Inżynieria Genetyczna ćw. 2
|
|
- Alicja Kaczmarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Materiały do ćwiczeń z przedmiotu Genetyka z inżynierią genetyczną D - blok Inżynieria Genetyczna ćw. 2 Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski, rok akad. 2018/2019 Prosimy o nierozpowszechnianie materiałów bez naszej zgody
2 (-) (+) ELEKTROFOREZA DNA Agaroza rozpuszczona w buforze tworzy żel. Żel zanurzony w buforze przewodzącym prąd poddajemy działaniu pola elektrycznego. DNA ma ładunek ujemny (-) i migruje w kierunku elektrody dodatniej (+) z szybkością zależną od wielkości i kształtu. Małe liniowe fragmenty poruszają się szybciej niż większe, których ruch jest silniej hamowany przez sito molekularne żelu. Szybkość migracji fragmentów DNA jest odwrotnie proporcjonalna do ich masy cząsteczkowej.
3 DETEKCJA DNA W ŻELU Proces migracji DNA obserwujemy dzięki dodaniu do próbki odpowiedniego barwnika (np. Oranż G) EtBr DNA obserwujemy w świetle UV, dzięki obecności w żelu bromku etydyny, interkalującego pomiędzy pierścienie aromatyczne w kwasie nukleinowym Bromek etydyny winterkalowany w helisę DNA "świeci" w UV znacznie mocniej niż niewbudowany bromek w tle Bromek etydyny zaburza strukturę DNA, jest silnym mutagenem!!
4 Analiza restrykcyjna DNA - podstawowa technika biologii molekularnej, która umożliwia analizę sekwencji DNA Enzym restrykcyjny należący do tzw. klasy II to nukleaza rozpoznająca i przecinająca DNA w obrębie ściśle zdefiniowanej sekwencji. Mapa restrykcyjna danego fragmentu DNA to wzajemne ułożenie miejsc (sekwencji), które są rozpoznawane i przecinane przez określony zbiór enzymów restrykcyjnych.
5 EcoRI jako homodimer
6 Izoschizomery enzymy restrykcyjne izolowane z różnych bakterii rozpoznające tę samą sekwencję w DNA i wprowadzające identyczny typ cięcia. HaeIII, BsuRI, BshFI, PhoI, BsnI GG CC CC GG Neoschizomery - enzymy restrykcyjne izolowane z różnych bakterii rozpoznające identyczną sekwencję w DNA, ale wprowadzające odmienny typ cięcia. SmaI CCC GGG GGG CCC Acc65I G GTACC CCATG G XmaI C CCGGG GGGCC C KpnI GGTAC C C CATGG
7 Analiza restrykcyjna
8 Mapa restrykcyjna
9 Zadanie domowe - mapa restrykcyjna Nco I (611) Eco RI (953) Nco I (611) Nco I (1956) Pst I (2312) Nco I (2691) Pst I (3956) Pst I (395 6) 5434 pz pz Eco RI (953) 5434 pz Nco I (195 6) Pst I (2312) Nco I (2691) Jakiej długości powstaną fragmenty DNA po przecięciu powyższych cząsteczek DNA za pomocą enzymu/ów: Enzym Cząsteczka liniowa Cząsteczka kolista EcoRI PstI NcoI EcoRI/PstI
10 Schemat mutagenezy Pet127p 1. PCR z wykorzystaniem oligonukleotydowych starterów, zawierających zmianę nukleotydu w miejscu wprowadzanej mutacji, na matrycy plazmidowego DNA (wektora bifunkcjonalnego, bakteryjno-drożdżowego, ze sklonowanym genem PET127) 2. Usunięcie metylowanej matrycy - trawienie matrycy enzymem restrykcyjnym Dpn1 po reakcji PCR 3. Transformacja bakterii E. coli 4. Izolacja DNA plazmidowego z wielu klonów 5. Analiza sekwencji poszczególnych plazmidów poszukiwanie pozytywnych klonów 6. Transformacja drożdży plazmidami zawierającymi zmutowane sekwencje genu PET Analiza fenotypów kroplowe testy wzrostowe na podłożach z glukozą lub glicerolem w temp. 30 C lub 37 C 8. Kontrola genotypów: sekwencjonowanie plazmidów użytych do transformacji (kontrola mutagenezy) i test PCR na obecność wektora i kasety delecyjnej w otrzymanych szczepach (kontrola molekularna mutantów)
11 Transformacja drożdży Saccharomyces cerevisiae metodą LiOAc/PEG Transformacja drożdży (szczepy z delecją genu PET127) wyizolowanymi z bakterii plazmidami niosącymi wprowadzoną na ćwiczeniach mutację genu PET127 (pet127-l392a, pet127-k364a, pet127-e364a lub pet127-d391a). Roztwór transformacyjny (PEG Mix): ODCZYNNIK OBJĘTOŚĆ (stężenie końcowe) PEG % [w/v] 42 μl (~40%) LiOAc 1M 6 μl (~0.1 M) Jednoniciowe nośnikowe DNA ze spermy łososia (carrier ssdna) 10 mg/ml Końcowa objętość 2 μl 50 μl Komórki kompetentne zostały przygotowane wcześniej, rozporcjowane i zamrożone w -80 C. Zawieszone są w roztworze zawierającym 1xTE, 0,1 M LiOAc oraz 25% glicerol.
