Definicje. Białka rekombinowane (ang. recombinant proteins, r-proteins) Ukierunkowana mutageneza (ang. site-directed/site-specific mutagenesis)

Podobne dokumenty
Biologia medyczna, materiały dla studentów

Klonowanie molekularne Kurs doskonalący. Zakład Geriatrii i Gerontologii CMKP

TaqNovaHS. Polimeraza DNA RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925

Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów:

PCR - ang. polymerase chain reaction

TaqNova-RED. Polimeraza DNA RP20R, RP100R

Ćwiczenia 1 Wirtualne Klonowanie Prowadzący: mgr inż. Joanna Tymeck-Mulik i mgr Lidia Gaffke. Część teoretyczna:

PCR - ang. polymerase chain reaction

PCR łańcuchowa reakcja polimerazy

PCR - ang. polymerase chain reaction

Biologia Molekularna z Biotechnologią ===============================================================================================

Inżynieria Genetyczna ćw. 3

KLONOWANIE DNA REKOMBINACJA DNA WEKTORY

Ćwiczenia 1 Wirtualne Klonowanie. Prowadzący: mgr Anna Pawlik i mgr Maciej Dylewski. Część teoretyczna:

Ćwiczenie 3 PCR i trawienie DNA enzymami restrykcyjnymi

Genetyka, materiały dla studentów Pielęgniarstwa

ĆWICZENIE 1 i 2 Modyfikacja geu wołowej beta-laktoglobuliny przy użyciu metody Overlap Extension PCR (wydłużania nakładających się odcinków)

PCR - ang. polymerase chain reaction

POLIMERAZY DNA- PROCARYOTA

Najważniejsze z nich to: enzymy restrykcyjne wektory DNA inne enzymy np. ligazy, fosfatazy, polimerazy, nukleazy

POLIMERAZY DNA- PROCARYOTA

Inżynieria Genetyczna ćw. 1

Metody odczytu kolejności nukleotydów - sekwencjonowania DNA

Mieszanina trójfosforanów deoksyrybonukleotydów (dntp: datp, dgtp, dctp, dttp) Bufor reakcyjny zapewniający odpowiednie warunki reakcji

Najważniejsze z nich to: enzymy restrykcyjne wektory DNA inne enzymy np. ligazy, fosfatazy, polimerazy, nukleazy

Genetyczne modyfikowanie organizmów Kierunek OCHRONA ŚRODOWISKA, II rok semestr letni 2015/16

Farmakogenetyka Biotechnologia Medyczna I o

ENZYMY RESTRYKCYJNE ENZYMY RESTRYKCYJNE CZYM RÓŻNIĄ SIĘ POSZCZEGÓLNE ENZYMY? nazewnictwo: EcoRV

Instrukcja ćwiczeń Biologia molekularna dla II roku Analityki Medycznej. Reakcja odwrotnej transkrypcji. Projektowanie starterów do reakcji PCR.

Nowoczesne systemy ekspresji genów

PCR. Aleksandra Sałagacka

Najważniejsze z nich to: enzymy restrykcyjne wektory DNA inne enzymy np. ligazy, fosfatazy, polimerazy, kinazy, nukleazy

Inżynieria białek I Wykład 1 (2014/20155) Magdalena Tworzydło Zakład Biochemii Fizycznej, WBBiB UJ

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

2. Enzymy pozwalające na manipulację DNA a. Polimerazy DNA b. Nukleazy c. Ligazy

Endonukleazy restrykcyjne molekularne nożyczki

Endonukleazy restrykcyjne molekularne nożyczki

KŁOPOTY Z POLIMERAZĄ KŁOPOTY Z POLIMERAZĄ KŁOPOTY Z POLIMERAZĄ. SPECYFICZNOŚĆ (Specificity)

PCR PCR. Model replikacji semikonserwatywnej

Prowadzący: dr Lidia Boss znacznik fluorescencyjny (np. SYBR Green II)

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

Hybrydyzacja kwasów nukleinowych

Ligazy. Zastosowanie ligazy w inżynierii genetycznej:

