Wyznaczanie okresu drgań wahadła informacje ogólne dla nauczyciela



Podobne dokumenty
SCENARIUSZ LEKCJI FIZYKI W GIMNAZJUM

Scenariusz lekcji fizyki w klasie drugiej gimnazjum

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

Wyznaczanie prędkości średniej informacje ogólne dla nauczyciela

Doświadczalne badanie drugiej zasady dynamiki Newtona

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

E-doświadczenie wahadło matematyczne

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

KONSPEKT ZAJĘĆ EDUKACYJNYCH

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione?

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Opracowanie wyników pomiarowych. Ireneusz Mańkowski

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Podstawy niepewności pomiarowych Ćwiczenia

Konspekt lekcji z fizyki z zastosowaniem technologii komputerowej. (ścieżka edukacyjna medialna)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny

To jest fizyka 1. Rozkład materiału nauczania (propozycja)

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Przedmiotowy system oceniania z fizyki obowiązujący w Publicznym Gimnazjum w Złotnikach od dnia r.

FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Konspekt lekcji z fizyki z zastosowaniem technologii komputerowej. (ścieżka edukacyjna medialna)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Program nauczania Fizyka GPI OSSP

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

Plan wynikowy. 1. Dynamika (8 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych

Rys. 1Stanowisko pomiarowe

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego.

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

Ć W I C Z E N I E N R M-2

SCENARIUSZ LEKCJI FIZYKI W KLASIE 8 Z WYKORZYSTANIEM TIK

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

Wymagania na poszczególne oceny z fizyki do klasy 2

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA MATEMATYCZNEGO

WYMAGANIA EDUKACYJNE Z FIZYKI

Przedmiotowy system oceniania z fizyki

WYMAGANIA EDUKACYJNE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

1. Dynamika. R treści nadprogramowe. Ocena

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

Wymagania na poszczególne oceny z fizyki w Zespole Szkół im. Jana Pawła II w Suchej Beskidzkiej.

Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1

Drgania i fale sprężyste. 1/24

Kryteria ocen z fizyki klasa II gimnazjum

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

DOŚWIADCZENIA OBOWIĄZKOWE Wyznaczanie wartości przyspieszenia ziemskiego za pomocą wahadła matematycznego

Rodzaj/forma zadania Uczeń odczytuje przebytą odległość z wykresów zależności drogi od czasu

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W SZKOLE PODSTAWOWEJ NR 2 IM. HENRYKA SIENKIEWICZA. w MUROWANEJ GOŚLINIE

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Zasady oceniania. Ocena dopuszczająca dostateczna dobra bardzo dobra

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY

SCENARIUSZ LEKCJI W GIMNAZJUM

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

T =2 I Mgd, Md 2, I = I o

DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

drgania i fale optyka

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017. Imię i nazwisko:

Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań

XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut

Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź. zamknięte 1 1 p. poprawne odpowiedzi. zamknięte 1 1 p. poprawne odpowiedzi

Mgr Sławomir Adamczyk Konspekt lekcji fizyki w klasie I gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Graficzne opracowanie wyników pomiarów 1

Warsztat nauczyciela: Badanie rzutu ukośnego

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

Zadanie 2. Oceń prawdziwość poniższych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I Rozdział I. Pierwsze spotkania z fizyką

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I Rozdział I. Pierwsze spotkania z fizyką pomiaru

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

N: Wprowadzenie nowych treści: prawo Archimedesa. N: Zapisanie wzorów na obliczanie siły wyporu. U: Notuje najważniejsze pojęcia

Test powtórzeniowy nr 1

Transkrypt:

Wyznaczanie okresu drgań wahadła informacje ogólne dla nauczyciela Proponowane tutaj doświadczenie nadaje się do wykorzystania na III etapie edukacyjnym i służy do realizacji punktu 9.12 podstawy programowej: Uczeń wyznacza ( ) okres i częstotliwość drgań wahadła matematycznego. Ponadto poszczególne elementy doświadczenia mogą być przydatne do realizacji następujących punktów podstawy programowej: 6.1. Uczeń opisuje ruch wahadła matematycznego ( ); 8.1. opisuje przebieg i wynik przeprowadzanego doświadczenia, wyjaśnia rolę użytych przyrządów ( ); 8.6. odczytuje dane z tabeli i zapisuje dane w formie tabeli; 8.4. przelicza wielokrotności i podwielokrotności (przedrostki mikro-, mili-, centy-, hekto-, kilo-, mega-) ( ); 8.8. sporządza wykres na podstawie danych z tabeli (oznaczenie wielkości i skali na osiach) ( ); 8.10. posługuje się pojęciem niepewności pomiarowej; 8.11. zapisuje wynik pomiaru lub obliczenia fizycznego jako przybliżony (z dokładnością do 2 3 cyfr znaczących); 8.12. planuje doświadczenie lub pomiar, wybiera właściwe narzędzia pomiaru; mierzy: czas, długość, masę ( ). Doświadczenie zostało zaprojektowane w taki sposób, aby uczeń mógł je wykonać samodzielnie. Jego wykonanie można też wykorzystać jako świetną okazję do kształtowania umiejętności pracy w grupie. W pierwszym, prostszym wariancie doświadczenie polega na zmierzeniu za pomocą stopera (lub innego przyrządu) czasu trwania ustalonej liczby drgań wahadła i wyznaczaniu na tej podstawie okresu i częstotliwości drgań wahadła. Ćwiczenie według tego wariantu jest bardzo proste i może zostać wykonane zarówno na lekcji fizyki jak i w trakcie zastępstwa (przez nauczyciela nie będącego fizykiem). Drugi wariant jest bardziej rozbudowany i służy do zbadania zależności (bądź braku zależności) okresu drgań wahadła od takich parametrów jak jego długość, masa ciała zawieszonego na nici (ewentualnie również kąta wychylenia). W zależności od liczebności klasy oraz poziomu zainteresowania uczniów, całe ćwiczenie lub jego wybrane elementy, można wykonać na lekcji lub zajęciach pozalekcyjnych. Nauczyciel może w tym przypadku zmodyfikować pewne elementy instrukcji, aby dostosować ją do indywidualnych potrzeb uczniów. Wykonując drugi wariant ćwiczenia można dodatkowo pokusić się o zastosowanie nieco bardziej zaawansowanych metod opracowania wyników pomiarów, takich jak tworzenie wykresu zależności czasu od długości wahadła. Można też np. wykorzystać tak uzyskany wykres do doświadczalnego wyznaczenia wartości przyspieszenia ziemskiego.

Instrukcja do ćwiczenia składa się z kart pracy dla uczniów (osobno dla każdego wariantu) i materiałów pomocniczych dla nauczyciela, zawierających przykładowe odpowiedzi na pytania z kart oraz propozycje poprowadzenia dyskusji z uczniami. Rolą nauczyciela jest przedyskutowanie pomysłów z uczniami i ewentualna pomoc przy wykonaniu pomiarów i opracowaniu wyników. Zalecany czas wykonania ćwiczenia to jedna jednostka lekcyjna, dlatego też uczeń może wypełnić część teoretyczną w domu. W przypadku drugiego wariantu ćwiczenia, obliczenia wykraczające poza podstawę programową mogą zostać zadane jako dobrowolna praca domowa dla uczniów zainteresowanych lub zaprezentowane na zajęciach pozalekcyjnych. Wariant pierwszy jest na tyle prosty, że zarówno pomiary, obliczenia jak i dyskusja wyników powinny zostać w całości zrealizowane na jednej lekcji.

I. Wyznaczanie okresu i częstotliwości drgań wahadła (wariant I) karta pracy dla ucznia Podczas tego ćwiczenia wyznaczymy okres i częstotliwość drgań wahadła matematycznego. Wahadło takie można wykonać samodzielnie. Potrzebny jest do tego kawałek nici, taśma klejąca, ołówek, pisak, lub linijka oraz mały przedmiot do zawieszenia na nici (metalowa nakrętka, kulka z plasteliny, moneta z otworem). Przedmiot zawieszamy na jednym końcu nici, a drugi zawiązujemy wokół linijki czy ołówka przyklejając dodatkowo taśmą. Sam ołówek lub linijkę przytwierdzamy do krawędzi stołu za pomocą taśmy, w taki sposób, by w czasie ruchu wahadła sznurek nie tarł o krawędź stołu, a ołówek był zupełnie nieruchomy (poza przyklejeniem taśmą warto go przycisnąć ciężką książką). 1. Za pomocą jakich przyrządów możemy zmierzyć okres drgań wahadła? Podaj dwa przykłady. 2. Z jaką (teoretycznie) dokładnością można za pomocą tych przyrządów mierzyć czas? Z dokładnością do minuty, sekundy, dziesiątych czy setnych części sekundy? Czy rzeczywiście pomiar czasu będzie tak dokładny? Przedyskutuj swoje propozycje z nauczycielem i innymi uczniami.