12 Transformacja drożdży Saccharomyces cerevisiae metodą LiOAc/PEG Transformacja drożdży (szczepy z delecją genu PET127) wyizolowanymi z bakterii plazmidami niosącymi wprowadzoną na ćwiczeniach mutację genu PET127. Wykonanie: 1. Otrzymane komórki kompetentne krótko zwirować na niewielkich obrotach (2500 rpm przez 30 s. lub short). Supernatant usunąć pipetą nienaruszając pelletu. 2. Do probówki z drożdżami dodać 50 μl roztworu transformacyjnego, a następnie 2 μl DNA plazmidowego (w próbie kontrolnej zamiast DNA należy dodać 2 μl sterylnej wody). Całość zawiesić poprzez pipetowanie. 3. Inkubować w 42 C przez 30 min (w termobloku lub łaźni wodnej). 4. Po inkubacji zebrać komórki przez krótkie i delikatne wirowanie (2500 rpm przez 30 s. lub short), supernatant usunąć, a pellet zawiesić w 50 μl sterylnej wody lub soli fizjologicznej. 5. Całość wysiać na odpowiednią szalkę selekcyjną i inkubować przez 2-3 dni w temperaturze 30 C.
13 KLONOWANIE DNA 1. trawienie restryktazą wyizolowanego DNA, trawienie wektora. 2. ligacja wektora ze wstawką 3. transformacja bakterii - chemokompetentne - elektrokompetentne 4. selekcja (dzięki obecności na wektorze genów markerowych) 5. Wyszukanie pojedynczego klonu zawierającego zrekombinowany plazmid z interesującym nas fragmentem DNA jeżeli uzyskamy dostateczna liczbę klonów, na tyle dużą, żeby zawarte w nich wstawki reprezentowały cały genom, klony te stanowią BANK GENOMOWEGO DNA
14 WEKTORY BIFUNKCJONALNE: DWÓCH GOSPODARZY, np.: E. coli S. cerevisiae Drugi marker bakteryjny, np. LacZ Polilinker (MCS) Marker bakteryjny, np. Amp R Marker drożdżowy, zwykle pokarmowy (np. leu2, trp1, his3, ura3) Bakteryjny ori replikacji Drożdżowy ori replikacji, np. 2μ Transformacja bakterii Transformacja drożdży (np. mutantów leu -, trp -, his -, ura - ) Podłoże z antybiotykiem Selekcja transformantów Podłoże selekcyjne, (np. bez leu itp.)
15 BANK GENÓW DROŻDŻY NA WEKTORZE BIFUNKCJONALNYM YEplac181
16 RÓŻNE ENZYMY MOGĄ ZOSTAWIAĆ TAKIE SAME KOŃCE: GGATCC CCTAGG NGATCN NCTAGN BamHI Sau3A G GATCC CCTAG G N GATCN NCTAG N
17
18 KLONOWANIE DNA 1. trawienie restryktazą wyizolowanego DNA, trawienie wektora. 2. ligacja wektora ze wstawką 3. transformacja bakterii - chemokompetentne - elektrokompetentne 4. selekcja (dzięki obecności na wektorze genów markerowych) 5. Wyszukanie pojedynczego klonu zawierającego zrekombinowany plazmid z interesującym nas fragmentem DNA jeżeli uzyskamy dostateczna liczbę klonów, na tyle dużą, żeby zawarte w nich wstawki reprezentowały cały genom, klony te stanowią BANK GENOMOWEGO DNA
19 DZIĘKI OBECNOŚCI DRUGIEGO MARKERA WYKRYWAMY BAKTERIE NIOSĄCE ZREKOMBINOWANY PLAZMID W przypadku wektorów pochodnych puc19 (np. YEPLAC) do odróżnienia bakterii ze zrekombinowanym wektorem wykorzystujemy zjawisko α-komplementacji
20
21 α- komplementacja
22 Reprezentatywność banku Dane konieczne do oszacowania reprezentatywności banku genomowego: Wielkość genomu Liczba uzyskanych klonów % transformantów ze zrekombinowanym wektorem Średnia wielkość wstawki Dobry bank genów w E. coli na wektorze plazmidowym zwykle zawiera ponad 50% zrekombinowanych plazmidów, ze średnią wielkością wstawki ok. 10 kb i pokrywa kilkakrotnie genom
23 BANK GENÓW DROŻDŻY NA WEKTORZE BIFUNKCJONALNYM YEplac181 Oszacowanie wielkości wstawki (plazmidy nie trawione) Wzorce masy cząsteczkowej 1-4: 1. pusty wektor (5,7kb) 2. 7,8 kb 3. 9,4 kb 4. 12,6 kb Wielkość genomu S. cerevisiae ~12,1 Mb
24 Wykorzystanie banku genomowego do klonowania genów 1. Jak sklonować bakteryjną sekwencję inicjacji replikacji (ori)? 2. Jak sklonować gen drożdżowy (i poznać jego sekwencję), którego mutacja odpowiada za auksotrofię (mutacja recesywna) 3. Jak sklonować gen drożdżowy (i poznać jego sekwencję), w którym zaszła mutacja dominująca?
