PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Podobne dokumenty
PRZEDMIOTOWY SYSTEM OCENIANIA SZKOŁY PODSTAWOWEJ IM. JÓZEFA WYBICKIEGO W GOSTKOWIE MATEMATYKA DLA KLAS IV VI

Zasady Oceniania Przedmiot: Matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

Przedmiotowe Zasady Oceniania (PZO) z matematyki w klasach 4 6 Szkoły Podstawowej w Wąsowie

Zasady oceniania przedmiotowego z matematyki w klasach IV-VI szkoły podstawowej oraz I - III gimnazjum Rok szkolny 2014/2015 Sposoby sprawdzania

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO)

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

ZESPÓŁ SZKÓŁ W DĄBROWIE PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASY IV, V, VI SZKOŁY PODSTAWOWEJ KLASY I, II, III GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA - MATEMATYKA

PRZEDMIOTOWY SYSTEM OCENIANIA

1. Formy sprawdzania wiedzy i umiejętności ucznia wraz z wagami ocen

Przedmiotowy System Oceniania z Matematyki

Przedmiotowy system oceniania uczniów z matematyki

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI. W GIMNAZJUM w MALCZYCACH

Przedmiotowy System Oceniania z matematyki w Szkole Podstawowej w Janowie Rok szkolny 2015/2016

Wymagania Edukacyjne w Szkole Podstawowej nr 4. im. Marii Dąbrowskiej w Kaliszu. Matematyka. Przedmiotem oceniania są:

Opracowanie: Iwona Remik, Małgorzata Budaj, Elżbieta Idziak, Katarzyna Łysiak, Elżbieta Łukomska

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I FIZYKI KL 8 SZKOŁA PODSTAWOWA NR 15

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL.I -III W PUBLICZNYM GIMNAZJUM SIÓSTR SALEZJANEK IM. ŚW. JANA BOSKO W OSTROWIE WIELKOPOLSKIM

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

WYMAGANIA EDUKACYJNE. dla przedmiotu MATEMATYKA - GIMNAZJUM. Podstawa prawna:

Przedmiotowy system oceniania z matematyki

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Nauczanie matematyki w szkole podstawowej odbywa się na podstawie programu : Matematyka z plusem- GWO

Przedmiotowy system oceniania z matematyki

im. Wojska Polskiego w Przemkowie

Szczegółowe warunki i sposób oceniania wewnątrzszkolnego z matematyki Szkoła Podstawowa kl. IV-VI i Gimnazjum I-III rok szkolny 2015/2016

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA GIMNAZJUM NR 30 PRZY ZESPOLE SZKÓŁ NR 22 W BYDGOSZCZY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM

Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 3 w Zamościu

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO)

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI

PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI W KLASACH IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

Przedmiotowy System Oceniania MATEMATYKA

KRYTERIA OCEN Z MATEMATYKI. 1. Pomiar osiągnięć ucznia odbywa się za pomocą następujących narzędzi:

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KONTRAKT

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PODSTAWOWEJ I GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI

Przedmiotowe Zasady Oceniania z matematyki w klasach 4 8 Publicznej Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU

PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA W KLASACH I-III GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO)

Kryteria oceniania z matematyki dla klas : IV,V, VI. podręcznik, odpowiedni zeszyt ćwiczeń, zeszyt przedmiotowy, przybory do pisania, zatemperowany

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Publicznym Gimnazjum Nr 1 w Woli Rzędzińskiej

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

PRZEDMIOTOWE ZASADY OCENIANIA HISTORIA I SPOŁECZEŃSTWO SZKOŁY PODSTAWOWEJ NR 7 ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH NR 7 W KLASACH IV VI

Przedmiotowy system oceniania z matematyki

OCENIANIE PRZEDMIOTOWE Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA SPIS TREŚCI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV-VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w klasach IV VI Szkoły Podstawowej w Szczepańcowej. Opracowała: Wioletta Pilawska

ZASADY OCENIANIA Z GEOGRAFII

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM W KLASACH 4-6 SZKOŁY PODSTAWOWEJ

