Podstawy kinetyki i termodynamiki chemicznej. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Podobne dokumenty
Podstawy kinetyki i termodynamiki chemicznej. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Podstawy kinetyki i termodynamiki chemicznej. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

Podstawy termodynamiki

Chemia ogólna nieorganiczna Wykład XII Kinetyka i statyka chemiczna

Wykład 21 XI 2018 Żywienie

Inżynieria Biomedyczna

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Inżynieria Biomedyczna

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

DRUGA ZASADA TERMODYNAMIKI

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

DRUGA ZASADA TERMODYNAMIKI

Kinetyka i równowaga reakcji chemicznej

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Stany równowagi i zjawiska transportu w układach termodynamicznych

Odwracalność przemiany chemicznej

TERMODYNAMIKA I TERMOCHEMIA

Przemiana materii i energii - Biologia.net.pl

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Kinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31

Kinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI I ENERGII AKTYWACJI

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1)

1 Kinetyka reakcji chemicznych

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Wykład 4. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 29

Wykład 10 Równowaga chemiczna

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Zjawiska powierzchniowe

Wykład 6. Klasyfikacja przemian fazowych

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

Kryteria samorzutności procesów fizyko-chemicznych

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Termochemia efekty energetyczne reakcji

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

Opracowała: mgr inż. Ewelina Nowak

Termochemia elementy termodynamiki

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Enzymologia I. Kinetyka - program Gepasi. Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu

Chemia fizyczna 2 - wykład

CIEPŁO O ZNANE CZY NIEZNANE?

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

Chemia - laboratorium

I piętro p. 131 A, 138

Wykład z Chemii Ogólnej i Nieorganicznej

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

ĆWICZENIE NR 11 KINETYKA WYMIANY IZOTOPOWEJ W UKŁADZIE HOMOGENICZNYM

Przemiany termodynamiczne

Wstęp do astrofizyki I

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Podstawowe pojęcia 1

Termodynamika. Energia wewnętrzna ciał

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

TYPY REAKCJI CHEMICZNYCH

Kiedy przebiegają reakcje?

Fizykochemiczne podstawy inżynierii procesowej

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Ciśnienie i temperatura model mikroskopowy

Fizyka Termodynamika Chemia reakcje chemiczne

Wykład 3. Entropia i potencjały termodynamiczne

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

Kryteria oceniania z chemii kl VII

Kiedy przebiegają reakcje?

Czym jest prąd elektryczny

Przemiany energii w zjawiskach cieplnych. 1/18

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Fizykochemiczne podstawy inżynierii procesowej

Warunki izochoryczno-izotermiczne

Badanie kinetyki katalitycznego rozkładu H 2 O 2

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

Transkrypt:

Podstawy kinetyki i termodynamiki chemicznej Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Układ i otoczenie Układem - część środowiska, która stanowi przedmiot naszych badań pojęcie abstrakcyjne, jak np. mol gazu doskonałego, coś realnie istniejące, np. substancje reagujące w probówce, pojedyncza komórka czy cały organizm człowieka Otoczenie - to, co otacza układ, czyli pozostała część wszechświata Stan układu opisywany jest przez szereg wielkości fizycznych zwanych parametrami lub funkcjami stanu: wartości liczbowe charakterystyczne dla danego układu Stan układu termodynamicznego może być scharakteryzowany przez parametry intensywne i ekstensywne 2

Parametry intensywne parametry intensywne mają charakter lokalny są określone w każdym miejscu układu w różnych miejscach tego układu mogą mieć różne wartości. parametry lokalne: temperatura ciśnienie parametry intensywne jednakowe w każdym miejscu układu układ znajduje się w stanie równowagi najmniejszą liczbę parametrów intensywnych niezbędnych do opisu stanu nazywamy liczbą stopni swobody. 3

Parametry ekstensywne Parametry ekstensywne są proporcjonalne do masy układu. objętość, liczba moli, energia wewnętrzna entalpia Dzieląc wielkość fizyczną (ekstensywną) przez objętość otrzymujemy gęstość tej wielkości, która, jako że nie zależy od masy jest parametrem intensywnym i ma charakter lokalny. 4

Stan równowagi Układ znajduje się on w stanie równowagi jeżeli jego parametry nie zależą od czasu Zmiana parametrów w czasie oznacza przejście układu z jednego stanu równowagi do innego zjawisko takie nazywa się procesem zachodzącym w danym układzie. Proces jest odwracalny jeżeli może zachodzić w obie strony, nie pozostawiając zmian w otoczeniu Proces nieodwracalny zachodzi tylko w pewnym, określonym kierunku; odwrotny kierunek nie jest możliwy bez wystąpienia zmian w otoczeniu. 5