25 Bank genomowy
26 Bank cdna pre-mrna
27 Geny reporterowe Badanie regionów promotora odpowiedzialnych za regulację ekspresji genu Badanie zmian ekspresji w wyniku działania czynników zewnętrznych Identyfikacja oddziaływań pomiędzy białkami Określenie lokalizacji badanego białka
28 Przykładowe geny reporterowe β-galaktozydaza β-glukuronidaza (GUS) acetylotransferaza chloramfenikolu (CAT) fosfataza alkaliczna lucyferazy białko fluoryzujące na zielono (GFP)
29 Identyfikacja regionów promotora odpowiedzialnych za regulację transkrypcji aktywatory transkrypcji Ekspresja genu reporterowego gen reporterowy 100% promotor gen reporterowy 30% gen reporterowy 70% gen reporterowy 0%
30 promotor Promotor Lokalizacja białka białko X ORI białko X Bia³ko X Hodowla komórek HeLa (Kontrast fazowy) GFP GFP amp R amp R analiza mikroskopowa Jądra komórkowe (Hoechst) Białko X-EGFP Mitochondria (MitoTracker) Złożenie Kontrast Nomarskiego
31 Lokalizacja białka Białko X-EGFP Kontrast Nomarskiego Złożenie Zdjęcia i filmy komórek - Ł. S. Borowski
32 Badanie lokalizacji w komórce czynnika transkrypcyjnego AREB u Aspergillus nidulans z wykorzystaniem mikroskopii fluorescencyjnej AREB czynnik transkrypcyjny z rodziny GATA, rozpoznaje konkretne sekwencje w promotorach wielu genów Pełni rolę negatywnego regulatora transkrypcji (represor) w represji azotowej Lokalizacja wewnątrzkomórkowa zależy od statusu pokarmowego: zwykle jest w jądrze, częściowo w cytoplazmie. W przypadku głodzenia azotowego zwiększa się jeszcze jego obecność w jądrze Obserwacja lokalizacji możliwa jest dzięki fuzji AREB z białkiem T- Sappaphire ( szafirowej fluorescencji ) Kontrolą w doświadczeniu jest histon H1 (białko jądrowe) w fuzji z RFP (białkiem czerwonej fluorescencji )
33 Schemat integracji do genomu A. nidulans konstruktu kodującego AREB w fuzji białkiem fluorescencyjnym T-Sapphire pyrg A. fu gen z Aspergillus fumigatus, wykorzystywany do rekombinacji homologicznej. Pozwala to uniknąć rekombinacji z dzikim losuc pyrg A. nidulans (niska homologia obu genów) gpd promotor zapewniający wysoką, konstututywną ekspresję konstruktu. ribob A. fu selekcyjny marker pokarmowy, gen z A. fumigatus (też zabezpieczenie przed nieporządaną rekombinacją z genem A. nidulans) Za A. Dzikowska i M. Macios
34 Lokalizacja AREB zależy od statusu pokarmowego Obecność AREB w jądrze wzrasta przy głodzeniu azotowym G glukoza; F- fruktoza; -N głodzenie azotowe; -C głodzenie węglowe G/NH4 G/NO3 F/NH4 F/NO3 -N -C Za A. Dzikowska i M. Macios
Inżynieria Genetyczna ćw. 3
Materiały do ćwiczeń z przedmiotu Genetyka z inżynierią genetyczną D - blok Inżynieria Genetyczna ćw. 3 Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski, rok akad. 2018/2019
Biologia molekularna z genetyką
Biologia molekularna z genetyką P. Golik i M. Koper Konwersatorium 3: Analiza genetyczna eukariontów Saccharomyces cerevisiae Makrokierunek: Bioinformatyka i Biologia Systemów; 2016 Opracowano na podstawie
Inżynieria Genetyczna ćw. 1
Materiały do ćwiczeń z przedmiotu Genetyka z inżynierią genetyczną D - blok Inżynieria Genetyczna ćw. 1 Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski, rok akad. 2018/2019
Klonowanie molekularne Kurs doskonalący. Zakład Geriatrii i Gerontologii CMKP
Klonowanie molekularne Kurs doskonalący Zakład Geriatrii i Gerontologii CMKP Etapy klonowania molekularnego 1. Wybór wektora i organizmu gospodarza Po co klonuję (do namnożenia DNA [czy ma być metylowane
KLONOWANIE DNA REKOMBINACJA DNA WEKTORY
KLONOWANIE DNA Klonowanie DNA jest techniką powielania fragmentów DNA DNA można powielać w komórkach (replikacja in vivo) W probówce (PCR) Do przeniesienia fragmentu DNA do komórek gospodarza potrzebny
Ćwiczenia 1 Wirtualne Klonowanie Prowadzący: mgr inż. Joanna Tymeck-Mulik i mgr Lidia Gaffke. Część teoretyczna:
Uniwersytet Gdański, Wydział Biologii Katedra Biologii Molekularnej Przedmiot: Biologia Molekularna z Biotechnologią Biologia II rok ===============================================================================================
Inżynieria Genetyczna ćw. 1
Materiały do ćwiczeń z przedmiotu Genetyka z inżynierią genetyczną D - blok Inżynieria Genetyczna ćw. 1 Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski, rok akad. 2015/2016
Biologia Molekularna z Biotechnologią ===============================================================================================