Przedmiotowy system oceniania z biologii Gimnazjum im. gen. Kazimierza Tańskiego w Chmielniku

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

ZASADY I KRYTERIA OCENIANIA Z MATEMATYKI DLA UCZNIÓW KLAS

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I MATEMATYKI W PRAKTYCE ROK SZKOLNY 2018/2019

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Przedmiotowe Zasady Oceniania z matematyki

STOPIEŃ OZNACZENIE CYFROWE SKRÓT LITEROWY Celujący 6 Cel Bardzo dobry 5 Bdb Dobry 4 Db Dostateczny 3 Dst Dopuszczający 2 Dop Niedostateczny 1 Ndst

KRYTERIA OCENIANIA Z FIZYKI

PRZEDMIOTOWE ZASADY OCENIANIA. MATEMATYKA W KLASACH 4 7 SZKOŁY PODSTAWOWEJ oraz II i III GIMNAZJUM

Przedmiotowy system oceniania z matematyki Spis treści:

Przedmiotowe Zasady Oceniania matematyka, geometria w ćwiczeniach, funkcje w zastosowaniach Sposoby sprawdzania osiągnięć edukacyjnych

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA,

Przedmiotowy System Oceniania z matematyki w Szkole Podstawowej im. Erazma z Rotterdamu nr 7 w Poznaniu w klasach IV-VI

Przedmiotowy System Oceniania z matematyki

PRZEDMIOTOWY SYSTEM OCENIANIA CHEMIA

Przedmiotowe Zasady Oceniania i wymagania edukacyjne z matematyki w klasach 4 7 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.

Ocenianie przedmiotowe - matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA II ETAP EDUKACYJNY - KLASY IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA SZKOŁA PODSTAWOWA NR 3 WĘGORZEWO

POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV VI

Przedmiotowy System Oceniania z matematyki. Sporządzony przez Komisję przedmiotów matematycznych

Matematyka z kluczem - program nauczania matematyki zgodny z podstawą programową z dnia 14 lutego 2017 r.

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASACH I - III GIMNAZJUM NR 3 W PROMNIKU

PZO z matematyki. dla klas 4, 5, 6, 7,8. na rok 2018/2019.

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI SZKOŁA PODSTAWOWA IM. JANUSZA KORCZAKA W PRZECHLEWIE I. Formy oceniania ucznia

Przedmiotowy system oceniania z matematyki w roku szkolnym stosowany przez Katarzynę Ochmińską w klasach 3A, 3B.

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Przedmiotowe Zasady Oceniania z matematyki w klasach 4 6 szkoły podstawowej w roku szkolnym 2016/2017

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO

Przedmiotowe Zasady Oceniania z matematyki w klasach 4 8 szkoły podstawowej w roku szkolnym 2017/2018

Przedmiotowe Zasady. Oceniania MATEMATYKA

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM im. Gen. Władysława Andersa w Lesku

Transkrypt:

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I. KONTRAKT MIĘDZY NAUCZYCIELEM A UCZNIEM 1. Obowiązkiem ucznia jest punktualne stawiennictwo na lekcje matematyki. Jeżeli uczeń spóźni się na lekcję, to ma obowiązek podejść do nauczyciela prowadzącego zajęcia, przeprosić i zwięźle wyjaśnić powód spóźnienia. 2. Uczeń jest zobowiązany do przestrzegania zasad kultury współżycia w odniesieniu do kolegów i nauczyciela matematyki, w szczególności do zachowania dyscypliny oraz szanowania prawa innych do zdobywania wiedzy. 3. Uczeń ma obowiązek rzetelnego przygotowania się do lekcji matematyki, co oznacza: a) posiadanie zeszytu przedmiotowego oraz przyborów geometrycznych, b) odrobienie zadania domowego, c) przygotowanie się do odpowiedzi: ustnej z 3 ostatnich lekcji, ustnej z partii materiału z klas niższych, o powtórzenie której prosił nauczyciel, pisemnej - kartkówek - z 3 ostatnich lekcji, d) przygotowanie się do pracy pisemnej zapowiedzianej wcześniej i odnotowanej w dzienniku lekcyjnym - z zakresu wiadomości i umiejętności, który ma obejmować. 4. Uczeń może dwa razy w semestrze być nieprzygotowany, raz nie odrobić pisemnej pracy domowej, ale zgłasza to przed lekcją (nie dotyczy to zapowiedzianych prac klasowych). Za każde zgłoszenie takiego faktu otrzymuje kropkę. Ponadto uczeń ma obowiązek uzupełnić brakującą lub źle napisaną pracę domową na następną lekcję. Za nieodrobienie pracy domowej, bez zgłoszenia nauczycielowi uczeń otrzymuje ocenę niedostateczną. 5. Obowiązkiem ucznia jest osobiste zgłoszenie na początku lekcji nieprzygotowania się do zajęć oraz zwięzłe podanie nauczycielowi przyczyn tego stanu rzeczy. 6. Prowadzenie zeszytu przedmiotowego jest obowiązkiem ucznia. Zeszyt powinien być estetyczny i czytelny oraz posiadać komplet notatek i prac domowych. Wszystkie rysunki i konstrukcje w zeszycie uczeń ma obowiązek wykonywać ołówkiem. Uczeń który na bieżąco na lekcji nie pracuje w zeszycie (nie rozwiązuje zadań samodzielnie bądź wspólnie w klasie) otrzymuje ocenę niedostateczną za brak zadania. 7. Prace kontrolne są obowiązkowe. Jeżeli uczeń z przyczyn losowych nie może w tym dniu napisać pracy, w ciągu 2 tygodni zobowiązany jest to zrobić, po uprzednim ustaleniu terminu z nauczycielem. Jeśli mimo powyższej możliwości, uczeń nie napisze zaległej pracy pisemnej, to na lekcji matematyki (pierwszej po upływie owych 2 tygodni) otrzyma zestaw zadań adekwatny do zestawu z zaległej pracy pisemnej i zobowiązany jest przystąpić do jego rozwiązania. 8. Uczeń, który z przyczyn nieusprawiedliwionych opuścił pracę pisemną pisze ją na tej lekcji, na której pojawi się po raz pierwszy. W dniu następnym - na początku lekcji matematyki - uczeń ma obowiązek okazać nauczycielowi zeszyt z uzupełnioną lekcją matematyki, na której pisał zaległą pracę. 9. Uczeń ma prawo do poprawy oceny z każdej pracy klasowej w terminie 2 tygodni od otrzymania sprawdzonej pracy.

10. Nauczyciel ma prawo odmówić uczniowi prawa do poprawy pracy i sprawdzianu w przypadku, gdy podczas tejże pracy pisemnej uczeń: a) ściągał, b) pracował niesamodzielnie - rozmawiał z innymi, c) korzystał z urządzeń elektronicznych. 11. Uczniom klas pierwszych w okresie adaptacji (pierwsze 3 tygodnie września) nie wstawia się ocen niedostatecznych. 12. Uczeń ma prawo być nieprzygotowany do lekcji następnego dnia po dyskotece szkolnej lub całodniowej wycieczce. 13. Uczeń nieobecny 1 dzień ma obowiązek przyjść na następną lekcję przygotowany. 14. Uczeń nieobecny do 5 dni (nieobecność usprawiedliwiona) może być nieprzygotowany do zajęć dwa kolejne dni. Przy dłuższych nieobecnościach uczeń indywidualnie ustala z nauczycielem termin nadrabiania zaległości. 15. Jednodniowe zawody sportowe i inne wyjścia lub imprezy klasowe nie zwalniają od przygotowania do zajęć w dniu następnym. 16. Za aktywną pracę na lekcji uczeń może otrzymać "+". Pięć plusów jest równoważne ocenie bardzo dobrej. Za celowy brak pracy na lekcji uczeń może otrzymać ocenę niedostateczną. Uczeń, który nie uważa na lekcji i nie odpowiedzieć na pytanie zadane przez nauczyciela z bieżącego materiału otrzymuje ocenę niedostateczną z aktywności na lekcji. 17. Za szczególne osiągnięcia na lekcji, błyskotliwe pomysły, współpracę w grupie, pomoc kolegom w nauce uczeń może od razu otrzymać ocenę bardzo dobrą lub celującą. 18. Nauczyciel, w sytuacji, gdy uczeń przeszkadza na lekcji sobie i innym kolegom w zdobywaniu wiedzy (tzn. nie uważa na lekcji, rozmawia itp.), ma obowiązek: a. ustnie upomnieć ucznia, b. wpisać uwagę do zeszytu uwag lub zeszytu przedmiotowego. 19. Uczeń ma prawo poprawić każdą ocenę. 20. Każdy sprawdzian wiedzy i umiejętności zapowiadany jest z tygodniowym wyprzedzeniem. 21. Praca klasowa podsumowująca wiadomości i umiejętności z poszczególnych semestrów musi być poprzedzona lekcją utrwalającą materiał z danego semestru. 22. Sprawdzone i ocenione prace nauczyciel oddaje uczniom w nieprzekraczalnym terminie 2 tygodni od daty pisania danej pracy, z wyłączeniem przerw uwzględnionych w kalendarium roku szkolnego. 23. W przypadku uczniów o specjalnych potrzebach edukacyjnych nauczyciel dostosowuje wymagania do indywidualnych możliwości ucznia, uwzględniając zalecenia PPP. II. CO PODLEGA OCENIANIU WIADOMOŚCI opanowanie podstawowych pojęć i poprawne stosowanie terminów, wykonywanie obliczeń w różnych sytuacjach praktycznych, posługiwanie się własnościami figur, a także językiem symboli i wyrażeń algebraicznych oraz funkcjami,