Funkcje termodynamiczne zdolność układu do przejścia z jednego stanu do innego określają funkcje parametrów stanu, zwane funkcjami termodynamicznymi wartość tych funkcji wiąże się ze stanem energetycznym układu. termodynamika określa pięć funkcji stanu: energię wewnętrzną U, entalpię H, entropię S, energię swobodna F entalpię swobodną G 6

Energia wewnętrzna U suma energii zgromadzonej przez poszczególne cząsteczki oraz energii oddziaływań międzycząsteczkowych w danym układzie energia kinetyczna poszczególnych cząsteczek układu związana z ich nieustającym, chaotycznym ruchem energia potencjalna wynikająca z oddziaływań międzycząsteczkowych energia stanów elektronowych w cząsteczce energia potencjalna oddziaływań między elektronami odpychanie energia potencjalna oddziaływań między elektronami a protonami przyciąganie energia kinetyczna elektronów energia wewnątrz jądrowa (oddziaływania między nukleonami) 7

Zmiany energii układu zmiana energii układu możliwa jest jedynie wówczas, kiedy oddziałuje on z otoczeniem. w zależności od rodzaju możliwych oddziaływań i warunków zachodzenia przemian rozróżniamy układy: otwarte czyli takie, które podczas przemiany mogą wymieniać z otoczeniem zarówno masę jak i energię zamknięte wymieniają z otoczeniem tylko energię, a nie wymieniają masy adiabatyczne takie, które wymieniają energię tylko na sposób pracy izolowane w pełni oddzielone od otoczenia, nie wymieniają z otoczeniem ani masy, ani energii 8

Reakcje endo- i egzoergiczne Analizując kierunek wymiany energii między układem a otoczeniem można wyróżnić: reakcje egzoenergetyczne - powodują przepływ energii z układu do otoczenia; reakcje te mogą przebiegać samorzutnie, po zakończeniu układ jest mniej zasobny w energię niż przed reakcją reakcje endoenergetyczne proces wymuszony, produkty końcowe reakcji są bogatsze energetycznie niż przed reakcją. procesy endoenergetyczne przebiegają tak długo, jak długo dostarczana jest energia z otoczenia 9

Entalpia I zasada termodynamiki - zmiana energii wewnętrznej układu zamkniętego U jest równa sumie algebraicznej ilości energii wymienionej między układem a otoczeniem na sposób pracy i na sposób ciepła. U=W + Q p=const, p= 0 entalpia - suma energii wewnętrznej oraz iloczynu ciśnienia i objętości H = U+pV H= U + V p Entalpia, funkcja stanu zależna głównie od zmiany energii potencjalnej cząsteczek układu, sumy zmian energii oddziaływań międzycząsteczkowych i wiązań chemicznych układu. 10

Entalpia swobodna (energia swobodna) Najbardziej użyteczna funkcja w biochemii G=H-TS zmiana entalpii swobodnej w procesie izotermiczno-izobarycznym (warunki, w których zachodzi większość reakcji biochemicznych) G = H T S II ZASADA TERMODYNAMIKI H charakteryzuje efekt cieplny reakcji - określa wielkość energii wymienionej z układem na sposób ciepła S charakteryzuje stopień nieuporządkowania (stan o większej entropii tj. nieuporządkowany jest bardziej prawdopodobny niż stan o mniejszej entropii, czyli uporządkowany) T S część entalpii, która zostaje uwięziona w układzie i nie może być wymieniona na sposób pracy ( S energia bezużyteczna np. zmiana energii towarzysząca zmianie stanu skupienia ze stałego na ciekły;energia ta nie może być wykorzystywana) G charakteryzuje tzw. energię użyteczną, czyli energię, którą w wyniku samorzutnych przemian może być wymieniona na sposób pracy użytecznej V 0 G = H T S H = U + p V G U T S 11

Entalpia swobodna G reakcji zależy od: zmiany energii wewnętrznej zmiany entropii układu. Zmiana entalpii swobodnej jest dobrym kryterium spontaniczności. reakcja może zajść spontanicznie tylko wtedy, gdy G ma wartość ujemną, reakcję taką nazywamy egzoergiczną jeżeli G = 0, to układ znajduje się w stanie równowagi, lub nie zachodzą w nim żadne zmiany reakcja nie może zajść spontanicznie, jeżeli G ma wartość dodatnią. Do przebiegu takiej reakcji konieczny jest dopływ energii swobodnej z zewnątrz. Reakcję taką nazywamy endoergiczną 12