3. Wychylcie wahadło o niewielki kąt w bok i puśćcie. Będzie ono odchylało się na przemian w jedną i w drugą stronę. Czas, który upływa pomiędzy dwoma kolejnymi momentami maksymalnego wychylenia wahadła w tę samą stronę jest okresem drgań. Jeśli będziecie wykorzystywać do pomiarów stoper wbudowany w telefon komórkowy, wypróbujcie najpierw jego działanie. Nauczcie się sprawnie go obsługiwać, tak by jego włączanie i wyłączanie zajmowało jak najmniej czasu. Ręczne uruchamianie i zatrzymywanie stopera powoduje, że do niewielkiej niedokładności pomiaru samego stopera dochodzi znacznie większa niedokładność pomiaru spowodowana tzw. czasem reakcji człowieka. Wynosi on przeciętnie ok. 0,2-0,3 s. Z tego powodu nie da się takim stoperem zmierzyć czasu z większą dokładnością. Ponieważ o tyle możemy pomylić się zarówno podczas włączania jak i wyłączania stopera, to przyjmiemy, że niedokładność naszych pomiarów wynosi około 0,6 s. 4. Wykorzystując stoper zmierzcie okres drgań waszego wahadła. 5. Powtórzcie pomiar 4 razy i zapiszcie wynik. lp zmierzony okres drgań 1 s ± 0,5 s 2 s ± 0,5 s 3 s ± 0,5 s 4 s ± 0,5 s Pytania do dyskusji w grupie. 6. Dlaczego w wyniku pomiaru okresu tego samego wahadła nie daje za każdym razem tego samego wyniku? 7. Czy czas reakcji osoby dokonującej pomiaru wpływa w zauważalnym stopniu na otrzymane wyniki?

8. Aby uzyskać dokładniejszą wartość okresu możemy obliczyć średnią kilku pomiarów. W naszym przypadku wynosi ona.. ± 0,5 s 9. Taka metoda nie zniweluje jednak niedokładności wynikającej z czasu reakcji. Problem można rozwiązać za pomocą fotokomórki lub w przypadku jej braku zminimalizować poprzez dokonanie pomiaru większej liczby okresów - np. 10. Teraz niedokładność pomiaru czasu rozłoży się na 10 mierzonych okresów, co 10-krotnie zmniejszy niedokładność wyznaczenia okresu. Wykonajcie pomiar 10 pełnych okresów drgań. Ze względu na możliwą pomyłkę w liczeniu powtórzcie pomiar 2 razy jeżeli oba wyniki znacznie się różnią jeden z nich był błędny i trzeba wykonać pomiar jeszcze raz. 10. Zmierzony czas trwania 10 pełnych okresów drgań wahadła to 10 T = ± 0,5s 11. Wyznaczony czas jednego drgania (czyli okres drgań) wahadła to T = ± 0,05 s 12. Możemy teraz obliczyć częstotliwość drgań, którą wyrażamy w hercach (Hz): f 1 T 13. Okres drgań wyznaczony w na podstawie pomiaru 10 okresów wynosi, więc rzeczywisty okres drgań wahadła jest nie mniejszy niż T min = T 0,05 s =, a nie większy niż T max = T 0,05 s =.. 14. Minimalnemu możliwemu okresowi drgań odpowiada maksymalna możliwa częstotliwość drgań:

f max 1 T min Hz, a maksymalnemu możliwemu okresowi drgań odpowiada minimalna możliwa częstotliwość drgań: f min 1 T max Hz 15. Uzyskana przez was wartość okresu drgań, wyznaczona metodą pomiaru czasu określonej liczby drgań, mieści się w przedziale od (s) do (s), a częstotliwość drgań, wyznaczona tą metodą, mieści się w przedziale od (Hz) do (Hz). 16. Porównajcie wyniki uzyskane gdy mierzyliśmy jeden okres, w wynikami uzyskanymi poprzez pomiar dziesięciu okresów. Sprawdźcie, czy są ze sobą zgodne w granicach niepewności pomiaru. Zanotujcie poniżej swoje wnioski i spostrzeżenia.