Uniwersytet Gdański, Wydział Biologii Biologia i Biologia Medyczna II rok Katedra Genetyki Molekularnej Bakterii Katedra Biologii i Genetyki Medycznej Przedmiot: Katedra Biologii Molekularnej Biologia
Ćwiczenia 1 Wirtualne Klonowanie. Prowadzący: mgr Anna Pawlik i mgr Maciej Dylewski. Część teoretyczna:
Uniwersytet Gdański, Wydział Biologii Biologia i Biologia Medyczna II rok Katedra Biologii Molekularnej Przedmiot: Biologia Molekularna z Biotechnologią ===============================================================================================
Ćwiczenie 5 Klonowanie DNA w wektorach plazmidowych
Ćwiczenie 5 Klonowanie DNA w wektorach plazmidowych Celem ćwiczenia jest sklonowanie fragmentu DNA (powielonego techniką PCR i wyizolowanego z żelu agarozowego na poprzednich zajęciach) do wektora plazmidowego
Polimeraza Taq (1U/ l) 1-2 U 1 polimeraza Taq jako ostatni składniki mieszaniny końcowa objętość
Ćwiczenie 6 Technika PCR Celem ćwiczenia jest zastosowanie techniki PCR do amplifikacji fragmentu DNA z bakterii R. leguminosarum bv. trifolii TA1 (RtTA1). Studenci przygotowują reakcję PCR wykorzystując
Definicje. Białka rekombinowane (ang. recombinant proteins, r-proteins) Ukierunkowana mutageneza (ang. site-directed/site-specific mutagenesis)
Definicje Białka rekombinowane (ang. recombinant proteins, r-proteins) Białka, które powstały w żywych organizmach (lub liniach komórkowych) w wyniku ekspresji rekombinowanego DNA. Rekombinowany DNA jest
Ćwiczenie 7 Klonowanie DNA w wektorach plazmidowych
Ćwiczenie 7 Klonowanie DNA w wektorach plazmidowych Celem ćwiczenia jest sklonowanie fragmentu DNA (powielonego techniką PCR i wyizolowanego z żelu agarozowego na poprzednich zajęciach) do wektora plazmidowego
Program ćwiczeń z inżynierii genetycznej KP-III rok Biologii
Program ćwiczeń z inżynierii genetycznej KP-III rok Biologii Ćwiczenie 1 i 2: Metody izolacji, oczyszczania DNA kolokwium wstępne: sprawdzenie podstawowych wiadomości z zakresu genetyki, i biologii molekularnej
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa IZOLACJA DNA Z HODOWLI KOMÓRKOWEJ.
Ekspresja genów heterogenicznych w drożdżach Pichia pastoris
Ekspresja genów heterogenicznych w drożdżach Pichia pastoris Ekspresja genów heterogenicznych w drożdżach Pichia pastoris Drożdże Pichia pastoris należą do drożdży metanolotroficznych tj. zdolnych do wykorzystywania
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Biochemii i Biologii Komórki
SYLABUS 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Biologia molekularna Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki realizującej
Wybrane techniki badania białek -proteomika funkcjonalna
Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu np. w porównaniu z analizą trankryptomu:
47 Olimpiada Biologiczna
47 Olimpiada Biologiczna Pracownia biochemiczna zasady oceniania rozwia zan zadan Część A. Identyfikacja zawartości trzech probówek zawierających cukry (0 21 pkt) Zadanie A.1 (0 13 pkt) Tabela 1 (0 7 pkt)
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
Drożdżowe systemy ekspresyjne
Drożdże Drożdżowe systemy ekspresyjne Zalety: możliwość uzyskania dużej biomasy modyfikacje postranslacyjne eksprymowanych białek transport eksprymowanych białek do pożywki Duża biomasa W przypadku hodowli
Proteomika: umożliwia badanie zestawu wszystkich lub prawie wszystkich białek komórkowych
Proteomika: umożliwia badanie zestawu wszystkich lub prawie wszystkich białek komórkowych Zalety w porównaniu z analizą trankryptomu: analiza transkryptomu komórki identyfikacja mrna nie musi jeszcze oznaczać
Ćwiczenie 1 Plazmidy bakteryjne izolacja plazmidowego DNA
Ćwiczenie 1 Plazmidy bakteryjne izolacja plazmidowego DNA Plazmidy stanowią pozachromosomalny materiał genetyczny bakterii. Warunkują one szereg cech fenotypowych jak oporność na leki, syntezę substancji
MATERIAŁY DO BLOKU INŻYNIERIA GENETYCZNA
MATERIAŁY DO BLOKU INŻYNIERIA GENETYCZNA 1. AMPLIFIKACJA FRAGMENTU DNA METODĄ PCR Otrzymywanie dużej liczby kopii określonego fragmentu DNA możliwe jest przy zastosowaniu procedur klonowania lub znacznie
GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu
GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
Organizmy modelowe - drożdże. Saccharomyces cerevisiae i nie tylko
Organizmy modelowe - drożdże Saccharomyces cerevisiae i nie tylko Materiały z prezentacji http://wiki.biol.uw.edu.pl/ Co to są drożdże? Mikroorganizmy eukariotyczne zaliczane do grzybów Jednokomórkowe
Saccharomyces Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Saccharomyces cerevisiae. Metoda chemiczna.
