Wprowadzenie do szeregów czasowych i modelu ARIMA



Podobne dokumenty
Finansowe szeregi czasowe

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

3. Analiza własności szeregu czasowego i wybór typu modelu

Stacjonarność Integracja. Integracja. Integracja

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

wprowadzenie do analizy szeregów czasowych

Analiza szeregów czasowych: 7. Liniowe modele stochastyczne

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Wyk ad II. Stacjonarne szeregi czasowe.

Prawa wielkich liczb, centralne twierdzenia graniczne

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne

Prawdopodobieństwo i statystyka

Modelowanie ekonometryczne

ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Analiza autokorelacji

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Wykład z równań różnicowych

3. Modele tendencji czasowej w prognozowaniu

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Wykład z równań różnicowych

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego

PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH. 1. Wprowadzenie. Zdzisław Iwulski* Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

VI. Równania różniczkowe liniowe wyższych rzędów

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Ekonometria dynamiczna i finansowa Kod przedmiotu

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Procesy stochastyczne

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Procesy stochastyczne

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

Metody systemowe i decyzyjne w informatyce

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

Centralne twierdzenie graniczne

8 Całka stochastyczna względem semimartyngałów

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

Ważne rozkłady i twierdzenia

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Własności statystyczne regresji liniowej. Wykład 4

Metody Prognozowania

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

Rachunek Prawdopodobieństwa Anna Janicka

Transmitancje układów ciągłych

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Kurs wyrównawczy - teoria funkcji holomorficznych

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

Ćwiczenie 5 PROGNOZOWANIE

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Stanisław Cihcocki. Natalia Nehrebecka

CYFROWE PRZETWARZANIE SYGNAŁÓW

Układy równań i równania wyższych rzędów

Metody systemowe i decyzyjne w informatyce

Stanisław Cichocki Natalia Neherbecka

przy warunkach początkowych: 0 = 0, 0 = 0

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Biostatystyka, # 3 /Weterynaria I/

3.Funkcje elementarne - przypomnienie

Wielomiany. dr Tadeusz Werbiński. Teoria

III. Funkcje rzeczywiste

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Układy stochastyczne

Wprowadzenie do analizy korelacji i regresji

Estymacja w regresji nieparametrycznej

Transkrypt:

Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011

Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA - model ARMA z trendem

Co to rozumiemy przez szereg czasowy? Definicja 1 Szereg czasowy to ciąg danych liczbowych, w którym każda obserwacja związana jest z konkretnym momentem w czasie. Aby móc używać narzędzi statystycznych konieczne jest zbudowanie matematycznego modelu. Definicja 2 Szereg czasowy to realizacje pewnego procesu stochastycznego.

Przykłady szeregów czasowych Występowanie szeregów Dane giełdowe Dane dotyczące urządzeń fizycznych Dane dotyczące pogody Dane biologiczne Rodzaje danych Indywidualnie rozpatrywany szereg w oderwaniu od innych danych Analiza danych powiązanych ze sobą

Praca z szeregami czasowymi Cele analizy szeregów czasowych Przewidywanie przyszłych wartości Badanie dynamiki szeregów Proces analizy szeregów czasowych Analiza wykresu danych Zastosowanie wybranych metod statystycznych adekwatnych do wstępnej analizy wykresu Składowe szeregu Trend Sezonowość (cykliczność) Losowość

Przykłady szeregów czasowych 1 Biały szum: w t iid(0, σ 2 w ). Często w t Niid(0, σ 2 w ). Średnia ruchoma: v t = 1 3 (w t 2 + w t 1 + w t ) (model MA(2)). Rysunek: Gausowski biały szum i średnia ruchoma tego szumu.

Przykłady szeregów czasowych 2 Autoregresja: x t = x t 1 + 0, 9x t 2 + w t dla t = 0, 1, 2,... (model AR(2)). Rysunek: Autoregresja.

Przykłady szeregów czasowych 3 Błądzenie losowe z trendem (lub bez): x t = δ + x t 1 + w t = δt + t j=1 w j dla t = 1, 2,... oraz x 0 = 0 (model ARIMA(1,1,0)). Rysunek: Błądzenie losowe z trendem δ = 2 i bez trendu (δ = 0).

Przykłady szeregów czasowych 4 Sygnał w szumie: x t = 2 cos(2πt/50 + 0, 6π) + w t dla t = 1, 2,... (szereg cykliczny). Rysunek: Cosinus, cosinus z szumem σ w = 1 i cosinus z szumem σ w = 5.

