrii, w szczególności AP AS, dalej DP BS (punkt P leży na tej samej wysokości krawędzi DH, co S na krawędzi BF). Oś symetrii pięciokąta APQRS jest prostą przechodzącą przez A i środek T odcinka QR. Przekątna PS tego pięciokąta leży dokładnie nad przekątną DB podstawy sześcianu i jest do niej równoległa. Ponieważ DB SB, to czworokąt PSBD jest prostokątem. Ten pięciokąt jest sumą trapezu równoramiennego PSQR i trójkąta równoramiennego APS. Podstawy mają długości: PS DB 15, QR 5. Niech W będzie środkiem odcinka PS, O punktem przecięcia przekątnych podstawy ABCD. Wysokościami trapezu i trójkąta są odpowiednio odcinki WT i AW. Rozważmy płaszczyznę ACGE. Wiemy już, że znajdują się w niej punkty A, W, T, O oraz U, gdzie U jest rzutem punktu T na podstawę ABCD. Z treści zadania wynika, że: 5 GT, TU 15, UC TG oraz
5 5 AU 15. Widzimy, że AOW ~ AUT i otrzymujemy proporcje 15 WO TU TU 15, czyli WO AO 9 AO AU AU 5 Z twierdzenia Pitagorasa mamy AW AO OW 15 9 5 387 9 3 81, np. z podobieństwa trójkątów (lub twierdzenia Malesa) mamy 15 5 10 OU, P APQRS P APS P PSQR 1 15 WT 3 3 10 3 AW OU AO 15 15 5 3 3 3 AW 3. Teraz, 3 5 3 0 3 WT AW, OU AO 85 3