Saccharomyces Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Saccharomyces cerevisiae. Metoda chemiczna. wersja 0916 6 x 20 transformacji Nr kat. 4010-120 Zestaw zawiera
Mapowanie fizyczne genomów -konstrukcja map wyskalowanych w jednostkach fizycznych -najdokładniejszą mapą fizyczną genomu, o największej
Mapowanie fizyczne genomów -konstrukcja map wyskalowanych w jednostkach fizycznych -najdokładniejszą mapą fizyczną genomu, o największej rozdzielczości jest sekwencja nukleotydowa -mapowanie fizyczne genomu
wykład dla studentów II roku biotechnologii Andrzej Wierzbicki
Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ 1. Gen to odcinek DNA odpowiedzialny
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa tel. 22 572 0735, 606448502
KLONOWANIE DNA REKOMBINACJA DNA WEKTORY
KLONOWANIE DNA Klonowanie DNA jest techniką powielania fragmentów DNA DNA można powielać w komórkach (replikacja in vivo) W probówce (PCR) Do przeniesienia fragmentu DNA do komórek gospodarza potrzebny
ENZYMY RESTRYKCYJNE ENZYMY RESTRYKCYJNE CZYM RÓŻNIĄ SIĘ POSZCZEGÓLNE ENZYMY? nazewnictwo: EcoRV
ENZYMY RESTRYKCYJNE Enzymy z klasy endonukleaz (hydrolaz), wykazujące powinowactwo do specyficznych fragmentów dwuniciowych cząsteczek DNA i hydrolizujące wiązania fosfodiestrowe w obu niciach Naturalnie
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
E.coli Transformer Kit
E.coli Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli. Metoda chemiczna. wersja 1117 6 x 40 transformacji Nr kat. 4020-240 Zestaw zawiera komplet odczynników
Inżynieria genetyczna
Inżynieria genetyczna i technologia rekombinowanego DNA Dr n. biol. Urszula Wasik Zakład Biologii Medycznej Inżynieria genetyczna świadoma, celowa, kontrolowana ingerencja w materiał genetyczny organizmów
Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Inżynieria bioprocesowa na kierunku biotechnologia
1 Zakład Mikrobiologii UJK Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Inżynieria bioprocesowa na kierunku biotechnologia 2 Zakład Mikrobiologii UJK Zakres materiału
Dr. habil. Anna Salek International Bio-Consulting 1 Germany
1 2 3 Drożdże są najprostszymi Eukariontami 4 Eucaryota Procaryota 5 6 Informacja genetyczna dla każdej komórki drożdży jest identyczna A zatem każda komórka koduje w DNA wszystkie swoje substancje 7 Przy
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
Na tej pracowni wyjątkowo odpowiedzi na zadania należy udzielić na osobnym arkuszu odpowiedzi.
Pracownia biochemiczna arkusz zadań Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Na tej pracowni wyjątkowo odpowiedzi na zadania należy udzielić na osobnym arkuszu odpowiedzi. Drodzy uczestnicy!
Organizmy modelowe - drożdże. Saccharomyces cerevisiae i nie tylko
Organizmy modelowe - drożdże Saccharomyces cerevisiae i nie tylko Materiały z prezentacji } http://wiki.biol.uw.edu.pl/ 2 Co to są drożdże? } Mikroorganizmy eukariotyczne zaliczane do grzybów } Jednokomórkowe
Wektory DNA - klonowanie molekularne
Wektory DNA - klonowanie molekularne Fragment DNA (np. pojedynczy gen) można trwale wprowadzić do komórek gospodarza (tzn. zmusić go do powielania w tym gospodarzu) tylko wtedy, gdy zostanie on wbudowany
Hybrydyzacja kwasów nukleinowych
Hybrydyzacja kwasów nukleinowych Jaka jest lokalizacja genu na chromosomie? Jakie jest jego sąsiedztwo? Hybrydyzacja - powstawanie stabilnych struktur dwuniciowych z cząsteczek jednoniciowych o komplementarnych
bi ~ Zestaw dydal<tyczny umożliwiający przeprowadzenie izolacji genomowego DNA z bakterii EasyLation Genomie DNA INSTRUI<CJA DLA STUDENTÓW
Zestaw dydaktyczny EasyLation Genomie DNA Nr kat. DY80 Wersja zestawu: 1.2014 Zestaw dydal
GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu
GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna
SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Biochemii i Biologii Komórki
SYLABUS 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Biologia molekularna z elementami inżynierii genetycznej Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek)
Ćwiczenia 2-4 KLONOWANIE DNA
Ćwiczenia 2-4 KLONOWANIE DNA Klonowanie DNA jest podstawową techniką biologii molekularnej umożliwiającą powielenie określonego fragmentu DNA (najczęściej genu) w komórkach gospodarza np. bakteriach Escherichia
Transformacja pośrednia składa się z trzech etapów:
Transformacja pośrednia składa się z trzech etapów: 1. Otrzymanie pożądanego odcinka DNA z materiału genetycznego dawcy 2. Wprowadzenie obcego DNA do wektora 3. Wprowadzenie wektora, niosącego w sobie
Wybrane techniki badania białek -proteomika funkcjonalna
Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu w porównaniu z analizą trankryptomu:
GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu
GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna
E.coli Transformer Zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli
E.coli Transformer Zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli Wersja 0211 6x40 transformacji Nr kat. 4020-240 Zestaw zawiera komplet odczynników do przygotowania sześciu