Opis modelu Dla dowolnych momentów czasowych s, t możemy wyznaczyć funkcje: średniej: µ t = E(x t ) autokowariancji: γ(s, t) = E[(x s µ s )(x t µ t )] autokorelacji: ρ(s, t) = γ(s,t) γ(s,s)γ(t,t) kowariancji dwóch szeregów: γ xy (s, t) = E[(x s µ xs )(y t µ yt )] korelacji dwóch szeregów: ρ xy (s, t) = Zauważmy, że: γ(s, t) = γ(t, s) γ(t, t) = σ 2 t 1 ρ(s, t) 1 γ xy (s,t) γxy (s,s)γ xy (t,t) Jeśli γ(s, t) = 0 i x s, x t mają dwuwymiarowy rozkład normalny to są niezależne - dla dowolnych rozkładów niekoniecznie

Autokowariancja - przykład Rysunek: Autokowariancja średniej ruchomej x t = 1 (wt + wt 1 + wt 2). 3

Stacjonarność Problem: Chcemy estymować średnie i kowariancje z danych. Do dyspozycji mamy po jednej realizacji procesu, a nie cały proces, co utrudnia zadanie. Definicja - ścisła stacjonarność Szereg czasowy jest ściśle stacjonarny jeśli dla dowolnych dopuszczalnych danych t 1,..., t k i dowolnego h Z łączny rozkład kolekcji {x t1,..., x tk } jest identyczny z rozkładem {x t1+h,..., x tk +h}. Ze ścisłej stacjonarności wynika stałość średnich i wariancji w czasie. Definicja - słaba stacjonarność (stacjonarność) Szereg czasowy o skończonej wariancji jest słabo stacjonarny (stacjonarny) jeśli: 1 Średnia µ t jest stała w czasie. 2 Autokowariancja γ(s, t) zależy tylko od różnicy h = t s.

Przykłady Biały szum: γ(s, t) = E[(w t 0)(w s 0)] = { σ 2 w, s = t, 0, s t. Jest stacjonarny. Jeśli w t Niid(0, σ 2 w ), to jest nawet ściśle stacjonarny. Średnia ruchoma: v t = 1 3 (w t 1 + w t + w t+1 ) Jest stacjonarny. µ t = 0 3/9, s = t, 2/9, s t = 1, γ(s, t) = 1/9, s t = 2, 0, s t 3

Przykłady c.d. Błądzenie losowe z dryfem: x t = δt + t j=1 w j. µ t = δt. Zatem błądzenie losowe z dryfem nie jest szeregiem stacjonarnym. Bez dryfu również, ponieważ γ(s, t) = min{s, t}σ 2 w. Sygnał w szumie: x t = 2 cos(2πt/50 + 0, 6π) + w t. Nie jest stacjonarny. µ t = 2 cos(2πt/50 + 0, 6π),

Własności szeregów stacjonarnych Własności: Jeśli szereg jest ściśle stacjonarny, to jest stacjonarny. Jeśli szereg jest stacjonarny i każdy wielowymiarowy rozkład {x t1,..., x tn } jest gaussowski, to szereg jest ściśle stacjonarny. Oznaczenia: µ = µ t γ(h) = γ(t, t + h) ρ(h) = ρ(t, t + h) Analogiczne oznaczenia dla kowariancji i korelacji dwóch szeregów. Własności: γ(h) = γ( h) γ(0) = σ 2 - wariancja x t γ(h) γ(0)

Szereg stacjonarny Estymacja parametrów szeregu stacjonarnego: Średnia: ˆµ = 1 n n t=1 x t. Autokowariancja: ˆγ(h) = 1 n Autokorelacja: ˆρ(h) = ˆγ(h) Kowariancja: ˆγ xy (h) = 1 n Korelacja: ˆρ xy (h) = ˆγ(0) n h ˆγ xy (h) ˆγx (0)ˆγ y (0) n h t=1 (x t+h ˆµ)(x t ˆµ). t=1 (x t+h ˆµ x )(y t ˆµ y )

Rodzaje analiz szeregów czasowych Analiza czasowa Korelacja aktualnych danych z danymi poprzednimi Modelowanie przyszłych wartości na podstawie aktualnych i przeszłych Korzysta z regresji Modele ARIMA Analiza częstościowa Wpływ czynników cyklicznych (sezonowych) na wartości szeregu Główne narzędzie to analiza spektralna (gęstość spektralna)

Wprowadzenie do modelu ARIMA - pomocnicze operatory Oznaczenia: Operator przesunięcia Bx t = x t 1, B k x t = x t k. Operator różnicowy x t = x t x t 1, d x t = (1 B) d x t.