Glimmer umożliwia znalezienie regionów kodujących

Ćwiczenie 5 Klonowanie DNA w wektorach plazmidowych

Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi

Dr. habil. Anna Salek International Bio-Consulting 1 Germany

Polimeraza Taq (1U/ l) 1-2 U 1 polimeraza Taq jako ostatni składniki mieszaniny końcowa objętość

Biologia Molekularna Podstawy

RT31-020, RT , MgCl 2. , random heksamerów X 6

Inżynieria Genetyczna ćw. 2

DNA i RNA ENZYMY MODYFIKUJĄCE KOŃCE CZĄSTECZEK. DNA i RNA. DNA i RNA

Hybrydyzacja kwasów nukleinowych

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

Wykład 14 Biosynteza białek

Markery klasy II -Polimorfizm fragmentów DNA (na ogół niekodujących): - RFLP - VNTR - RAPD

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe

PCR PCR. Model replikacji semikonserwatywnej

Transformacja pośrednia składa się z trzech etapów:

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU PCR sposób na DNA.

Inżynieria genetyczna

Ćwiczenie 1 Plazmidy bakteryjne izolacja plazmidowego DNA

Ćwiczenia 2-4 KLONOWANIE DNA

Inżynieria genetyczna- 6 ECTS. Inżynieria genetyczna. Podstawowe pojęcia Część II Klonowanie ekspresyjne Od genu do białka

WPROWADZENIE DO GENETYKI MOLEKULARNEJ

Program ćwiczeń z inżynierii genetycznej KP-III rok Biologii

Prokariota i Eukariota

Jaka jest lokalizacja genu na chromosomie? Jakie jest jego sąsiedztwo?

WPROWADZENIE DO GENETYKI MOLEKULARNEJ

PL B1. UNIWERSYTET PRZYRODNICZY W LUBLINIE, Lublin, PL BUP 26/11

Endonukleazy restrykcyjne molekularne nożyczki

TRANSKRYPCJA - I etap ekspresji genów

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Biochemii i Biologii Komórki

Modyfikacja genu wołowej beta-laktoglobuliny przy użyciu metody Overlap Extension PCR (wydłużania nakładających się odcinków)

Informacje dotyczące pracy kontrolnej

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 22/06. JÓZEF KUR, Wejherowo, PL MARTA WANARSKA, Lębork, PL

Mikrosatelitarne sekwencje DNA

Olimpiada Biologiczna

Screening, klonowanie, ekspresja i oczyszczanie białek

Ćwiczenie 7 Klonowanie DNA w wektorach plazmidowych

2. Przedmiot zamówienia: Odczynniki chemiczne do izolacji DNA i reakcji PCR, wymienione w Tabeli 1. Nazwa odczynnika Specyfikacja Ilość*

Klonowanie i transgeneza. dr n.med. Katarzyna Wicher

Podstawy inżynierii genetycznej

Zastosowanie metody RAPD do różnicowania szczepów bakteryjnych

Biotechnologia i inżynieria genetyczna

Endonukleazy restrykcyjne molekularne nożyczki

REPLIKACJA, NAPRAWA i REKOMBINACJA DNA

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Biochemii i Biologii Komórki

Techniki biologii molekularnej Kod przedmiotu

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU Transkrypcja RNA

Skąd się wzięła biologia syntetyczna? Co to są standardowe części biologiczne?

Inżynieria genetyczna Ćwiczenie 3

KLONOWANIE DNA REKOMBINACJA DNA WEKTORY

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

Ćwiczenie 3 Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6 metodą PCR w czasie rzeczywistym (rtpcr) przy użyciu sond typu TaqMan

Rok akademicki: 2014/2015 Kod: EIB BN-s Punkty ECTS: 3. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie

(86) Data i numer zgłoszenia międzynarodowego: , PCT/US99/21960 (87) Data i numer publikacji zgłoszenia międzynarodowego:

Badanie funkcji genu

Transkrypt:

Definicje Białka rekombinowane (ang. recombinant proteins, r-proteins) Białka, które powstały w żywych organizmach (lub liniach komórkowych) w wyniku ekspresji rekombinowanego DNA. Rekombinowany DNA jest efektem złożenia za pomocą wybranych technik laboratoryjnych fragmentów materiału genetycznego pochodzących z różnych źródeł/organizmów. Utworzone w ten sposób sekwencje DNA nie występują naturalnie w przyrodzie. Jednak dzięki obecności odpowiednich elementów regulatorowych mogą być powielane oraz mogą ulegać ekspresji po wprowadzeniu do komórek gospodarza. Ukierunkowana mutageneza (ang. site-directed/site-specific mutagenesis) Technika, umożliwiająca wprowadzenie mutacji w ściśle określonym miejscu łańcucha DNA. Aby można ją było zastosować, konieczna jest znajomość wyjściowej sekwencji nukleotydów w genie. Obecnie, ukierunkowaną mutagenezę przeprowadza się standardowo w oparciu o łańcuchową reakcję polimerazy (PCR) i odpowiednio zmodyfikowane oligonukleotydy (startery).

PCR Cykl 1 Cykl 2 Denaturacja (9 C) Powielany fragment DNA powielany odcinek DNA przyłączenie starterów (4-6 C) i wydłużanie nici DNA (72 C) Cykl matrycowy DNA produkt reakcji z cyklu 1 produkt reakcji z cyklu 2 produkt reakcji z cyklu

PCR, w praktyce wygląda to tak Powielany fragment DNA sekwencja startera 1 (forward, left) pokrywa się z sekwencją nici sensownej (kodującej) Sekwencja startera 2 (reverse, right) pokrywa się z sekwencją nici antysensownej (matrycowej)

Mutageneza ukierunkowana, Overlap extension PCR OE PCR, metoda wydłużania nakładających się odcinków PCR 1 A C PCR 2 D B PCR A B

Mutageneza ukierunkowana, Overlap extension PCR PCR 1 PCR 2 PCR OE PCR, metoda wydłużania nakładających się odcinków A reakcja 1 reakcja 2 starter C starter B starter A starter D C produkt reakcji 1 produkt reakcji 2 A zmieszanie denaturacja rehybrydyzacja nie ulega wydłużeniu D dntp, polimeraza, startery B i A ulega wydłużeniu B produkt reakcji

Wprowadzanie modyfikacji na końcach genów Wykorzystanie zmodyfikowanych starterów do wprowadzania mutacji na i końcu genu Wprowadzenie/usuwanie sekwencji Shine-Dalgarno/Kozak, kodonu STOP, kodonu START, miejsc cięcia dla enzymów restrykcyjnych

Modyfikacje DNA, wprowadzanie delecji przy pomocy PCR Na początku lub na końcu genu PCR 1 startery A i C A W środku genu C D PCR startery A i B PCR 2 startery D i B B

Mutageneza ukierunkowana c.d., metoda Quik Change Stratagene 1. Wektor z genem wyizolowany z bakterii dam +, docelowe miejsce wprowadzenia mutacji 2. Startery wprowadzające mutację są do siebie komplementarne. Powielanie dwóch nici wektora, wprowadzenie mutacji 4. Trawienie bakteryjnego DNA, usunięcie nici nie zawierających mutacji Większość szczepów E. coli prowadzi metylację dam +. Endonukleaza DpnI rozpoznaje i trawi jedynie metylowaną sekwencję -G m6 ATC-.

Quik Change warunki reakcji Etap Cykl Temperatura Czas QC PCR 1 1 9 C 0 sek. 2 12 18 9 C C 68 C 0 sek. 1 min 1 min/1kz DNA Etap Cykl Temperatura Czas 1 1 9 C min Normalny PCR A B 2 2 0 9 C C 72 C 0 sek. 1 min 1 min/1kz DNA 1A denat. 94 C/60 sek. 2A denat. 94 C/0min/bez DNA matrycowego/test. aktywności polimerazy A denat. 94 C/10 sek./z DNA matrycowym W wysokiej temperaturze DNA może ulegać depurynacji. Proporcjonalnie, dłuższe matryce będą bardziej uszkodzone niż krótkie. Przy powielaniu długich fragmentów DNA istotne jest skrócenie czasu denaturacji oraz obniżenie temperatury wydłużania.