Nowoczesne systemy ekspresji genów
Nowoczesne systemy ekspresji genów Ekspresja genów w organizmach żywych GEN - pojęcia podstawowe promotor sekwencja kodująca RNA terminator gen Gen - odcinek DNA zawierający zakodowaną informację wystarczającą
Ćwiczenie 1 Plazmidy bakteryjne izolacja plazmidowego DNA
Ćwiczenie 1 Plazmidy bakteryjne izolacja plazmidowego DNA Plazmidy stanowią pozachromosomalny materiał genetyczny bakterii. Warunkują one szereg cech fenotypowych, jak oporność na leki, syntezę substancji
Mieszanina trójfosforanów deoksyrybonukleotydów (dntp: datp, dgtp, dctp, dttp) Bufor reakcyjny zapewniający odpowiednie warunki reakcji
Uniwersytet Gdański, Wydział Biologii Biologia i Biologia medyczna II rok Katedra Biologii Molekularnej Przedmiot: Biologia Molekularna z Biotechnologią =================================================================
Endonukleazy restrykcyjne molekularne nożyczki
Endonukleazy restrykcyjne molekularne nożyczki Inżynieria genetyczna nauka o technikach badawczych pozwalających na ingerencję w materiał genetyczny organizmów w celu wyizolowania i charakterystyki określonych
Ćwiczenie 2. Identyfikacja płci z wykorzystaniem genu amelogeniny (AMGXY)
Ćwiczenie 2. Identyfikacja płci z wykorzystaniem genu amelogeniny (AMGXY) Cel ćwiczenia Amplifikacja fragmentu genu amelogeniny, znajdującego się na chromosomach X i Y, jako celu molekularnego przydatnego
Metody analizy genomu
Metody analizy genomu 1. Mapowanie restrykcyjne. 2. Sondy do rozpoznawania DNA 3. FISH 4. Odczytanie sekwencji DNA 5. Interpretacja sekwencji DNA genomu 6. Transkryptom 7. Proteom 1. Mapy restrykcyjne
Klonowanie i transgeneza. dr n.med. Katarzyna Wicher
Klonowanie i transgeneza dr n.med. Katarzyna Wicher Klonowanie proces tworzenia idealnej kopii z oryginału oznacza powstawanie lub otrzymywanie genetycznie identycznych: cząsteczek DNA komórek organizmów
mikrosatelitarne, minisatelitarne i polimorfizm liczby kopii
Zawartość 139371 1. Wstęp zarys historii genetyki, czyli od genetyki klasycznej do genomiki 2. Chromosomy i podziały jądra komórkowego 2.1. Budowa chromosomu 2.2. Barwienie prążkowe chromosomów 2.3. Mitoza
Ćwiczenie 3. Amplifikacja genu ccr5 Homo sapiens wykrywanie delecji Δ32pz warunkującej oporność na wirusa HIV
Ćwiczenie 3. Amplifikacja genu ccr5 Homo sapiens wykrywanie delecji Δ32pz warunkującej oporność na wirusa HIV Cel ćwiczenia Określenie podatności na zakażenie wirusem HIV poprzez detekcję homo lub heterozygotyczności
Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi
Metody badania polimorfizmu/mutacji DNA Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Mutacja Mutacja (łac. mutatio zmiana) - zmiana materialnego
Genetyczne modyfikowanie organizmów Kierunek OCHRONA ŚRODOWISKA, II rok semestr letni 2015/16
Genetyczne modyfikowanie organizmów Kierunek OCHRONA ŚRODOWISKA, II rok semestr letni 2015/16 Ćwiczenie 3 Identyfikacja genetycznie modyfikowanych roślin w produktach spożywczych - jakościowe badanie obecności
2. Enzymy pozwalające na manipulację DNA a. Polimerazy DNA b. Nukleazy c. Ligazy
Metody analizy DNA 1. Budowa DNA. 2. Enzymy pozwalające na manipulację DNA a. Polimerazy DNA b. Nukleazy c. Ligazy 3. Klonowanie in vivo a. w bakteriach, wektory plazmidowe b. w fagach, kosmidy c. w drożdżach,
Hybrydyzacja kwasów nukleinowych
Hybrydyzacja kwasów nukleinowych Jaka jest lokalizacja tego genu na chromosomie? Jakie jest jego sąsiedztwo? Hybrydyzacja - powstawanie stabilnych struktur dwuniciowych z cząsteczek jednoniciowych o komplementarnych
Skąd się wzięła biologia syntetyczna? Co to są standardowe części biologiczne?
Skąd się wzięła biologia syntetyczna? Mało kto zdaje sobie sprawę z tego, że termin "biologia syntetyczna" został ukuty w 1974 roku przez polskiego genetyka i biochemika Wacława Szybalskiego. Biologia
Metody badania ekspresji genów
Metody badania ekspresji genów dr Katarzyna Knapczyk-Stwora Warunki wstępne: Proszę zapoznać się z tematem Metody badania ekspresji genów zamieszczonym w skrypcie pod reakcją A. Lityńskiej i M. Lewandowskiego
Tematyka zajęć z biologii
Tematyka zajęć z biologii klasy: I Lp. Temat zajęć Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania, wymaganiami edukacyjnymi i podstawą programową Podstawowe zagadnienia materiału nauczania
Dr. habil. Anna Salek International Bio-Consulting 1 Germany
1 2 3 Saccharomyces carlsbergensis Nowe szczepy w browarnictwie 4 Drożdże transgeniczne Saccharomyces carlsbergensis 5 6 Wśród wielu etapów produkcji piwa, proces pierwotnej i wtórnej fermentacji stwarza
Endonukleazy restrykcyjne molekularne nożyczki
Endonukleazy restrykcyjne molekularne nożyczki Inżynieria genetyczna nauka o technikach (narzędziach) biologii molekularnej pozwalających na świadomą i zamierzoną ingerencję w materiał genetyczny organizmów
Jaka jest lokalizacja genu na chromosomie? Jakie jest jego sąsiedztwo?