wykorzystywanie wiedzy matematycznej do problemów z zakresu różnych dziedzin kształcenia szkolnego oraz życia codziennego, dostrzeganie prawidłowości matematycznych w otaczającym świecie. UMIEJĘTNOŚCI Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze, używa języka matematycznego do opisu rozumowania i uzyskanych wyników, analizuje i wnioskuje na podstawie wykresów, wykorzystuje wiedzę w praktyce, korzysta z różnych źródeł wiedzy, Wykorzystywanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych, interpretuje pojęcia matematyczne i operuje obiektami i, Modelowanie matematyczne. Uczeń dobiera model matematyczny do prostej sytuacji, buduje model matematyczny danej sytuacji, Użycie i tworzenie strategii. Uczeń strategię jasno wynikającą z treści zadania, tworzy strategię rozwiązania problemu, Rozumowanie i argumentacja. Uczeń prowadzi proste rozumowania, podaje argumenty uzasadniające poprawność rozumowania. POSTAWY Nauczyciel kształtuje u uczniów postawy sprzyjające ich dalszemu rozwojowi indywidualnemu i społecznemu takie, jak: współpraca w zespole, autoprezentacja, samodzielność, twórczość w pracy, ciekawość poznawcza, kreatywność, przedsiębiorczość, kultura osobista, nastawienie do podejmowania wysiłku intelektualnego oraz postawy dociekliwości, organizacja pracy, systematyczność, pracowitość, wytrwałość, uczciwość, wiarygodność, odpowiedzialność, poczucie własnej wartości, szacunek dla innych ludzi, umiejętność prowadzenia dyskusji, precyzyjnego formułowania problemów i argumentowania, wyrabianie nawyku sprawdzania otrzymanych odpowiedzi i korygowania popełnianych błędów, gotowość do uczestnictwa w kulturze, podejmowania inicjatyw. III. NARZĘDZIA POMIARU I OBSERWACJI OSIĄGNIĘĆ UCZNIÓW Pomiar osiągnięć uczniów odbywa się poprzez ocenę następujących form aktywności uczniów: prace klasowe, sprawdziany semestralne i roczne, kartkówki, odpowiedzi ustne, aktywność podczas lekcji, prace domowe, prace długoterminowe, projekty edukacyjne, inne formy aktywności, np. udział w konkursach matematycznych, wykonywanie pomocy dydaktycznych, aktywny udział w pracach koła matematycznego.