II. Wyznaczanie okresu i częstotliwości drgań wahadła (wariant II) karta pracy dla ucznia Podczas tego ćwiczenia sprawdzimy od czego zależy, a od czego nie zależy okres i częstotliwość drgań wahadła matematycznego. Wahadło takie można wykonać samodzielnie. Potrzebny jest do tego kawałek nici, ołówek, pisak, lub linijka oraz mały przedmiot do zawieszenia na nici (metalowa nakrętka, kulka z plasteliny, moneta) oraz taśma klejąca. Przedmiot zawieszamy na jednym końcu nici, a drugi zawiązujemy wokół linijki czy ołówka przyklejając dodatkowo taśmą. Sam ołówek lub linijkę przytwierdzamy do krawędzi stołu za pomocą taśmy, w taki sposób, by w czasie ruchu wahadła sznurek nie tarł o krawędź stołu, a ołówek był zupełnie nieruchomy (poza przyklejeniem taśmą warto go przycisnąć ciężką książką). 1. W jaki sposób określimy długość wahadła? Czy jest to długość nici, czy łączna długość nici i ciężarka, czy należy ją rozmieć jeszcze inaczej? 2. Jakie przyrządy pomiarowe wykorzystamy do wyznaczenia tej długości? Podaj dwa przykłady.

3. Oceń jak dokładnie jesteśmy w stanie wyznaczyć tę długość. Przedyskutuj swoje propozycje z nauczycielem i innymi uczniami. 4. Zmierzcie długość wahadła l. Oszacujcie niepewność pomiaru przy zastosowaniu tej metody. Wyniki pomiarów zapiszcie poniżej. l = ( ± ) cm = ( ± ) m 1. 5. Za pomocą jakich przyrządów możemy zmierzyć okres drgań wahadła? Podaj dwa przykłady. 6. Z jaką (teoretycznie) dokładnością można za pomocą tych przyrządów mierzyć czas? Z dokładnością do minuty, sekundy, dziesiątych czy setnych części sekundy? Czy rzeczywiście pomiar czasu będzie aż tak dokładny? 7. Dlaczego warto wyznaczać łączny czas kilku (np. 10 okresów) zamiast jednego okresu?

Przedyskutuj swoje propozycje z nauczycielem i innymi uczniami. 8. Wychylcie wahadło niewielki kąt w bok i puśćcie. Będzie ono odchylało się na przemian w jedną i w drugą stronę. Czas, który upływa pomiędzy dwoma kolejnymi momentami maksymalnego wychylenia wahadła w tę samą stronę jest okresem drgań. 9. Jeśli będziecie wykorzystywać do pomiarów stoper wbudowany w telefon komórkowy, wypróbujcie najpierw jego działanie. Nauczcie się sprawnie go obsługiwać, tak by jego włączanie i wyłączanie zajmowało jak najmniej czasu. 10. Ręczne uruchamianie i zatrzymywanie stopera powoduje, że do niedokładności pomiaru samego stopera dochodzi niedokładność pomiaru spowodowana tzw. czasem reakcji człowieka. Wynosi on przeciętnie ok. 0,2-0,3 s. Z tego powodu nie da się takim stoperem zmierzyć czasu z większą dokładnością. Ponieważ o tyle możemy pomylić się zarówno podczas włączania i wyłączania stopera, to przyjmiemy, że niedokładność naszych pomiarów wynosi około 0,6 s. 11. Wykonajcie pomiar 10 pełnych okresów drgań. Ze względu na możliwą pomyłkę w liczeniu powtórzcie pomiar 2 razy jeżeli oba wyniki znacznie się różnią jeden z nich był błędny i trzeba wykonać pomiar jeszcze raz. 12. Zmierzony czas trwania 10 pełnych okresów drgań wahadła to 10 T = ± 0,5s 13. Wyznaczony czas jednego drgania (czyli okres drgań) wahadła to T = ± 0,05 s 14. Po wykonaniu tego pomiaru zwiększcie masę wahadła. Trzeba jednak bardzo uważać, by nie zmienić przy tym jego długości! Wychylcie wahadło z położenia równowagi o podobny kąt jak w poprzednim pomiarze, dla mniejszej masy wahadła. 15. Zmierzony czas trwania 10 pełnych okresów drgań wahadła to ± 0,5s 16. Wyznaczony czas jednego drgania (czyli okres drgań) wahadła to T = ± 0,05 s Zapisz wniosek na temat zależności bądź braku zależności okresu ruchu wahadła od jego masy z uwzględnieniem niepewności pomiaru.