Jaka jest lokalizacja genu na chromosomie? Jakie jest jego sąsiedztwo? Hybrydyzacja - powstawanie stabilnych struktur dwuniciowych z cząsteczek jednoniciowych o komplementarnych sekwencjach nukleotydów
Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie
Nazwa modułu: Genetyka molekularna Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna
Elektroforeza kwasów nukleinowych
Elektroforeza kwasów nukleinowych Elektroforeza jest podstawową techniką wizualizacji kwasów nukleinowych pozwala bezpośrednio identyfikować cząsteczki DNA i jest stosunkowo czuła (po odpowiednim wybarwieniu
AmpliTest Babesia spp. (PCR)
AmpliTest Babesia spp. (PCR) Zestaw do wykrywania sekwencji DNA specyficznych dla pierwotniaków z rodzaju Babesia techniką PCR Nr kat.: BAC21-100 Wielkość zestawu: 100 oznaczeń Objętość pojedynczej reakcji:
Techniki biologii molekularnej Kod przedmiotu
Techniki biologii molekularnej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Techniki biologii molekularnej Kod przedmiotu 13.9-WB-BMD-TBM-W-S14_pNadGenI2Q8V Wydział Kierunek Wydział Nauk Biologicznych
Endonukleazy restrykcyjne molekularne nożyczki
Endonukleazy restrykcyjne molekularne nożyczki Inżynieria genetyczna nauka o technikach (narzędziach) biologii molekularnej pozwalających na świadomą i zamierzoną ingerencję w materiał genetyczny organizmów
Zestaw do wykrywania Chlamydia trachomatis w moczu lub w kulturach komórkowych
Nr kat. PK15 Wersja zestawu: 1.2016 Zestaw do wykrywania w moczu lub w kulturach komórkowych na 50 reakcji PCR (50µl), włączając w to kontrole Detekcja oparta jest na amplifikacji fragmentu genu crp (cysteine
Organizmy modelowe - drożdże. Saccharomyces cerevisiae i nie tylko
Organizmy modelowe - drożdże Saccharomyces cerevisiae i nie tylko Materiały z prezentacji http://www.igib.uw.edu.pl/ Co to są drożdże? Mikroorganizmy eukariotyczne zaliczane do grzybów Jednokomórkowe (lub
PL B1. UNIWERSYTET PRZYRODNICZY W LUBLINIE, Lublin, PL BUP 26/11
PL 214501 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214501 (13) B1 (21) Numer zgłoszenia: 391458 (51) Int.Cl. C12Q 1/68 (2006.01) C12N 15/29 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA
DNA 28SRNA 18/16S RNA 5SRNA mrna Ilościowa analiza mrna aktywność genów w zależności od wybranych czynników: o rodzaju tkanki o rodzaju czynnika zewnętrznego o rodzaju upośledzenia szlaku metabolicznego
Elektroforeza kwasów nukleinowych
Elektroforeza kwasów nukleinowych Elektroforeza jest podstawową techniką wizualizacji kwasów nukleinowych pozwala bezpośrednio identyfikować cząsteczki DNA ze stosunkowo wysoką czułością (po odpowiednim
Dominika Stelmach Gr. 10B2
Dominika Stelmach Gr. 10B2 Czym jest DNA? Wielkocząsteczkowy organiczny związek chemiczny z grupy kwasów nukleinowych Zawiera kwas deoksyrybonukleoinowy U organizmów eukariotycznych zlokalizowany w jądrze
Najważniejsze z nich to: enzymy restrykcyjne wektory DNA inne enzymy np. ligazy, fosfatazy, polimerazy, nukleazy
Aby manipulować genami niezbędne są odpowiednie narzędzia molekularne, które pozwalają uzyskać tzw. zrekombinowane DNA (umożliwiają rekombinację materiału genetycznego in vitro czyli w próbówce) Najważniejsze
Techniki molekularne w mikrobiologii SYLABUS A. Informacje ogólne
Techniki molekularne w mikrobiologii A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj Rok studiów
ĆWICZENIE 1 i 2 Modyfikacja geu wołowej beta-laktoglobuliny przy użyciu metody Overlap Extension PCR (wydłużania nakładających się odcinków)
ĆWICZENIE 1 i 2 Modyfikacja geu wołowej beta-laktoglobuliny przy użyciu metody Overlap Extension PCR (wydłużania nakładających się odcinków) Celem ćwiczenia jest wprowadzenie mutacji punktowej do genu
TaqNova-RED. Polimeraza DNA RP20R, RP100R
TaqNova-RED Polimeraza DNA RP20R, RP100R RP20R, RP100R TaqNova-RED Polimeraza DNA Rekombinowana termostabilna polimeraza DNA Taq zawierająca czerwony barwnik, izolowana z Thermus aquaticus, o przybliżonej