Liczba i częstotliwość pomiarów jest zależna od liczby godzin w danej klasie oraz rozkładu materiału. Nauczyciel w ciągu jednego semestru powinien wystawić co najmniej tyle ocen cząstkowych ile wynosi liczba godzin pomnożona przez 2, ale nie mniej niż 4 oceny. IV. SKALA STOPNIOWA OCENY PRAC PISEMNYCH Do oceniania prac pisemnych się kryteria: 0% - 29% możliwych do zdobycia punktów - niedostateczny 30% - 49% możliwych do zdobycia punktów - dopuszczający 50% - 74% możliwych do zdobycia punktów - dostateczny 75% - 89% możliwych do zdobycia punktów - dobry 90% - 99% możliwych do zdobycia punktów - bardzo dobry 100% możliwych do zdobycia punktów - celujący W ocenianiu bieżącym dopuszcza się możliwość stosowania rozszerzonej skali ocen przez stosowanie,,+ i,,- Niektóre prace (bez zadań dodatkowych) nie będą upoważniać do oceny celującej. Istnieje możliwość stawiania ocen pośrednich takich jak: dop+, dst+, db+, bdb+. Ocena jest jawna dla ucznia i jego rodziców. Uczeń sprawdziany otrzymuje do wglądu. Na prośbę ucznia lub rodziców nauczyciel uzasadnia ocenę na piśmie. III. OBSZARY AKTYWNOŚCI Na lekcjach matematyki oceniane są następujące obszary aktywności ucznia: Rozumienie pojęć matematycznych i znajomość ich definicji Znajomość i stosowanie poznanych twierdzeń Prowadzenie rozumowań Posługiwanie się symboliką i językiem matematyki adekwatnym do obecnego etapu kształcenia Analizowanie tekstów w stylu Rozwiązywanie zadań z wykorzystaniem poznanych metod Stosowanie wiedzy w rozwiązywaniu problemów poza matematycznych Prezentowanie wyników swojej pracy w różnych formach Aktywność na lekcjach, praca w grupach i własny wkład pracy ucznia Przy ocenie odpowiedzi ustnych, prac projektowych, zadań domowych, pracy grupowej, itp. bierze się pod uwagę stopień opanowania umiejętności w poszczególnych obszarach aktywności. Ocenie podlegają wiadomości i umiejętności zawarte planach realizacji materiału nauczania z matematyki dla wszystkich klas gimnazjum IV. WYMAGANIA NA POSZCZEGÓLNE STOPNIE