17. Ponieważ różne grupy badały wahadła o różnej długości możemy opisać tę zależność zbierając wyniki różnych grup. Zbierzcie w jednej tabeli wyniki wszystkich grup w klasie. Nr pomiaru 1. 2. 3. 4. 5. 6. Długość wahadła l (m) Niepewność pomiaru długości wahadła (m) Okres drgań wahadła T(s) Niepewność pomiaru okresu drgań (s) 18. Odszukajcie w tabeli największą wartość długości wahadła oraz okresu drgań. Wybierzcie skale na osiach wykresu tak, aby wykorzystać większość miejsca, ale i nie utrudniać sobie pracy (wygodnie jest np. przyjąć skalę, w której 1 cm na wykresie odpowiada 2, 4, 5, 10, 20 cm długości wahadła, natomiast przyjęcie że to 3, 7, 9 cm znacznie utrudnia potem nanoszenie punktów pomiarowych). 19. Sporządźcie wykres zależności okresu drgań wahadła od długości wahadła. Nanieście na wykres niepewności pomiarowe. Oznaczcie odpowiednio osie na wykresie. Nie zapomnijcie o zapisaniu jednostek.

20. Czy otrzymana zależność między okresem drgań wahadła a jego długością jest zależnością wprost proporcjonalną? Uzasadnij odpowiedź... Dodatek 21. Dodajcie w tabelce kolumnę kwadrat okresu i wypełnijcie ją przykład: T = 0,4 s T 2 = 0,16 s 2 22. Wykonajcie wykres zależności T 2 od długości wahadła. Jaka to zależność?

23. Odczytajcie z wykresu jaką długość powinno mieć wahadło o okresie jednej sekundy. Wykonajcie je i sprawdźcie czy faktycznie taki jest jego okres. Odczytana z wykresu długość wahadła sekundowego.. m. Zmierzony okres drgań po wykonaniu takiego wahadła +/- s 24. Wnioski..

Materiał dla nauczyciela I. Wyznaczanie okresu i częstotliwości drgań wahadła (wariant I) Przykładowe odpowiedzi 1. Za pomocą jakich przyrządów możemy zmierzyć okres drgań wahadła? Podaj dwa przykłady. Za pomocą zegarka, stopera, stopera w telefonie komórkowym. 2. Z jaką (teoretycznie) dokładnością można za pomocą tych przyrządów mierzyć czas? Z dokładnością do minuty, sekundy, dziesiątych czy setnych części sekundy? Czy rzeczywiście pomiar czasu będzie tak dokładny? Teoretyczna dokładność zegarka to 1 sekunda. Stopery sportowe czy też stopery w telefonie komórkowym mierzą czas z dokładnością do 0,1 s lub 0,01 s. Jednak na rzeczywistą niepewność pomiaru największy wpływ ma czas reakcji człowieka psujący dokładność elektronicznego urządzenia. 6. Dlaczego pomiar okresu tego samego wahadła nie daje za każdym razem tego samego wyniku? Jest to konsekwencją niepewności pomiaru. 7. Jaki wpływ na otrzymane wyniki ma czas reakcji osoby dokonującej pomiaru? Czas reakcji ma największy wpływ na niepewność uzyskanych wyników powoduje opóźnione włączanie i wyłączanie stopera. II. Wyznaczanie okresu i częstotliwości drgań wahadła (wariant II) 1. W jaki sposób określimy długość wahadła? Czy jest to długość nici, czy łączna długość nici i ciężarka, czy należy ją rozmieć jeszcze inaczej? Długość wahadła powinniśmy określać od punktu zawieszenia do środka masy ciężarka. (Jest to poprawne tylko wówczas, gdy rozmiary ciężarka są małe) 2. Jakie przyrządy pomiarowe wykorzystamy do wyznaczenia tej długości? Odpowiednio długa linijka. Taśma miernicza. Miara krawiecka. 3. Jak dokładnie jesteśmy w stanie wyznaczyć tę długość? Realnie trudno jest uzyskać dokładność większą niż około 0,5 cm.