Model autoregresyny - AR Definicja modelu autoregresyjnego stopnia p - AR(p) Model postaci: x t = Φ 1 x t 1 +... + Φ p x t p + w t, gdzie x t to szereg stacjonarny, Φ i - stałe (Φ p 0), w t to biały szum (gaussowski). Jeśli µ = E(x t ) 0, to powyższy szereg zastępujemy przez: gdzie α = µ(1 Φ 1... Φ p ). x t = α + Φ 1 x t 1 +... + Φ p x t p + w t, Zapis operatorowy Φ(B)x t = w t, gdzie Φ(B) = 1 Φ 1 B... Φ p B p. Wielomianem AR(p) nazywamy wielomian zespolony: Φ(z) = 1 Φ 1 z... Φ p z p, Φ p 0 oraz z C.

Model AR(1) Własności procesu x t = Φx t 1 + w t dla Φ < 1 Średnia: E(x t ) = 0 Autokowariancja: γ(h) = σ2 w Φh 1 Φ 2, h 0 Autokorelacja: ρ(h) = Φ h, h 0 Własność autokorelacji: ρ(h) = Φρ(h 1) Zmienna x t jest skorelowana z wszystkimi poprzednimi zmiennymi x t k, k 1.

Proces: x t = Φx t 1 + w t Jeśli Φ < 1, to iterując wstecz otrzymujemy: x t = Φ j w t j. j=0 Szereg jest zbieżny (w sensie średniokwadratowym - przestrzeń L 2 ) i można sprawdzić, że jest stacjonarny. Nazywamy go szeregiem kazualnym. Jeśli Φ = 1, to dostajemy błądzenie losowe, o którym wiemy już, że nie jest stacjonarny. Jeśli Φ > 1, to powyższy szereg nie jest zbieżny, ale można iterować go wprzód: x t = Φ 1 x t+1 Φ 1 w t+1 =... = Φ j w t+j. j=1 Również jest zbieżny, choć ta forma jest bezużyteczna, gdyż teraźniejszość zależy od przyszłości - nazywamy go niekazualnym.

AR(p) W ogólności mamy model Φ(B)x t = w t i naszym celem jest znalezienie ciągu x t. Mnożąc obustronnie przez Φ 1 (B) otrzymujemy: x t = Φ 1 (B)w t, ale musimy mieć pewność, że Φ jest odwracalne. Odwracalność jest zdeterminowana przez odwracalność wielomianu zespolonego AR. Dla AR(1) wielomian AR i jego wielomian odwrotny to Φ(z) = 1 Φ 1 z Φ 1 (z) = j=0 Φ j 1 zj i odwracalność wielomianu jest równoważna zbieżności szeregu. Podobnie jest dla innych modeli AR - wielomianami odwrotnymi są szeregi zespolone.

Własność kazualności Definicja Proces AR(p) postaci Φ(B)x t = w t nazywamy kazualnym jeśli daje się zapisać jako: x t = Ψ(B)w t, gdzie Ψ(B) = j=0 Ψ jb j oraz j=0 Ψ j <. Twierdzenie Proces AR(p) jest kazualny jeśli Φ(z) 0 dla z 1.

Przykład - autokorelacja AR(2) Dany proces: x t = Φ 1 x t 1 + Φ 2 x t 2 + w t - kazualny. Bierzemy: E(x t x t h ) = Φ 1 E(x t 1 x t h ) + Φ 2 E(x t 2 x t h ) + E(w t x t h ). Ponieważ E(x t ) = 0 oraz dla h > 0 to E(w t x t h ) = E(w t Dzieląc przez ρ(0) dostajemy j=0 w t h j ) = 0, γ(h) = Φ 1 γ(h 1) + Φ 2 γ(h 2). ρ(h) Φ 1 ρ(h 1) Φ 2 ρ(h 2) = 0, z warunkami początkowymi ρ(0) = 1 i ρ( 1) = ρ(1) = Φ1 1 Φ 2.