Entalpia swobodna G<0 reakcja może zajść spontanicznie reakcja egzoergiczna G=0 układ znajduje się w stanie równowagi, lub nie zachodzą w nim żadne zmiany G>0 reakcja nie może zajść spontanicznie do przebiegu takiej reakcji konieczny jest dopływ energii swobodnej z zewnątrz. reakcje endoergiczne 13

Teoria zderzeń energia aktywacji Zgodnie z teorią zderzeń reakcja zachodzi tylko wtedy, gdy dochodzi do zderzenia cząsteczek. zderzenie musi być efektywne - zakończone połączeniem się cząsteczek, końcowym efektem musi być zmiana chemicznej natury reagujących substancji. utworzenie nowych wiązań chemicznych (utworzenie nowego związku) wymaga przemian energetycznych substancje stabilne chemicznie - posiadają niską energię substancje nietrwałe chemicznie - bogatoenergetyczne oddanie części energii zapewnia powstanie nowego, trwalszego produktu. do zerwania starego lub utworzenia nowego wiązania - aby zderzenie było efektywne - musi być dostarczona energia większa od pewnej określonej granicy zwana energią aktywacji. 14

Teoria zderzeń energia aktywacji energia aktywacji jest różna dla różnych reakcji zostaje zużyta między innymi na pokonanie sił odpychania między cząsteczkami, a wynikających z różnych oddziaływań elektrostatycznych jest niezbędna do: rozluźnienia wiązań w reagujących substratach odpowiedniego przegrupowania atomów i elektronów w cząsteczkach produktów pośrednich. 15

Teoria kompleksu aktywnego zgodnie z teorią stanu przejściowego zderzające się efektywnie cząsteczki tworzą w chwili zetknięcia kompleks aktywny, który jest układem wzajemnie na siebie oddziaływujących atomów cechy charakterystyczny kompleksu aktywnego: osiąga stan energetyczny niezbędny do zajścia reakcji; czas życia kompleksu jest bardzo krótki kompleks aktywny może ulegać rozpadowi do substratów reakcji lub przekształć się w produkty. 16

Teoria kompleksu aktywnego teoria kompleksu aktywnego ułatwia ustalenie wielkości energii aktywacji dla danej reakcji chemicznej. zgodnie z teorią zderzeń aktywnych energia powinna mieć duże wartości, gdyż tylko takie zapewniają rozerwanie wiązań. teoria kompleksu aktywnego tłumaczy, dlaczego wartości te nie są aż tak bardzo duże. zapotrzebowanie na energię, związaną z rozrywaniem się wiązań, jest częściowo kompensowane przez uwalnianie się energii podczas powstawania nowych wiązań w wyniku przekształcania się kompleksu aktywnego w produkty reakcji. szybkość reakcji zależy więc od czynników; stężenia kompleksu aktywnego prędkości z jaką on ulega rozpadowi na produkty 17

entalpia swobodna Teoria kompleksu aktywnego reakcja egzoergiczna - substraty o danej entalpii swobodnej muszą pokonać barierę energetyczną. aby powstał kompleks aktywny. wymaga to do zapoczątkowania reakcji poprzez dostarczenie energii zwanej energią aktywacji energia aktywacji jest równa różnicy między entalpią swobodną kompleksu aktywnego a entalpią swobodną substratów = G a G s przejściu kompleksu aktywnego w produkt towarzyszy wydzielanie entalpii swobodnej (entalpia swobodna produktów jest mniejsza od entalpii swobodnej substratów) A+B AB* przebieg reakcji AB A+B substraty AB* - produkty przejściowe AB - produkty 18

entalpia swobodna Teoria kompleksu aktywnego reakcja endoergiczna - substraty o danej entalpii swobodnej muszą pokonać barierę energetyczną aby powstał kompleks aktywny. przy rozpadzie kompleksu aktywnego reakcji endoergicznej wydziela się tylko część dostarczonej energii, i dlatego przebieg tej reakcji kończy się wraz z ustaniem dopływu energii. A+B AB* przebieg reakcji AB A+B substraty AB* - produkty przejściowe AB - produkty 19

entalpia swobodna energia aktywacji, czyli różnica między entalpią w stanie wzbudzonym, a entalpią substratów określa prawdopodobieństwo kinetyczne reakcji E + zmiana entalpii swobodnej, czyli różnica między entalpiami produktów i substratów określa termodynamiczne prawdopodobieństwo reakcji E A+B przebieg reakcji AB A+B substraty AB* - produkty przejściowe AB - produkty 20