Klonowanie klasyczne fragment DNA zawierający interesujący nas gen wektor fragment DNA (wstawka) po trawieniu enzymami restrykcyjnymi BamHI i EcoRI ligacja (ligaza DNA) wektor pocięty enzymami restrykcyjnymi BamHI i EcoRI wektor po wklonowaniu wstawki rekombinowanego DNA

Enzymy restrykcyjne a metylacja DNA Enzymy restrykcyjne (endonukleazy) występują naturalnie u sinic i bakterii. Razem z komplementarnymi metylazami tworzą system restrykcji-modyfikacji, dzięki któremu mikroorganizmy bronią się przed wnikaniem obcego DNA, np. bakteriofagów. Specyficzna metylacja własnego DNA służy ochronie przed restryktazami syntetyzowanymi przez organizm obcy DNA, niemetylowany według określonego wzoru, ulega degradacji.

Enzymy restrykcyjne EcoRI EcoRV PstI Izoschizomery enzymy pochodzące z różnych organizmów, rozpoznające te same sekwencje i tnące je w ten sam sposób, np. MspI i HpaII '...C^C G G...' '...G G C^C...' Neoizoschizomery enzymy pochodzące z różnych organizmów, rozpoznające te same sekwencje, ale tnące je w różny sposób, np. SmaI '...C C C^G G G... i XmaI '...C^C C G G G... '...G G G^C C C... '...G G G C C^C...

Metoda OE PCR cloning klonowanie przy pomocy PCR Wektor, do którego chcemy wprowadzić gen Gen, który chcemy wprowadzić do wektora Projektujemy startery, częściowo komplementarne do genu a częściowo komplementarne do wektora W wyniku reakcji PCR otrzymujemy gen, na którego końcach znajdują się sekwencje komplementarne do wektora Tak zmodyfikowany gen wykorzystywany jest w kolejnej reakcji PCR, gdzie służy za starter Po zakończeniu reakcji zmetylowany wektor, który służył jako matryca zostaje pocięty za pomocą enzymu DpnI Namnożony,niezmetylowany wektor z wklonowanym genem zostaje wprowadzony do komórek gospodarza, gdzie gen może ulec ekspresji

Termostabilne polimerazy DNA Polimeraza Pochodzenie Aktyw. egzonukl. Aktyw. egzonukl. Częstość Wydłubłędów żanie [1x10-6 ] a -końca Termostabilność Procesywność b Taq 1976 Thermus aquaticus tak nie 22 tak 9 w 97, C 0 Pwo Pyrococcus woesei nie tak,2 nie >2h w 100 C 20 0 Pfu 1991 Pyrococcus furiosus nie tak 2,6 nie 4h w 9 C DeepVent Pyrococcus szczep GB-D nie tak nie 8h w 100 C Phusion nie tak 0,44 nie a częstość błędów: ilość błędów/pz/cykl b ilość nukleotydów przyłączonych zanim polimeraza odłączy się od matrycy

PCR ogólne zasady projektowanie starterów Długość starterów od 18 do 0 zasad, krótsze startery mogą się niespecyficznie wiązać z matrycą koniec startera nie powinien zawierać więcej niż zasady G i/lub C, gdyż mogą one stabilizować niespecyficzne oddziaływania starter matryca koniec startera jest mniej krytyczny dla specyficznego przyłączania startera do matrycy dlatego może być modyfikowany Zawartość GC zasady GC powinny stanowić od 40 do 60 % sekwencji Hybrydyzacja koniec starterów nie powinien tworzyć struktury spinki do włosów, startery używane w reakcji nie powinny tworzyć homo- i/lub heterodupleksów hybrydyzacja starterów na końcu Temperatura topnienia startery używane w reakcji powinny mieć zbliżoną temperaturę topnienia (różnica 2 C), optymalnie nieco powyżej 60 C

Optymalizacja warunków PCR Stężenie starterów: końcowe stężenie każdego ze starterów powinno się zawierać w przedziale między 0,1 a 0, µm (6 10 12 10 1 cząsteczek). Wyższe zwiększa prawdopodobieństwo powstania niespecyficznych produktów Stężenie matrycy DNA: ilość używanego matrycowego DNA zależy od jego pochodzenia. Zwykle stosuje się 100 20 ng genomowego i 20 0 ng plazmidowego DNA na 0 µl reakcji Stężenie nukleotydów: końcowe stężenie poszczególnych nukleotydów powinno wynosić ok. 0,2 mm (ilość, która pozwala uzyskać ok. 6 6, µg DNA) Ilość cykli od 2 do, w zależności od pochodzenia DNA i ilości matrycy Czas wydłużania starterów zwykle przyjmuje się regułę 60 sek/1000 zasad