C.d. - rozwiązania: Niech z 1, z 2 będą zerami wielomianu Φ(z) = 1 Φ 1 z + Φ 2 z 2. Oczywiście z 1 > 1 oraz z 2 > 1 - z kazualności. 1 Jeśli z 1 z 2 - rzeczywiste, to więc ρ(h) 0, gdy h. 2 Jeśli z 1 = z 2 - rzeczywiste, to więc ρ(h) 0, gdy h. ρ(h) = c 1 z h 1 + c 2 z h 2, ρ(h) = z h 1 (c 1 + c 2 h), 3 Jeśli z 1 = z 2, to c 1 = c 2 (ponieważ ρ(h) - rzeczywiste) oraz ρ(h) = c 1 z h 1 + c 1 z h 1 Upraszczając dostaniemy, że ρ(h) 0, gdy h sinusoidalnie.

Model MA Definicja modelu średniej ruchomej stopnia q - MA(q) Model postaci: x t = w t + Θ 1 w t 1 +... + Θ q w t q, gdzie w t -biały szum (gaussowski), Θ i -stałe (Θ q 0). Zapis operatorowy x t = Θ(B)w t, gdzie Θ(B) = 1 + Θ 1 B +... + Θ q B q. Wielomianem MA(q) nazywamy wielomian zespolony: Θ(z) = 1 + Θ 1 z +... + Θ p z p, Θ p 0 oraz z C. Proces jest stacjonarny dla wszystkich Θ i.

Model MA(1) Własności procesu x t = w t + Θw t 1 Średnia: E(x t ) = 0 Autokowariancja: Autokorelacja: (1 + Θ 2 )σw 2, h = 0, γ(h) = Θσw 2, h = 1, 0, h > 1 ρ(h) = { Θ 1+Θ 2, h = 1, 0, h > 1 Zmienna x t jest skorelowana jedynie ze zmienną w czasie poprzednim x t 1

Niejednoznaczność modelu MA(1) Rozważmy model x t = w t + Θw t 1. Jeśli zatem założymy, że Θ = 5 oraz σ 2 w = 1, to z funkcji autokowariancji widać, że otrzymujemy model o takim samym rozkładzie jak model z parametrami Θ = 1/5 oraz σ 2 w = 25. Wynika stąd, że ten sam model może być zapisany za pomocą dwóch różnych procesów, dlatego należy stworzyć kryterium dzięki któremu uzyskamy jednoznaczność.

Niejednoznaczność w MA(q) Rozważając model x t = Θ(B)w t, przedstawmy proces w t jako kombinację liniową procesu x t podobnie jak dla procesu AR(p). Mnożąc obustronnie przez Θ 1 (B) otrzymujemy: ale Θ musi być odwracalne. w t = Θ 1 (B)x t, Ponownie, odwracalność Θ(B) jest zdeterminowana odwracalnością wielomianu zespolonego Θ(z).

Własność odwracalności dla procesu MA(p) Definicja Proces MA(q) postaci x t = Θ(B)w t jest odwracalny jeśli można go zapisać jako: w t = π(b)x t, gdzie π(b) = j=0 π jb j oraz j=0 π j <. Twierdzenie Proces MA(q) jest odwracalny jeśli Θ(z) 0 dla z 1.

Przykład - autokorelacja MA(q) Dany jest proces x t = Θ(B)w t, gdzie Θ(B) = 1 + Θ 1 B +... Θ q B. Po pierwsze E(x t ) = 0 Po drugie Ostatecznie: q q γ(h) = E[( Θ j w t+h j )( Θ k w t k )] = j=0 k=0 { σ 2 w q h j=0 Θ jθ j+h, 0 h q, 0, h > q q h j=0 Θj Θ j+h ρ(h) =, 1 h q, 1+Θ 2 1 +...+Θ2 q 0, h > q Czyli x t jest tylko skorelowane z q poprzedzającymi wyrazami.