5. Za pomocą jakich przyrządów możemy zmierzyć okres drgań wahadła? Za pomocą zegarka, stopera, stopera w telefonie komórkowym. 6. Z jaką (teoretycznie) dokładnością można za pomocą tych przyrządów mierzyć czas? Z dokładnością do minuty, sekundy, dziesiątych czy setnych części sekundy? Czy rzeczywiście pomiar czasu będzie tak dokładny? Teoretyczna dokładność zegarka to 1 sekunda. Stopery sportowe czy też stopery w telefonie komórkowym mierzą czas z dokładnością do 0,1 s lub 0,01 s. Jednak na rzeczywistą niepewność pomiaru największy wpływ ma czas reakcji człowieka. 7. Dlaczego warto wyznaczać łączny czas kilku (np. 10 okresów) zamiast jednego okresu? W taki sposób możemy zmniejszyć niepewność pomiaru jednego okresu wahadła, gdyż niepewność rozkłada się na 10 okresów. 20. Czy otrzymana zależność między okresem drgań wahadła a jego długością jest zależnością proporcjonalną? Uzasadnij odpowiedź. Zależność nie jest proporcjonalna, ponieważ dwukrotnemu wzrostowi długości nie towarzyszy dwukrotny wzrost okresu. 22. Wykonajcie wykres zależności T 2 od długości wahadła. Jaka to zależność? Zależność kwadratu okresu od długości wahadła jest zależnością proporcjonalną. Uwagi 1. Wykonanie doświadczenia w wersji 1 powinno być wykonalne nawet w bardzo słabej klasie. Sam fakt wykonywania realnych pomiarów, notowania ich wyników i opracowania wniosków jest ważnym elementem nauki i nie należy z nich rezygnować na rzecz teoretycznego wykładu. Wariant 2 pozwala uczniom na pewnego rodzaju odkrywanie praw. 2. W obu wersjach doświadczenia należy oswajać uczniów z pojęciem niepewności pomiaru, jawnie zresztą zapisanego w wymaganiach przekrojowych podstawy programowej. Nie należy wnikać ze szczegółami w teorię niepewności pomiarowych chodzi o to, aby w uczniach zakorzeniło się przeświadczenie, że każdy pomiar jest obarczony jakąś niepewnością, a podawanie opartych o te pomiary wyników obliczeń z kalkulatora z 12

okres drgań wahadła (s) miejscami po przecinku nie ma sensu w sytuacji w której już drugiego miejsca nie jesteśmy pewni. 3. Sporządzanie wykresu na podstawie danych z tabeli jest jawnie zapisane w wymaganiach przekrojowych podstawy programowej. W wariancie II doświadczenia uczeń sporządza wykres zależności okresu (lub częstotliwości) drgań wahadła od jego długości. Jako że jest to rzadki dla ucznia w tym wieku przypadek wykresu nieliniowego trudno oczekiwać, że sam poradzi sobie z jego wykonaniem. Uczniowie bowiem często próbują wykonać wykres metodą łączenia kolejnych punktów co prowadzi do linii łamanej. 4. Aby ułatwić pracę nauczyciela i umożliwić skontrolowanie na bieżąco poprawności obliczeń uczniów, poniżej zamieszczono wykres przedstawiający wyliczona teoretycznie zależność okresu drgań wahadła od jego długości. y = 2,004x 0,5 R² = 1 długośc wahadła (m) Podobny wykres powinniśmy uzyskać dzięki zestawieniu wyników pomiarów wykonanych przez poszczególne grupy uczniów mierzące okresy wahadeł o różnej długości. Uczniowie nanoszą wyniki pomiarów poszczególnych grup na karty pracy, dodatkowo można wykorzystać też arkusz kalkulacyjny. 5. W wariancie II po zakończeniu pracy można dodatkowo zbadać zależność okresu i częstotliwości drgań wahadła od kąta wychylenia oraz od jego masy. Teoretycznie okres nie zależy od masy ani od długości nici. W praktyce zmiana kąta wychylenia na duży (40-90 stopni) powoduje zauważalną zmianę okresu drgań. Zauważalną zmianę tego okresu powoduje też znaczna zmiana masy. Jej dodanie bowiem na ogół wpływa na pewną zmianę momentu bezwładności ciężarka. Uczniowie po wykonaniu pomiarów powinni mieć świadomość, że zarówno zmiana masy jak i kąta wychylenia wpływa na realne wahadło w stopniu znikomym, a tzw. wahadło matematyczne to wyidealizowany model realnych wahadeł.

Podsumowanie Warto aby praca uczniów została zakończona dyskusją uzyskanych wyników. Należy również zachęcać uczniów do samodzielnego formułowania uwag i wniosków, które mogą a wręcz powinni zapisać w swojej karcie pracy. Ważne jest to, żeby nie zniechęcać uczniów do pracy doświadczalnej i stwarzać im wszelkie warunki do rozwoju tego typu zainteresowań i predyspozycji.