Optymalizacja warunków PCR Bufor standardowy bufor zawiera 0 mm KCl i 10 mm Tris-HCl, ph 8,. Podniesienie stężenia KCl do 70 100 mm może zwiększyć wydajność syntezy fragmentów o długości <00 pz. Niektóre bufory obok jednowartościowych jonów K + zawierają jony NH 4 + (obecność jonów NH 4 + minimalizuje potrzebę optymalizacji stężenia jonów Mg 2+ oraz temperatury przyłączania starterów. temp C produkt PCR niespecyficzne produkty PCR Critical Factors, for Successful PCR, Users Manual, Qiagen Stężenie jonów magnezu im wyższe, tym większa wydajność reakcji ale także ilość produktów niespecyficznych Temperatura przyłączania starterów (annealing temperature) im wyższa, tym bardziej specyficzny produkt reakcji

Obliczanie temperatury topnienia starterów Dla starterów liczących nie więcej niż 20 nukleotydów temperaturę topnienia (melting temperature) można wyliczyć wg empirycznej zasady Wallacea: T m = 2 C (A + T) + 4 C (G + C) Dla dłuższych oligonukleotydów (do 70 zasad), gdy stężenie kationów jest 0,4 M można zastosować równanie: T m = 81 C + 16,6 (log 10 [K + ]) + 0,41(%[G + C]) Absorbancja przy 260 nm Częściowo rozwinięty DNA Dwuniciowy DNA Jednoniciowy DNA Tm=69 C Temperatura [ C] Temperatura hybrydyzacji (annealing temperature) jest na ogół o 10 C niższa od Tm, należy ją ustalić empirycznie.

Czynniki wpływające negatywnie na PCR Wysoka zawartość zasad GC jest odpowiedzialna za powstawanie struktur drugorzędowych w obrębie DNA, co prowadzić może do zahamowania aktywności polimerazy. Glicerol, DMSO (2 10%), chlorek tetrametyloamonu (0,01 10 mm), formamid ( 20%) poprawiają wydajność tego typu reakcji PCR. Zanieczyszczenia związkami używanymi przy oczyszczaniu matrycowego DNA Do związków hamujących aktywność polimerazy należą: SDS (>0,00% w/v), fenol (>0,2% v/v), etanol (> 1% v/v), izopropanol (>1% v/v), octan sodu (> mm), EDTA (> 0, mm). Czystość starterów zależy od sposobu ich oczyszczenia po syntezie. Standardowo startery oczyszcza się stosując sączenie molekularne. Startery o długości powyżej 70 zasad powinny być oczyszczane za pomocą HPLC.

Wektory plazmidowe Plazmidy naturalnie występujące u bakterii pozachromosomalne, koliste, dwuniciowe cząsteczki DNA, 1 200 kpz. ich replikacja przebiega niezależnie od chromosomalnego DNA posiadają mechanizmy umożliwiające zachowanie stałej liczby cząsteczek w komórce gospodarza oraz odpowiednią segregację do komórek potomnych replikacja i transkrypcja genów plazmidowych przebiega zwykle w oparciu o enzymy gospodarza w plazmidach naturalnych zawarta jest informacja decydująca o: oporności/produkcji antybiotyków, syntezie bakteriocyn, enterotoksyn, wytwarzaniu enzymów restrykcyjnych, rozkładzie złożonych związków organicznych, oporności na jony metali ciężkich, zdolności do koniugacji, itp. Wektory plazmidowe stworzone na potrzeby klonowania i/lub ekspresji genów posiadają m. in: polilinker, MCS (multi cloning site) ori (origin) miejsce startu replikacji marker selekcyjny: np. gen oporności na antybiotyk promotor dodatkowo mogą zawierać sekwencje kodujące metki ułatwiające oczyszczanie lub sekwencje białek wykorzystywanych jako partnerzy fuzyjni

Wektor do tworzenia białek fuzyjnych (Clontech)

Wektor do równoległej ekspresji dwóch białek (Invitrogen)