Obszary aktywności Rozumienie pojęć matematycznych i znajomość ich definicji Znajomość i stosowanie poznanych twierdzeń Prowadzenie rozumowań Posługiwanie się symboliką i językiem matematyki adekwatnym do obecnego etapu kształcenia Analizowanie tekstów w stylu Rozwiązywanie zadań z wykorzystaniem poznanych metod Stosowanie wiedzy w rozwiązywaniu problemów pozamatematycznych Prezentowanie wyników swojej pracy w różnych formach Aktywność na lekcjach, praca w dopuszczający dostateczny dobry bardzo dobry celujący Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: intuicyjnie przeczytać umie klasyfikować uogólnia określenia rozumie pojęcia, definicje zapisane formułować pojęcia, pojęć, zna ich nazwy, za pomocą definicje, zapisać podaje szczególne wykorzystuje podać symboli, je, przypadki, uogólnienia i przykłady modeli analogie przy dla tych pojęć, opisie pojęć, intuicyjnie rozumie podstawowe twierdzenia, wskazać założenie i tezę, zna symbole matematyczne, wskazać dane, niewiadome, wykonuje rysunki z oznaczeniami do typowych zadań, tworzy z pomocą nauczyciel proste teksty w stylu odczytuje, z pomocą nauczyciela, dane z prostych tekstów, rysunków, tabel zna zasady stosowania podstawowych algorytmów, je z pomocą nauczyciela, umiejętności problemów praktycznych, z pomocą nauczyciela, swojej pracy w sposób narzucony przez nauczyciela, często odrywa się od zadanej pracy, stosować twierdzenia w typowych zadaniach, podać przykład potwierdzający prawdziwość twierdzenia, naśladować podane rozwiązania w analogicznych sytuacjach tworzy proste teksty w stylu odczytuje dane z prostych tekstów, rysunków, tabel, podstawowe algorytmy w typowych zadaniach, umiejętności typowych problemów praktycznych, swojej pracy w sposób jednolity, wybrany przez siebie, stara się zrozumieć zadany sformułować twierdzenie proste i odwrotne, przeprowadzić proste wnioskowania, analizuje treść zadania, układa plan samodzielnie rozwiązuje typowe zadnia tworzy teksty w stylu z użyciem symboli odczytuje dane z tekstów, rysunków, tabel, algorytmy w sposób efektywny, sprawdzić wyniki, umiejętności różnych problemów praktycznych, swojej pracy na różne sposoby, nie zawsze dobrze dobrane do problemu, zadaje pytania związane z uzasadnia twierdzenia w nieskomplikowanych przypadkach, uogólnienia i analogie do formułowanych hipotez, umie analizować i doskonalić swoje samodzielnie formułować twierdzenia i definicje, odczytuje i porównuje dane z tekstów, rysunków, tabel, wykresów, algorytmy uwzględniając nietypowe szczególne przypadki i uogólnienia, umiejętności nietypowych problemów z innych dziedzin, swojej pracy we właściwie wybrany przez siebie sposób, wskazuje pomysły na rozwiązanie operuje twierdzeniami i dowodzi je, oryginalnie rozwiązać zadanie, także o podwyższonym stopniu trudności, samodzielnie formułować definicje i twierdzenia z użyciem symboli matematycznych, odczytuje i analizuje dane z tekstów, rysunków, tabel wykresów, przetwarza dane z tekstów, rysunków, tabel, wykresów, algorytmy w zadaniach nietypowych, umiejętności skomplikowanych problemów z innych dziedzin, swojej pracy w różnorodny sposób, dobiera formę prezentacji do problemu, docenia wkład wnoszony przez

Obszary aktywności Rozumienie pojęć matematycznych i znajomość ich definicji Znajomość i stosowanie poznanych twierdzeń Prowadzenie rozumowań Posługiwanie się symboliką i językiem matematyki adekwatnym do obecnego etapu kształcenia grupach i własny wkład pracy ucznia dopuszczający dostateczny dobry bardzo dobry celujący Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: intuicyjnie przeczytać umie klasyfikować uogólnia określenia rozumie pojęcia, definicje zapisane formułować pojęcia, pojęć, zna ich nazwy, za pomocą definicje, zapisać podaje szczególne wykorzystuje podać symboli, je, przypadki, uogólnienia i przykłady modeli analogie przy dla tych pojęć, opisie pojęć, intuicyjnie rozumie podstawowe twierdzenia, wskazać założenie i tezę, zna symbole matematyczne, wskazać dane, niewiadome, wykonuje rysunki z oznaczeniami do typowych zadań, tworzy z pomocą nauczyciel proste teksty w stylu dyskutuje na tematy niezwiązane z praca, na czas wykonuje tylko część zadanej pracy, rzadko wspiera innych i rzadko okazuje im szacunek, stosować twierdzenia w typowych zadaniach, podać przykład potwierdzający prawdziwość twierdzenia, naśladować podane rozwiązania w analogicznych sytuacjach tworzy proste teksty w stylu problem, przez większość czasu wykonuje zadaną prace, lecz czasem się od niej odrywa, niezbyt często wnosi wkład ale uważnie słucha innych, wykonuje większość zadań na czas, czasami nieobecny, czasami chwali innych, zachęca do dobrej komunikacji, sformułować twierdzenie proste i odwrotne, przeprowadzić proste wnioskowania, analizuje treść zadania, układa plan samodzielnie rozwiązuje typowe zadnia tworzy teksty w stylu z użyciem symboli postawionym problemem, konsekwentnie wykonuje zadaną pracę, dysponuje całością potrzebnego materiału, słuchać innych, stara się stworzyć przyjazną atmosferę i zachęca innych do pracy, uzasadnia twierdzenia w nieskomplikowanych przypadkach, uogólnienia i analogie do formułowanych hipotez, umie analizować i doskonalić swoje samodzielnie formułować twierdzenia i definicje, problemu, ma pomysły, dba o jakość pracy, przypomina reguły pracy grupowej, wyraża szacunek dla innych pomysłów i ich autorów, operuje twierdzeniami i dowodzi je, oryginalnie rozwiązać zadanie, także o podwyższonym stopniu trudności, samodzielnie formułować definicje i twierdzenia z użyciem symboli matematycznych, innych, odnosi się do wszystkich z szacunkiem, wspiera członków grupy potrzebujących pomocy, w razie nieobecności dostarcza członkom grupy potrzebne materiały, V. KRYTERIA OCENY ŚRÓDROCZNEJ I ROCZNEJ 1. Na 4 tygodnie przed śródrocznym klasyfikacyjnym posiedzeniem rady pedagogicznej nauczyciel przedmiotu informuje ucznia o przewidywanej dla niego niedostatecznej śródrocznej ocenie i zaznacza ją ołówkiem w dzienniku lekcyjnym. 2. Na 4 tygodnie przed klasyfikacyjnym posiedzeniem rady pedagogicznej nauczyciel przedmiotu informuje ucznia o przewidywanej dla niego rocznej ocenie i zaznacza ją ołówkiem w dzienniku lekcyjnym.