Olimpiada Biologiczna
Olimpiada Biologiczna Informator narzędzia bioinformatyczne Katarzyna Grudziąż, Takao Ishikawa Warszawa, luty 2019 r. Bioinformatyka to dziedzina nauki łącząca w sobie wiedzę z dziedziny biologii z wykorzystaniem
Najważniejsze z nich to: enzymy restrykcyjne wektory DNA inne enzymy np. ligazy, fosfatazy, polimerazy, nukleazy
Aby manipulować genami niezbędne są odpowiednie narzędzia molekularne, które pozwalają uzyskać tzw. zrekombinowane DNA (umożliwiają rekombinację materiału genetycznego in vitro czyli w próbówce) Najważniejsze
Ćwiczenie 3 PCR i trawienie DNA enzymami restrykcyjnymi
Uniwersytet Gdański, Wydział Biologii Katedra Genetyki Molekularnej Bakterii Katedra Biologii i Genetyki Medycznej Katedra Biologii Molekularnej Biologia i Biologia Medyczna II rok Przedmiot: Biologia
Obsługa pipet automatycznych. 2,0 μl 10,0 μl 20,0 μl 20 μl 100 μl 200 μl
Obsługa pipet automatycznych Pipeta 2-2 μl Pipeta 2-2 μl 1 2 1 2 2 2 2, μl 1, μl 2, μl 2 μl 1 μl 2 μl Obsługa pipet automatycznych Pipeta 1-1 μl 1 5 5 1 1 μl 55 μl 1 μl W probówce A i B są plazmidy: jeden
Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów:
Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów: dobór warunków samej reakcji PCR (temperatury, czas trwania cykli, ilości cykli itp.) dobór odpowiednich starterów do reakcji amplifikacji
O trawieniu restrykcyjnym
O trawieniu restrykcyjnym Enzymy II klasy, Mg 2+, dsdna z rozpoznawaną sekwencją, tępe, lepkie (kohezyjne) końce, warunki reakcji bufor o różnym stężeniu NaCl i określonym ph BSA -stabilizator 37 o C /lub
Inżynieria genetyczna- 6 ECTS. Inżynieria genetyczna. Podstawowe pojęcia Część II Klonowanie ekspresyjne Od genu do białka
Inżynieria genetyczna- 6 ECTS Część I Badanie ekspresji genów Podstawy klonowania i różnicowania transformantów Kolokwium (14pkt) Część II Klonowanie ekspresyjne Od genu do białka Kolokwium (26pkt) EGZAMIN
Instrukcja ćwiczeń Biologia molekularna dla II roku Analityki Medycznej. Reakcja odwrotnej transkrypcji. Projektowanie starterów do reakcji PCR.
INSTRUKCJA Ćwiczenie nr 5 Odczynniki: Sprzęt: 1. 5xNG cdna Buffer 2. 50 µm oligo(dt)20 3. NG dart RT mix l 4. Probówki typu Eppendorf 0,2 ml 5. Woda wolna od RNaz 6. Lód 1. Miniwirówka 2. Termocykler 3.
RT31-020, RT , MgCl 2. , random heksamerów X 6
RT31-020, RT31-100 RT31-020, RT31-100 Zestaw TRANSCRIPTME RNA zawiera wszystkie niezbędne składniki do przeprowadzenia syntezy pierwszej nici cdna na matrycy mrna lub całkowitego RNA. Uzyskany jednoniciowy
Elektroforeza kwasów nukleinowych
Elektroforeza kwasów nukleinowych Elektroforeza jest podstawową techniką wizualizacji kwasów nukleinowych pozwala bezpośrednio identyfikować cząsteczki DNA ze stosunkowo wysoką czułością (po odpowiednim
ĆWICZENIA Z MECHANIZMÓW DZIAŁANIA WYBRANYCH GRUP LEKÓW
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ WYDZIAŁ BIOLOGII I BIOTECHNOLOGII ZAKŁAD BIOLOGII MOLEKULARNEJ ĆWICZENIA Z MECHANIZMÓW DZIAŁANIA WYBRANYCH GRUP LEKÓW dla studentów I roku II 0 biotechnologii medycznej
Elektroforeza kwasów nukleinowych
Elektroforeza kwasów nukleinowych Elektroforeza jest podstawową techniką wizualizacji kwasów nukleinowych pozwala bezpośrednio identyfikować cząsteczki DNA i jest stosunkowo czuła (po odpowiednim wybarwieniu
Biologia Molekularna Podstawy
Biologia Molekularna Podstawy Budowa DNA Budowa DNA Zasady: Purynowe: adenina i guanina Pirymidynowe: cytozyna i tymina 2 -deoksyryboza Grupy fosforanowe Budowa RNA Budowa RNA Zasady: purynowe: adenina
WPROWADZENIE DO GENETYKI MOLEKULARNEJ
WPROWADZENIE DO GENETYKI MOLEKULARNEJ Replikacja organizacja widełek replikacyjnych Transkrypcja i biosynteza białek Operon regulacja ekspresji genów Prowadzący wykład: prof. dr hab. Jarosław Burczyk REPLIKACJA