Kinetyka reakcji chemicznych główne parametry kinetyczne określające przebieg reakcji: stała szybkości reakcji, rzędowość cząsteczkowość reakcji cząsteczkowość reakcji wskazuje na liczbę cząstek biorących udział w danym procesie najczęściej spotykane są reakcje dwucząsteczkowe - - wymagające zderzenia dwóch cząsteczek nie ma reakcji, w których uczestniczyłaby większa liczba cząstek niż 4 21

Kinetyka reakcji chemicznych równanie określające stechiometrię reakcji: a A + b B c C + d D szybkość reakcji możemy określić jako v = - dc/dt = k [A] x [B] y czyli szybkość reakcji jest proporcjonalna do iloczynu stężeń reagujących substancji podniesionych do wyznaczonych doświadczalnie wykładników. współczynnik k nazywamy stałą szybkości reakcji 22

Kinetyka reakcji chemicznych v = - dc/dt = k [A] x [B] y stała szybkości reakcji zależy od: rodzaju rekcji chemicznej, warunków jej przebiegu jest charakterystyczna dla danej temperatury. Im stała szybkości jest większa, tym reakcja ma szybszy przebieg. Liczbowo stała szybkości reakcji równa się takiej szybkości, jaka jest gdy stężenia reagujących składników są równe 1 mol/litr Wykładniki potęgowe w równaniu kinetycznym, oznaczone symbolami x i y noszą nazwę rzędów reakcji. Ich suma określa rząd reakcji chemicznej. Rząd reakcji jest liczbą całkowitą lub ułamkową, ale zawsze mniejszą od liczby 3. 23

Kinetyka reakcji chemicznych reakcja I rzędu A B log c v=k[a] reakcje, w których wyznaczona doświadczalnie szybkość zmienia się proporcjonalne do stężenia jednej z reagujących substancji 0 0 t Procesy biologiczne stanowią prawie wyłącznie reakcje pierwszego rzędu. 24

Kinetyka reakcji chemicznych Do reakcji II rzędu należą reakcje, których szybkość doświadczalna jest proporcjonalna do iloczynu stężeń reagujących substancji, lub do kwadratu stężenia jednego substratu 1/c 0 0 t A + B C + D v=k[a][b] 2 A B + D v=k[a] 2 25

Kinetyka reakcji chemicznych reakcje 0 rzędu reakcje, w których szybkość nie zależy od stężeń substratów. reakcje elektrodowe, fotoelektryczne, enzymatyczne - maksymalna szybkość jest przy całkowitym wysyceniu enzymu substratem. dla 0 rzędu v=k[a] o =k 0 c 0 t 26

Kinetyka reakcji chemicznych reakcje pseudo-pierwszorzędowe A+B C+D gdy [A]>>[B] minimum [A] =10 [B] v=k[b] przykładem są reakcje hydrolizy, w których woda jest zarówno rozpuszczalnikiem, jak i jednym ze składników reakcji występującym w dużym nadmiarze. 27

Kinetyka reakcji chemicznych reakcje złożone: reakcje następcze zachodzą etapami, poprzez stany pośrednie w ten sposób, że produkt jednej reakcji staje się substratem reakcji następnej są to najczęściej spotykane typy reakcji biochemicznych; specyficzną formą reakcji następczych są reakcje łańcuchowe - zachodzą przy udziale wolnych rodników reakcje równoległe, w których z jednego substratu mogą powstawać różne produkty reakcje mieszane jeżeli mamy do czynienia z reakcją zachodzącą w kilku etapach to prędkość całkowita: jest równa sumie prędkości poszczególnych reakcji cząstkowych zależna jest od prędkości etapu najwolniejszego. 28

stężenie Kinetyka reakcji chemicznych szybkość reakcji mierzymy oznaczając: przyrost stężenia produktów ubytek stężenia substratów reakcji w czasie v =dc/dt = -dc s /dt=+dc p /dt szybkość reakcji w dowolnym momencie jest równa tangensowi kąta nachylenia stycznej do krzywej zmiany stężeń substratów (produktów) w czasie w miarę postępu reakcji wartość tg maleje v t =tg czas tg > tg 1 29