3. Ocenę śródroczną (roczną) wystawia nauczyciel najpóźniej na trzy dni przed terminem klasyfikacji śródrocznej (rocznej). 4. Przy ustalaniu oceny śródrocznej i rocznej nauczyciel bierze pod uwagę stopnie ucznia z poszczególnych obszarów działalności według następującej hierarchii ważności: a. prace klasowe; b. sprawdziany i odpowiedzi ustne; c. aktywność na zajęciach; d. aktywność pozalekcyjna; e. prace domowe i prace długoterminowe oraz projekty. 5. Ocena roczna wystawiana jest jak śródroczna, przy czym pod uwagę bierze się ocenę śródroczną. 6. Dopuszcza się możliwość przystąpienia do egzaminu podwyższającego ocenę roczną z danego przedmiotu. 7. Na pisemną prośbę ucznia lub jego rodziców w ciągu 7 dni przed posiedzeniem Rady Pedagogicznej można odwołać się od zaproponowanej oceny rocznej. 8. Na tydzień przed rocznym klasyfikacyjnym posiedzeniem rady Pedagogicznej nauczyciel informuje ucznia i i jego rodziców o przewidywanej dla niego ocenie. 9. Uczeń ma prawo do uzyskania wyższej niż przewidywana oceny rocznej, po spełnieniu następujących warunków: a. oceny z co najmniej połowy prac pisemnych (klasowych) są ocenami z poziomu o który ubiega się uczeń b. prace klasowe są poprawiane w określonym terminie, c. uczeń nadrobi zaległości i spełni wymagania określone w planach wynikowych na wyższą ocenę. 10. Na koniec semestru nie przewiduje się dodatkowych sprawdzianów zaliczeniowych. 11. Uczeń może nie być klasyfikowany z matematyki, jeżeli brak jest podstaw do ustalenia śródrocznej lub rocznej (semestralnej) oceny klasyfikacyjnej z powodu nieobecności ucznia na zajęciach edukacyjnych przekraczającej połowę czasu przeznaczonego na zajęcia w szkolnym planie nauczania. VI. SPOSOBY INFORMOWANIA UCZNIÓW I ICH RODZICÓW O POSTĘPACH EDUKACYJNYCH. Nauczyciel - uczeń. 1. Nauczyciel przekazuje uczniowi do każdej wystawionej oceny informację zwrotną, która informuje ucznia o tym, co zrobił dobrze, co i w jaki sposób powinien jeszcze poprawić oraz jak dalej ma pracować. 2. Pomaga w samodzielnym planowaniu rozwoju. 3. Motywuje do dalszej pracy. 4. Uczeń ma możliwość otrzymywania dodatkowych wyjaśnień i uzasadnień do wystawionej oceny. Nauczyciel - rodzice. Nauczyciele na początku każdego roku szkolnego informują uczniów i rodziców o wymaganiach edukacyjnych wynikających z realizowanego przez siebie programu nauczania i oceniania osiągnięć edukacyjnych uczniów.