Model ARMA Definicja modelu autoregresyjnego ze średnią ruchomą ARMA(p,q) Model postaci: x t = Φ 1 x t 1 +... + Φ p x t p + w t + Θ 1 w t 1 +... + Θ q w t q, gdzie x t to szereg stacjonarny, Φ p 0, Θ q 0, w t to biały szum (gaussowski). Jeśli µ = E(x t ) 0, to powyższy szereg zastępujemy przez: x t = α + Φ 1 x t 1 +... + Φ p x t p + w t + Θ 1 w t 1 +... + Θ q w t q, gdzie α = µ(1 Φ 1... Φ p ). Zapis operatorowy Φ(B)x t = Θ(B)w t. Dla procesu ARMA(p,q) przenosimy definicję kazualności oraz odwracalności analogicznie jak dla procesów AR(p) i MA(q). Również w podobny sposób można liczyć korelację w tym modelu.

Redundancja parametrów modelu ARMA Procesy: x t = w t, opisują ten sam model. Odejmujc stronami 0, 5x t 1 = 0, 5w t 1 x t 0, 5x t 1 = w t 0, 5w t 1 nadal dostajemy ten sam model. Chcemy potrafić wykryć nadmiarowość parametrów i uprościć model. W tym celu stosujemy zapis operatorowy: i dostajemy: (1 0, 5B)x t = (1 0, 5B)w t x t = (1 0, 5B) 1 (1 0, 5B)w t = w t. Podobnie możemy rozwiązywać ten problem dla innych procesów ARMA porównując wielomiany AR i MA.

Modele ARMA z trendem Model ARMA zakłada stacjonarność procesu x t Jednym z czynników psującym stacjonarność jest trend Pewna klasa procesów z trendem może być sprowadzona do modelu ARMA przez usunięcie trndu. Metody usuwania trendu Regresja Różnicowanie

Usuwanie trendu za pomocą regresji Sytuacja x t = µ t + y t, gdzie µ t = k j=0 β jt j - trend wielomianowy, y t - szereg stacjonarny. Procedura usuwania trendu: Estymujemy trend za pomocą regresji wielomianowej - ˆµ t i tworzymy nowy szereg jako: ŷ t = x t ˆµ t. Dzięki estymacji znamy dokładną postać nowego szeregu ŷ t.

Usuwanie trendu za pomocą różnicowania Sytuacja 1 x t = µ t + y t, µ t = β 0 + β 1 t, gdzie y t - szereg stacjonarny, β j - stałe. Czyli przyjmujemy trend liniowy(szczególny przypadek poprzedniej sytuacji). Operacja: daje nam szereg stacjonarny. x t = x t x t 1 = β 1 + y t.

Usuwanie trendu za pomocą różnicowania Sytuacja 2 x t = µ t + y t, µ t = δ + µ t 1 + w t, gdzie w t - biały szum. Czyli przyjmujemy, że błądzenie losowe jest modelem trendu. Postępowanie: x t = (µ t + y t ) (µ t 1 + y t 1 ) = δ + w t + y t. - szereg stacjonarny. Dzięki różnicowaniu, nie musimy nic estymować, ale nie też nie poznajemy wprost szeregu y t.

Różnicowanie wyżej wymiarowe Sytuacja 3 x t = µ t + y t, µ t = gdzie y t - stacjonarny, β j - stałe. Wówczas k x t - stacjonarny. k β j t j, j=0

Usuwanie niestacjonarności za pomocą różnicowania Sytuacja 4 x t = µ t + y t, µ t = µ t 1 + v t, v t = v t 1 + w t, gdzie w t - biały szum, y t - stacjonarny. Niestacjonarność jest modelowana jako podwójne błądzenie losowe. Tym razem: 2 x t = 2 y t + w t - szereg stacjonarny. Dla k-krotnie złożonych procesów tego typu wykonujemy k-krotne różnicowanie w celu usunięcia niestacjonarności.

Proces ARIMA Defnicja Proces x t nazywamy procesem ARIMA(p,d,q) jeśli jest procesem ARMA(p,q). Ogólnie ten model zapisujemy jako: Jeśli E( d x t ) = µ, to piszemy gdzie α = µ(1 Φ 1... Φ p ). d x t = (1 B) d x t Φ(B)(1 B) d x t = Θ(B)w t. Φ(B)(1 B) d x t = α + Θ(B)w t,

Przykład Rysunek: Dane dotyczące temperatury i trend liniowy.

Przykład c.d. Rysunek: Szereg po usunięciu trendu za pomocą regresji (góra) i różnicowania (dół).

Przykład c.d. Rysunek: Autokorelacja oryginalnego szeregu(góra) oraz szeregów po usunięciu trendu za pomocą regresji (środek) i różnicowania (dół).