Zależność prędkości reakcji od temperatury Zapoczątkowanie zachodzenia reakcji związane jest z dostarczeniem pewnych ilości energii. Wzrost temperatury powoduje zwiększenie liczby cząstek obdarzonych energią kinetyczną wystarczająco wysoką, aby zderzenie było efektywne. Związane jest to ze wzrostem prędkości poruszania się cząstek, przez co zderzenia stają się liczniejsze i bardziej gwałtowne. Jeżeli dochodzi do zderzeń cząstek, których energia kinetyczna jest większa od energii aktywacji, to zderzenie może być efektywne. Wraz ze wzrostem temperatury rośnie też prędkość reakcji. 30

Zależność prędkości reakcji od temperatury Wraz ze wzrostem temperatury rośnie też prędkość reakcji. Jest to wzrost wykładniczy. Empiryczna reguła van t Hoffa dla większości reakcji wzrost temperatury o 10 o C powoduje od 2 do 4 razy wzrost prędkości reakcji. Wzrost prędkości jest bardziej zauważalny w niskich temperaturach, przez co reguła ta spełnia się najwyraźniej w temperaturach bliskich temperaturze pokojowej Liczbę określającą, ile razy wzrośnie prędkość reakcji, po wzroście temperatury o 10 o C nazywamy współczynnikiem temperaturowym reakcji Q = k T+10 k T 31

Zależność prędkości reakcji od temperatury rówanie Arrheniusa k=p Z o e- (E/RT) lg k = lg (p Z o ) E/(2,3RT) p współczynnik steryczny poprawka wynikająca z uwzględnienie wzajemnego oddziaływania przestrzennego cząstek Z- średnia liczba zderzeń w jednostce czasu E energia aktywacji zależność stałej k od temperatury jest wykładnicza - małe zmiany temperatury powodują duże zmiany prędkości reakcji 32

Katalizatory zajście reakcji wymaga dostarczenia pewnej ilości energii, zwanej energią aktywacji by przyspieszyć zachodzenie reakcji, równocześnie nie zwiększając energii stosujemy substancje zwane katalizatorami ich działanie polega na zmianie mechanizmów reakcji kompleks aktywny tworzy się nie tylko z substratów reakcji, ale w jego skład wchodzą też cząstki katalizatora. 33

Entalpia swobodna Katalizatory Katalizatory łączą się z substancjami reagującymi tworząc produkty pośrednie o niższej energii w stanie wzbudzonym niż substraty bez katalizatora. Stan początkowy wzbudzony końcowy Reakcje z udziałem katalizatora składają się wprawdzie z kilku etapów, oraz wymagają pokonania wielu barier energetycznych, ale mają one niższe wysokości niż w reakcji zachodzącej bez katalizatora. Rolę katalizatora można porównać do działania temperatury, i jego wydajność liczyć z równania Arrheniusa. wolno A+B AB szybko K+A KA* wolno KA+B KAB* AB+K Ga Ga' Gs Gp 2 0 A+B K+A AB* KA* KAB* KA+B przebieg reakcji AB AB+K 34

Katalizatory Enzymy jako katalizatory Enzymy-białka odpowiedzialne za przyśpieszenie większości procesów przebiegających w organizmie żywym Reakcja osiąga dostateczną szybkość w obecności enzymu jedynie wtedy gdy jest termodynamicznie możliwa, czyli wtedy, gdy towarzyszy jej spadek entalpii swobodnej G<0 Ograniczony zakres działania - optymalna temperatura 30-40 stopni Celsjusza Zmiany ph nie mogą być duże, wraz ze zmianą stężenia jonów wodorowych zmienia się struktura enzymu i jego zdolności katalityczne 35

Katalizatory Różnice pomiędzy katalizatorami chemicznymi a enzymami 1. Efektywność katalizy -katalizatory chemiczne przyśpieszają reakcje rzędu 1000-10 tyś. razy - enzymy przyśpieszają reakcje kilkadziesiąt tysięcy do kilku miliardów razy 2. Swoistość reakcji - w wyniku reakcji enzymatycznej powstają określone produkty - w wyniku katalizy chemicznej powstaje mieszanina produktów trudnych do przewidzenia 36

Katalizatory 3. Warunki reakcji - łagodne w przypadku enzymów - drastyczne w przypadku katalizatorów chemicznych 4. Możliwość regulacji - możliwa w przypadku enzymów - nie jest możliwa w przypadku katalizatorów chemicznych 37