Podczas wywiadówek, indywidualnych konsultacji, rozmów interwencyjnych nauczyciel przekazuje rodzicom (opiekunom): 1. Informacje o aktualnym stanie rozwoju i postępów w nauce. 2. Dostarcza rodzicom informacji o trudnościach i uzdolnieniach ucznia. 3. Przekazuje wskazówki do pracy z uczniem. VII. MOTYWOWANIE UCZNIÓW DO POSTĘPÓW W NAUCE Nauczyciel: przedstawia jawne, jasne kryteria ocen, wyjaśnia uczniom zasady poprawiania ocen, nagradza twórczość i kreatywność uczniów, często chwali uczniów, stawia przed uczniem zadania o różnym stopniu trudności, pozwala wykazać się uczniowi, umożliwiając mu wykonanie pracy dodatkowej, na lekcjach metody aktywizujące i odpowiednie pomoce dydaktyczne, zachęca uczniów do samooceny, w wyniku której lepiej poznają siebie, określają swoje możliwości i definiują obszary wymagające rozwoju, dostrzega nawet najmniejsze osiągnięcia ucznia. VIII. WSPOMAGANIE UCZNIÓW OSIĄGAJĄCYCH NIEZADOWALAJĄCE WYNIKI W NAUCE Nauczyciel wspomaga poprzez: indywidualizację pracy z uczniem, proponowanie zadań dodatkowych, motywowanie ucznia do dalszej pracy nad sobą, uświadamianie potrzeb, proponowanie odpowiednich źródeł wiedzy, wskazywanie autorytetów, organizację pomocy koleżeńskiej, określanie mocnych i słabych stron pracy ucznia, motywowanie i zachęcanie ucznia do poprawy oceny, zachęcanie ucznia do udziału w zajęciach dodatkowych IX. Dostosowanie form i wymagań edukacyjnych uczniów z SPE 1. uczniowie z dysleksją a. należy kontrolować stopień zrozumienia samodzielnie przeczytanych przez ucznia poleceń b. zmniejszyć ilość zadań, poleceń do wykonania c. pisemne sprawdziany powinny ograniczyć się do sprawdzanych wiadomości, wskazane jest stosowanie testów wyboru, zadań niedokończonych... d. preferować wypowiedzi ustne e. preferować poprawność toku rozumowanie a nie koniecznie jego wynik f. należy unikać wyrywania do odpowiedzi g. uczeń powinien siedzieć w zasięgu nauczyciela 2. uczniowie ze specjalnymi potrzebami edukacyjnymi a. częste odwoływanie się do konkretów

b. należy podawać polecenia w prostszej formie c. wydłużyć czas na wykonanie określonego zadania d. podchodzić do dziecka w trakcie samodzielnej pracy w razie potrzeby udzielać pomocy, wyjaśnień, mobilizować do wysiłku i ukończenia zadania e. przyswojenie nowych definicji, pojęć itp. rozłożyć w czasie, często przypominać i utrwalać f. na poprawie sprawdzianu pomóc korzystać z pomocy dydaktycznych np. kalkulator g. nie wyrywać do natychmiastowej odpowiedzi h. w trakcie zadań tekstowych sprawdzać, czy uczeń przeczytał treść zadania i czy prawidłowo ja zrozumiał, w razie potrzeby udzielać dodatkowych wskazówek i. w czasie sprawdzianu zwiększyć ilość czasu na rozwiązanie zadania j. w domu dać do rozwiązania podobne zadania k. uwzględniać trudności związane z myleniem znaków działań, przestawianiem cyfr... l. materiał sprawiający trudność dłużej utrwalać, dzielić na mniejsze porcje m. oceniać tok rozumowania a nie efekt końcowy n. Oceniać dobrze, jeśli wynik zadania jest prawidłowy, choćby strategia dojścia do niego była niezbyt jasna